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Chapter 1

Vector Spaces

Recall that in course 131 you studied the notion of a linear vector
space. In that course the scalars were real numbers. We will study the
more general case, where the set of scalars is any field K. For example

Q,R,CZ/(p).

Definition. Let K be a field. A set M is called a vector space over the field
K (or a K-vector space) if

(i) an operation
MxM-—M
(z,y) > z+y

is given, called addition of vectors, which makes M into a commutative
group;
(ii) an operation

KxM-—->M
(A z)— Az

is given, called multiplication of a vector by a scalar, which satisfies:
(a) Mz +y) =z + Ay,
(

b) (A + p)x = Az + px,

)
(¢) Apz) = (An)z,
(d) 1

r =2

forall \,p € K, x,y € M, where 1 is the unit element of the field K.
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The elements of M are then called the vectors, and the elements of K are
called the scalars of the given K-vector space M.

Examples:

1. The set of 3-dimensional geometrical vectors (as in 131) is a real vector
space (R-vector space).

2. The set R™ (as in 131) is a real vector space.
3. If K is any field then the following are K-vector spaces:
(a) K" ={(a1,...,an) : a1,..., 0, € K}, with vector addition:
(a1, esan) + (Biyes Ba) = (1 + By oy + Br),
and scalar multiplication:

Mag, ... an) = (Aar, ..., day).

(b) The set K™*" of m x n matrices (m rows and n columns) with
entries in K (m,n fixed integers > 1), with vector addition:

11 v g Bin -0 Bia
+]
Q1 ' Olmn ﬁml ﬁmn
an+pBu o o+ B
= : : )
A1 + Bt Qmn + Bran

and scalar multiplication:

Q11 ot Qg )\an )\aln

Ayl o Oy )‘aml e )‘amn

(c) The set K* of all maps from X to K (X a fixed non-empty set),
with vector addition:

(f+9)(x) = f(z)+g(x),

and scalar multiplication:

(AN)(z) = A(f(2))
forallz e X, f,ge KX, N e K.
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Definition. Let N C M, and let M be a K-vector space. Then N is called
a K-vector subspace of M if N is non-empty, and

(i) z,y e N=>2x+4+y € N closed under addition;
(ii) A e K, x € N = Ax € N closed under scalar multiplication.

Thus N is itself a K-vector space.

Eramples:
1. {(a,3,7) : 3a+ B — 2y =0; a,B,7 € R}is a vector subspace of R®.

2. {v:v.n =0}, nfixed, is a vector subspace of the space of 3-dimensional
geometric vectors (see Figure 1.1).

n

Figure 1.1

3. The set C°(R) of continuous functions is a real vector subspace of the
set RR of all maps R — R.

4. Let V be an open subset of R. We denote by

C°(V) the space of all continuous real valued functions on V/,

C” (V) the space of all real valued functions on V' having contin-
uous rth derivative,

C*(V) the space of all real valued functions on V' having deriva-
tives of all r.

Then
ce(V)yc---cc(vycer(vyc---cCvV)ycRrRY
is a sequence of real vector subspaces.
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5. The space of solutions of the differential equation

d*u 9

is a real vector subspace of C*°(R).

Definition. Let uq,...,u, be vectorsin a K-vector space M, and let aq,... , a,
be scalars. Then the vector

Uy + -+ Qe

is called a linear combination of uq,...,u,. We write
S(ur,...,u,) ={arus + -+ opu, ag,... a0 € K}
to denote the set of all linear combinations of uq,...,u,. S(u1,...,u,) is a
K-vector subspace of M, and is called the subspace generated by uq,...,u,.
If S(uy,...,u,) = M, we say that uq,...,u, generate M (i.e. for each
x € M there exists aq,... ,a, € K such that = = aqus + -+ + o, u,).
Examples:

1. The vectors (1,2),(—1,1) generate R? (see Figure 1.2), since

a+ 8 —2a
3

3

(e, B) = (1,2) + (=1,1).

2. The functions coswz, sinwz generate the space of solutions of the
differential equation:

w—l—uﬂu:O



1.2)
(_1’
Figure 1.2
Definition. Let uy,...,u, be vectors in a K-vector space M. Then
(i) u1,...,u, are linearly dependent if there exist aq,...,a, € K not all

zero such that
ajuy + -+ opu, = 0;
(i) wi,...,u, are linearly independent if
oquy + -+ apu, =0
implies that aq,...,a, are all zero.

Frxample: coswz, sinwz (w # 0) are linearly independent functions in

C>(R).
Proof of This > Let

acoswr + fsinwr =0; a,f€R

be the zero function. Put z =0:a =0; put z = ;- : 3 =10. <
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Note. If uy,...,u, are linearly dependent, with
oy + agtig + -0+ apu, = 0,

and «a; (say) # 0 then

up = —(aj agug + -+ + a7 tayu,).

Thus uq,...,u, linearly dependent iff one of them is a linear combination of
the others.
Definition. A sequence of vectors uq, ..., u, in a K-vector space M is called
a basis for M if

(i) wu1,...,u, are linearly independent;

(i) wy,...,u, generate M.
Definition. If uy,...,u, is a basis for a vector space M then for each z € M

we have:
r=a'uy + -+ a"u,

for a sequence of scalars:

which are called the coordinates of x with respect to the basis uy, ..., u,.

The coordinates of x are uniquely determined once the basis is chosen

because:
r=a'ug+ -+ a"u, = flug + -+ Bu,
implies:
e
and hence
o' —p'=0,...,a" = 3" =0,
by the linear independence of uq,...,u,. So

ot =4 a" = [
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A choice of basis therefore gives a well-defined bijective map:
M — K"

x +— coordinates of x,

called the coordinate map wrt the given basis.
The following theorem (our first) implies that any two bases for M must
have the same number of elements.

Theorem 1.1. Let M be a K-vector space, uy, ..., u, be linearly indepen-
dent in M, and y1,... ,y, generate M. Then n <r.

Proofw»
U = oy + -+ oy

(say), since y1,...,y, generate M. aq,...,a, are not all zero, since u; # 0.
Therefore oy # 0 (say). Therefore y; is a linear combination of uy, ya,ys, . . ., Y.
Therefore uy, ys,ys, . .., y, generate M. Therefore

ug = Bruy + Baya + Bsys + -+ + Bryy

(say). Ba,..., B, are not all zero, since uy, uy are linearly independent. There-
fore By # 0 (say). Therefore ys is a linear combination of wuy, ua, ys, ..., y,.
Therefore uy, ug, ys, ..., y, generate M.

Continuing in this way, if n > r we get uy,...,u, generate M, and hence
U, 1s a linear combination of uq,...,u,, which contradicts the linear inde-
pendence of uy,...,u,. Therefore n < r. <
Note. If uy,...,u, and yq,...,y, are two bases for M then n = r.

Definition. A vector space M is called finite-dimensional if it has a finite
basis. The number of elements in a basis is then called the dimension of M,

denoted by dim M.

Examples:

1. The n vectors:
er = (1,0,0,...,0),e2 =(0,1,0,...,0),...,e, = (0,0,...,0,1)
form a basis for K™ as a vector-space, called the usual basis for K™.
Proof of This > We have
are; + -+ ane, = ar(1,0,...,0) + -+ + a,(0,...,0,1)

(o, 09, ..., ap).

Therefore
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(a) e1,...,e, generate K";

(b) arer +---+ane, =0=>w =0,...,0, =0.
Therefore eq,..., e, are linearly independent. «

2. The mn matrices:

1 00 0 010 0 0 0 0 0
0 00 0 000 0 0 0 0 0
000 -0 0020 -0 00 -~ 01

mXxXn

form a basis for K as a K-vector space.

3. The functions coswz, sinwx form a basis for the solutions of the equa-
tion
d*u

@—I—uﬂu:() (w#0).

4. The functions

form a basis for the subspace of C*°(R) consisting of polynomial func-
tions of degree < n.

5. dim K™ = n; dim K™*" = mn. We have:

dim €7 — {mn as a complex vector space;

2mn  as a real vector space.

Given any linearly independent set of vectors we can add extra ones to
form a basis. Given any generating set of vectors we can discard some to
form a basis. More generally:

Theorem 1.2. Let M be a vector space with a finite generating set (or a
vector subspace of such a space). Let 7 be a generating set, and let X be a
linearly independent subset of 7. Then M has a finite basis Y such that

XCcYCZ
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Proof » Among all the linearly independent subsets of Z which contain X
there is one at least

Y = {us, ... u,t,

with a maximal number of elements, n (say).
Now if z € Z then z,uy,...,u, are linearly dependent. Therefore there
exist scalars A, aq,...,a, not all zero such that

Az +aqug + -0+ apu, = 0.

A # 0, since uy,...,u, are linearly independent. Therefore 2z is a linear
combination of uq, ..., u,.
But Z generates M. Therefore uy, ..., u, generate M. Therefore uy,..., u,

form a basis for M. «
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Chapter 2

Linear Operators 1

2.1 The Definition

Definition. Let M, N be K-vector spaces. A map
ML N

is called a linear operator (or linear map or linear function or linear trans-
formation or linear homomorphism) if

(i) T(x+y)=Txz+ Ty (group homomorphism);
(ii) Taxr = aTz forall z,y e M, a € K.

A linear operator is called a (linear) isomorphism if T is bijective. We
say that M is isomorphic to N if there exists a linear isomorphism

M — N.
Note. Geometrically:
(i) means that T preserves parallelograms (see Figure 2.1);

(ii) means that T preserves collinearity (see Figure 2.2).

X+y

Ty
T(x+y) = Tx+Ty
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Figure 2.1

Figure 2.2
Examples:
1. If
O‘% a}L
A= (@) : po | e
af’ a
we denote by
K" 4 K



the linear operator given by matrix multiplication by A acting on ele-
ments of K written as n x 1 columns. Since

Az +y) = Az + Ay,

Aaxr = aAx
for matrix multiplication, it follows that A is a linear operator.
E.g.
. 3 7 2 2%3
a=(2, 57 )en
Now:
“ 3a + 78+ 2
3 2,
R°— R” : I¢] H(—Zoz—l—f)ﬂ—l—’y)'
v
2. Take
G CF(R) > O (R)
— — .
dt
Now:
d d d
a[x(t) +y(t)] = af(t) + Ey(t)a
d d
Ecx(t) = cax(t)

for all ¢ € R. Therefore % is a linear operator.

3. The Laplacian

_ a a a . o] 3 o] 3
—@‘Fa—yQ—F@.C (R)—)O (R)

is a linear operator.

2.2 Basic Properties of Linear Operators

.M 5 Nis a linear operator and uq,...,u, € M; a1,...,0, € K
then

T(oyuy + -+ oyu,) = oy Tuy + -+ + o, T,
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i.e.

T T
T E o;U; = E Uy,
=1 =1
i.e. T preserves linear combinations, i.e. T can be moved across sum-

mations and scalars.

ST . . .
. If M 5 N are linear operators, if uq, ..., u,, generate M, and if Su; =

Tu; (¢ =1,...,m) then S =T.

Proof of This > Let x € M. Then z = )", a;u; (say). Therefore

m m m m
Sz =25 E iU = E a;Su; = E oa;Tu, =T E a;u; =Tz,
=1 =1 =1 =1

<

Thus two linear operators which agree on a generating set must be
equal.

. Let uy,...,u, be a basis for M, and wy,...,w, be arbitrary vectors in
N. Then we can define a linear operator

MLN
by
T(oquy + -+ 4 apy) = agwy + -+ 4 apty,.
Thus T is the unique linear operator such that
Tu,=w; (1=1,...,m).

We say that T is defined by Tu; = w;, and extended to M by linearity.

Definition. Let M 5 N be a linear operator. Then

kerT'={z e M : Tz =0}

is a vector subspace of M, called the kernel of M, and

imT ={Tz:z € M}

is a vector subspace of N, called the image of T. The dimension of im7' is

called the rank of T',

rank 7' = dimim 7.
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2.3 Examples

1. Consider the matrix operator

where A € K™*",

a1 12 . Oy,

A1 2 oo Oyp
(say).
kerT' = {x = (1,...,2,) : Az =0}
is the space of solutions of

a1 e Qg T 0

Ol oo Opn Ty 0

i.e. The space of solutions of the m homogeneous linear equations in n
unknowns, whose coefficients are the rows of A:

a1y + apprg 4o+ agpx, =0
anry + apry+ o+ apr, =0

U1 T1 + QpaXa + 0+ A Xy, = 0

Number of equations = m = number of rows of A = dim K™,

Number of unknowns = n = number of columns of A = dim K™.
We see that (z1,zq,...,2,) € ker A iff the dot product:
(it @igy ooy i) (21, .. 0,2,) (E=1,...,m)
with each row of A is zero. Therefore
ker A = (row A)*,

where row A is the vector subspace of K" generated by the m rows of

A (see Figure 2.3).

Now row A is unchanged by the following elementary row operations:
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(i) multiplying a row by a non-zero echelon;
(ii) interchanging rows;

(iii) adding to one row a scalar multiple of another row.

So ker A is also unchanged by these operations.

To obtain a basis for row A, and from this a basis for ker A, carry out
elementary row operations in order to bring the matrix to row scalar
form (i.e. so that each row begins with more zeros than the previous
row).

FExample: Let

2 1 =1 3
A= -1 1 2 1 |:R*>SR?
4 -1 2
Now
2 1 -1 3 2row 2 4+ row 1
A~ 0 3 5 13— 90w |
0 -2 1 4 TOW TOW
21 -1 3
~ 0 3 3 5 3row 3 4+ 2row 2.
00 9 =2

Since the new rows are in row echelon form they are linearly indepen-
dent. Therefore row A is 3-dimensional, with basis (2,1, —1,3), (0,3,3,5),
(0,0,9,—2). Therefore

(o, B,7,6) EkerA & 20+ 3—7+36=0
30+3y+56=0
9y —26 =0
@7:%5
3=—-3y—56=—-26—56=—-1¢
20=—fB+7y—-36=15+256-36=-8¢6

& (o, B,7,8) = (—26,—176,26,8) = £(—4,-17,2,9)

Therefore ker A is 1-dimensional, with basis (—4, —17,2,9).
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If

a1 s Q75 Lo Qg
21 s Ogy Lo Qg .
A= . . . € K mxn
(6775 ] Ay 5 Amn,
then
: 0
a1 e Onj o Oqp
a21 s Qigy o Qigp ) .
Aej = ] ) ] 1 — ]th slot
Q1 oo Qi oo Qg 0
Qaq;
— . __ :th
= : = 7" column of A.
Qo j
Therefore

imA={Az:2 € K"}
= {A(are1 + -+ ane,) T q,...,a, € K}
={a1Aer + -+ a,Ae, o, .. 0, € K}

= S(Aeq,. .., Ae,)
= column space of A
= col A,

where col A is the vector subspace of K™ generated by the n columns

of A.

To find a basis for im A = col A we carry out elementary column oper-
ations on A.

Example: 1f
2 1 -1 3
A= -1 1 2 1
4 0 -1 2

2-7



then

2 0 0 0 2col2 —coll
A~ -1 3 3 5 2col3 +coll

4 —4 2 -8 2col4 —3coll
2 000 col3 —2col 2

~ -3 000 3cold —5col2
4 —4 6 —4
2 0 0O

~ -1 3 00
4 —4 6 0

Therefore im A = col A has basis (2, —1,4), (0,3, —4), (0,0,6). There-

fore rank A = dimim A = 3.

2. Let
D = 4 :C*®(R) - C*(R) (Dz(t) = ix(t))
dt dt
(i) Let A € R and D — X be the operator
d

(D—=X\) = Ex(t) — Az(t).
Then

xEker(D—)\)@(D—)\)x:()@Ccll—j:)\xﬁx(t):ce’\t.

Therefore ker(D — \) is 1-dimensional, with basis e*.

(ii) To determine ker(D — A\)* we must solve:
(D — Xz =0.
Put z(t) = eMy(t). Then
(D = Nz = Da(t) — z(1)
= AeMy(1) + M Dy(1) — AeMy(t)
= eMDy(t).
Therefore
(D — )%z = MD*y(1)

(D — Nz = eMDFy(1).
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Therefore

(D — )\)km =0 eAtDky(t) =0
& DRy(t) =0
Sylt)=cot+ et +egt® + -+ cpqtF 1
sSe(t)=(co+at+---+ ck_ltk_l)eM.

Therefore ker(D—\)* is k-dimensional, with basis e, teM #2eM .. tF=1eM,

2.4 Properties Continued

Theorem 2.1. Lel M 55 N be a linear operator, where M is finite dimen-
sional. Let uy,...,u; be a basis for kerT', and let Twy,...,Tw, be a basis

forimT. Then
U1y oy U, W1y ooy Wy
is a basis for M.

Proof » We have two things to show:

(i) Linear independence: Let
Z oG+ Zﬂjw]’ =0
Apply T
0+ B;Tw; = 0.

Therefore 3; = 0 for all j. Therefore a; = 0 for all .

Therefore uy, ..., ug, wr,...,w, are linearly independent.
(ii) Generate: Let x € M. Then
Te =Y BTw; (say).
Therefore
Te=T Z Biw;.
Therefore
Tle = Bjw;] = 0.
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Therefore
x — Zﬁjwj € kerT.

Therefore
T — Z Bjw; = Z au;  (say).
Therefore
T = Z o+ Zﬂjw]-.
Therefore wuy, ..., ug,wy,...,w, generate M. <

Corollary 2.1. dimker7 4+ dimim7T = dim M.
Corollary 2.2. Ifdim M = dim N then

T is injective < ker T = {0} & dimimT =dim N & T is surjeclive.

2.5 Operator Algebra

If M, N are K-vector spaces, we denote by
L(M,N)
the set of all linear operators M — N, and we denote by
L(M)
the set of all linear operators M — M.
Theorem 2.2. We have:
(i) L(M,N) is a K-vector space, with
(S+T)xr=Sx+ Tz,
(aT)z = a(Tx)
forall S, T € LM,N), t € M, a € K.
(ii) Composition of operators gives a mulliplication

L(L, M) x c%g; - g;L,N) } TR
with

(ST)x = S(Tz) forallz€ L,
which satisfies
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(a) (RS)T = R(ST),

(b) R(S+T)= RS+ RT,
(¢) (R+S)T = RT + ST,
(d) (aS)T = a(ST) = S(aT),

provided each is well-defined.
Proof » Straight forward verification. <
Corollary 2.3. L(M) is
(i) a K-vector space: S+ T, aS;
(ii) a ring: S+T, ST;
(iit) (aS)T = a(ST)=S(aT): «aS, ST,

i.e. L(M) is a K-algebra.

2.6 Isomorphisms of L(M, N) with K"

Definition. Let uq,...,u, be a basis for M, and let wy,...,w,, be a basis
for N. Let M 5 N. Put Then we have:

1 2 ;
Tuy = aywy + ajwy + -+ + ojw; + -+« + " w,,

1 2 '
Tuj = ajwy + ajwy + « - + afw; + -+ + Q' Wy,

1 2 % m
Tu, = a,ws + a,ws + -+ ogw; + -+ + a, Wy,

(say) where:

1 1 1 1
o oy aj; o,
7 7 7 7 ~mXn
A= (a)) ol o a, | € K™,
m m m
o al 1%
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Note. The coordinates of Tw; form the j* column of A - NOTE THE
TRANSPOSE! We call A the matriz of T wrt the bases uy,...,u, for M

and wy,...,w, for N,

m
_ i
Tu; = E asw;.
=1

Theorem 2.3. L(M,N) — K™*" is a linear isomorphism where T — ma-
triz of T w.r.t. basis uy,-++ ,uy;wi,cdots,w,,.

Proof » Let T have matrix A = (aé-), and let S have matrix B = (ﬂ;) Then

(T'+ S)uj =Tuj + Su; = i a;wi + f: ﬂ;w2 = i(a; + ﬂ;)w2
i=1 i=1 i=1
Therefore T' + S has matrix (aé + ﬁ;) = A+ B. Also
(ATu; = MNTu;) = A iaé—wi = i )\a;wi.
i=1 i=1
Therefore AT' has matrix ()\a;) =)A. «
Corollary 2.4. dim£(M,N) = dim M.dim N.

Theorem 2.4. If L L, M has matriz A = (aé) wrt basis vy, ..., Vp, Uy ..., Uy,

and M > N has matrizc B = (BY) wrt basis uy, ..., Up, W1, ... Wy, then

J
L5 N has basis
BA= (Z ﬂ;ia?) = (%))
k=1
(say), wrt basis v1,...,Vp, Wi, ..., Wy,.

Proofw»
(ST)v; = S(T'v;) = S (i afuk> = zn:afch
k=1 k=1
-y 3 = 3 (S e = S
k=1 =1 —

=1 k=1
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Corollary 2.5. If dimM = n then each choice of basis uy,...,u, of M
defines an isomorphism of K-algebras:

LIM)— K™ : T matriz of T wrt uy, ... u,.

Note. If M 5 M has matrix A = (a’) wrt basis u1,. .., u, then
(1) Tu; = >0, aéui, by definition;
(i) the elements of the j* column of A are the coordinates of T'u;;
(iii) Aol + M T 4+ AT? + -+« + A\ T has matrix agl + a1 A + -+ - + o, A”;
(iv) 7' has matrix A™",

since we have an algebra isomorphism.

Theorem 2.5. Let M 5 N have matriz A = (a;) wrt bases uy, ..., u, for
M and wy,...,w,, for N. Let x have coordinates

X=()=1] :
fn

wrt Uy, ..., u,. Then T'x has coordinales

AX = (i a;g')

wrl Wy, ..., Wyy,-
Proofw»
R OO B IEHES 3 SRS of D 3 I
j=1 7=1 7=1 =1 i=1 7=1
as required. <
Note. We have thus a commutative diagram:
T
M —— N T
x — Tx

I

R A . x coord. +— Tz coord
K" —— K™
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Chapter 3

Changing Basis and Einstein
Convention

.. old new
Definition. If uy,...,u, and wy,...,w, are two bases for M then we have:

up = piws + piwa + -+ + plw,
uj = pjwy + piws 4+ + piw,

Up = ppwr + pawy + - + P,

(say). Put
pi pz pé
P:(p;) p1 p] pn
Py ... p? N s

Note. The new coordinates of the old basis vector u; form the ;' column
of P-NOTE THE TRANSPOSE! We call P the transition matriz from the

(old) basis uq,...,u, to the (new) basis wy,. .., w,:

u; = Zpéwi.

i=1

Theorem 3.1. If x has old coordinates
¢
X =(&)= :
fTL
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then = has new coordinates

PX = (pi¢') = (')
fsa).
Proofw»

T = ijuj = ijZpé-wi = Z (Zp;fl> w; = Zniwi.
j=1 =1 =1 1 \j=1 i=1

=

We shall often use the Finstein summation convention (s.c.) when deal-
ing with basis and coordinates in a fixed n-dimensional vector space M.
Repeated indices (one up, one down) are summed from 1 to n (contraction
of repeated indices). Non-repeated indices may take each value 1 to n.

Example:

e o' denotes

al

(column matrix; upper index labels the row).

e «; denotes

(a1,...,a,) (row matrix; lower index labels the column).

° a} denotes

al ... o
: : (square matrix).
n n
al ...oa”
e u; denotes uy, ..., u, (basis).

e o' denotes alug + - + Q"uy,.

o o'f3; denotes a'B; + -+ + a" 3, (dot product).
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o a}:ﬁ]’? denotes AB (matrix product).
Also

Tu; = aéui (oz; matrix of operator 7T')
and
uj = p;-wi (p; transition matrix from u; to w;).

If z has components ¢ wrt u; then 7'z has components aéfi wrt u;. If = has
components ¢ wrt u; then z has components péfZ wrt w;.

° 5; denotes the unit matrix

10 0
0 1 0
I= ,
0 0 1

o If Q = P! then (q;) denotes () (inverse matrix) and
gy = 65 = pig;-

Theorem 3.2. Lel M 55 N have malriz A wrt basis Uty ..., Uy. Let P be
the transition matriz to (new) basis wq,...,w,. Then T has (new) matriz

PAP™!
wrl Wy, ..., Wy.

Proofw» Let P = (p;), A=(ab), P71 =Q = (q;) Then

J
[ — b C— qtay.
Tu; = ajui;  uj = pywi; W = qu;.

Therefore

I R _ Uk U ki o _ i kI

Tw; = Tqju = q;Tw = g;ajup = ;a7 prwi = prajq; wi,
S——
PAP-1

as required. <«
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Chapter 4

Linear Forms and Duality

4.1 Linear Forms

Definition. Fix M a K-vector space. A scalar valued linear function
f M- K
is called a linear form on M.

If fis a linear form on M, and z is a vector in M, we write

{f,z)

to denote the value of f on z. This notation has the advantage of treating f
and z in a symmetrised way:

() (foa + ) = (Foa) + (L),
(i) (f +9g,2) = {.2) + (9, ),
(i) (af,2) = alf.z) = (f,az),
(v) (S0 aif', Sy Ba;) = Sy Yooy il ([ 25).

If M is finite dimensional, with basis w1, ..., u,, then each # € M can be
written uniquely as

n
) . .
r=au+- - +a"u, = E a'u; = a'u;.
i=1

We write

(u',z) = o'
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to denote the i’* coordinate of x wrt basis uy,...,u,. We have:

(u',x+y) = (u',z) + (v’ y),

(u', az) = alu’, ).

Thus «* is a linear form on M, called the i** coordinate function wrt basis
Uty ..., Uy,. We have:

L {u',uy) = { (1) lfl —J } = 5; (Kronecker delta);

ife #y
2. x =3 " (u',z)u; forall z € M;
3. {aqul ot au B4+ B = aa B+ a8 = o8t (dot
product).
Theorem 4.1. If uy,...,u, is a basis for M then the coordinale functions
u',...,u" form a basis for the space M* of linear forms on M (called the

dual space of M), called the dual basis, and
= Z(f,m)ul for each f € M*.
=1

Proof» We have to show that u', ..., u" generate M, and are linearly inde-
pendent.

(i) Generate: Let f € M*; (f,u;) = 3; (say). Then

Therefore " | Biu* and f are linear forms on M which agree on the
basis vectors uq,...,u,. Therefore

f= Zﬂu —Z (f, ui)u’

(ii) Linear independence: Let Y, B;u' = 0. Then

<Z ﬂiui,uj> = 0
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for all y = 1,...,n. Therefore

D585 =0
=1

for all y = 1,...,n. Therefore 8; = 0 for all y = 1,...,n. Therefore

ul, ..., u™ are linearly independent. <

Corollary 4.1. dim M* = dim M.

Note. We denote by z,y, z the coordinate function on K wrt basis ey, €9, €3,
and we denote by z', ..., 2" the coordinate function on K™ wrt basis eq, . .., e,.
These coordinates are called the usual coordinates.

4.2 Duality
Let M be finite dimensional, with dual space M*. If x € M and f € M*
then

(i) fis a linear form on M whose value on z is (f, z);

(ii) we identify = with the linear form on M* whose value on = is (f, z):
f = <f7 '>7
= ().

What we are doing is identifying M with the dual of M*, by means of
the linear isomorphism:

- (-, x).
This is a linear map, and is bijective because:
(i) dim M** = dim M* = dim M,
(i) (z) =0 = (u',z) = 0forall z = = = 0. So the map is injective
(kernel = {0}), and hence by (i) surjective.
If uy,...,u, is a basis for M, and u', ..., u" the dual basis for M* then
<ui, uj) = 5;-
shows that uy,...,u, is the basis dual to u',...,u".

The identification of vectors x € M as linear forms on M* is called

duality. A basis u',...,u" for M* is called a linear coordinate system on M,

and consists of coordinate functions wrt its dual basis u!, ..., u".
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4.3 Systems of Linear Equations

Definition. If f!,..., f* are linear forms on M then we consider the vector
subspace of M on which

fr=0...f =0 (%)

Any vector in this subspace is called a solution of the equations (*). Thus
x € M is a solution iff

(fY2) =0,....(fFz) =0,

The set of solutions is called the solution space of the system of k homoge-
neous equations (x). The dimension of the space S(f*,..., f*) generated by
ft,..., f* is called the rank (number of linearly independent equations) of
the system of equations.

In particular, if u!,...,u™ is a linear coordinate system on M then we
can write the equations as:

J'=8ut 4+ 4 But =0

fE=Biut 4 Bl =0
The coordinate map M* — K™ maps

Jre By Ba)

FFe (BYs- - B)-

Thus it maps S(f',..., f¥) isomorphically onto the row space of B = (ﬂ;)
Therefore

rank of system = dimension of row space of B = dimrow B.

Example: The equations

3z —4y + 22 =0,
20 + Ty + 32 = 0,

where z,y, z are the usual coordinates on R?, have

X 3 —4 2
rank—dlmrow<2 7 3>—2.
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Theorem 4.2. A system of k homogeneous linear equations of rank r on an
n-dimensional vector space M has a solution space of dimension n — r.

Proof » Let

f!=0,....ff =0
be the system of equations. Let u',...,u" be a basis for S(f!,..., f*). Ex-
tend to a basis u',...,u",u" ... u™ for M*. Let uq,..., U, Upp1,..., Uy, be

equations solutions

the dual basis of M. Then

r=aou;+---+a"u, + a”’lurﬂ + .-+ + a"u, € solution space
sa ={uz)=0,....,0 = {u",z) =0

S o= ar+1ur+1 + o+ auy,.

Therefore w,y1,...,u, is a basis for the solution space. Therefore solution
space has dimension n — r. <«

Theorem 4.3. Let B € K", where K is a field. Then

dimrow B = dimcol B (= rank B).

Proofw Consider the £ homogeneous linear equations on K" with coefficients

B = (5)):

11;[;1_|_..._|_//371L$n:0

{Cx1_|_..._|_ﬂ£$n :0
Now

n — dimrow B = n — rank of equations

= dimension of solution space

= dimker B
=n—dmimB
= n — dimcol B.

Therefore dimcol B = dimrow B. <«



Chapter 5

Tensors

5.1 The Definition

Definition. Let M be a finite dimensional vector space over a field K, let
M* be the dual space, and let dim M = n. A tensor over M is a function of
the form

T: My x My X ---x M —» K,

where each M; = M or M* (i = 1,...,k), and which is linear in each variable

(multilinear).
Two tensors S, T are said to be of the same type if they are defined on
the same set My X +++ X M.

Example: A tensor of type
T:-MxM'xM-—>K

is a scalar valued function T'(z, f,y) of three variables (z a vector, f a linear
form, y a vector) such that

T(az+ By, f,2)=aTl(z, f,z)+ BT(y, f,z) linear in 1** variable,
T(z,of + Bg,2) = oT(zx, f,2) + BT (x,9,2) linear in 2"* variable,
T(z, f,ay + B2) = aT(z, f,2) + BT(x, f,2z) linear in 3" variable.

If u; is a basis for M, and v’ is the dual basis for M* then the array of
n® scalars

oy = T(ugu’,up)
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are called the components of T
If z, f,y have components &', 7;, p* respectively then

T(z, f,y)=T(Ewnd, phug) = Emip"T (ui vl ug) = Enyptais

(using summation notation), i.e. the components of T' contracted by the
components of z, f,y.

The set of all tensors over M of a given type form a K-vector space if we

define

(S+T)(x1,...,2%)
(AT (z1,. .., x1)

S(.Z’l, .. ,xk) -I' T($17 .. -7$k)7
MT (x4, ... 2p)).

The vector space of all tensors of type

MxM*xM—>K

(say) has dimension n?®, since T' + T'(u;, u’,u) (components of T') maps it

isomorphically onto K™".

Definition. If S : My x --- x M, > K and T : M4y X --- X M; — K are

tensors over M then we define their tensor product S @ T' to be the tensor:
ST : My x--- X Mp X Mpyq X--- X M; — K,
where

ST (x1,...,21) = S(x1,...,2)T(x1,...,27).

Example: 1f S has components «;7, and T has components 3”* then S @ T
has components «;7/3"*, because

S @ T (ug, v, up, u”,u®) = S(us, v, up)T(u”, u®).

Tensors satisfy algebraic laws such as:
(i) RR(S+T)=R®S+R®T,

(i) MR)® S = MR ® S) = R® (\S),

(i) (R®S)®T=R®(S®T).
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But
ST #TQS
in general. To prove those we look at components wrt a basis, and note that
a'ik(B7s +77s) = a5 + Al iy,
for example, but
Q'8 £ el

in general.

5.2 Contraction

Definition. Let 7: My x -+ X M. X -+ x My, x --+ x My — K be a tensor,
with

M,=M", M;=M
(say). Then we can conlract the r'"* index of T with the s index to get a

new tensor

omit omit

S M XeooxX M, X oo X Mg Xeoo X M, > K
defined by

S(xy, @9y xpen) =T (T, o0y ' o0, U .o, Th2),
rth glot sth glot

where u; is a basis for M.
To show that S is well-defined we need:

Theorem 5.1. The definition of contraction is independent of the choice of
basis.

Proof » Put
R(f,z) =T (x1,29,..., [ 2y o, Tpa).

Then if u;, w; are bases:
R(wiv wz) = R(p;cuka qgul) = p;cqle(uka ul) = 5IZCR(uk7 ul) = R(uk7 ul)a
as required. <

im

Ezample: Tf T has components a';;,"™ wrt basis u; then contraction of the

274 and 4** indices gives a tensor with components
imo_ i J g mY — ab. dm
ﬁk _T(u7uj7uk7u7u )_ajk .
Thus when we contract we eliminate one upper (contravariant) index and
one lower (covariant) index.
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5.3 Examples

A vector x € M is a tensor:
z: M - K

with components o' = (u', z) (one contravariant index).
A linear form f € M* is a tensor:

f M- K

with components a; = (f, u;) (one covariant index).
A tensor with two covariant indices:

T:MxM— K,
with T'(u;,u;) = auj, is called a bilinear form or scalar product.
Example: The dot product

K'x K" - K

((a'y...,a™), (8" ..., 8") =o' B+ -+ "B

is a bilinejz}r form on K™.
If M —> M is a linear operator, we shall identify it with the tensor:

T:-M"xM-—>K
by
T(f,2) = ([, Tz).
This tensor has components
o'y = T(u',u;) = T{u', Tu;) = matrix of linear operator T
(one contravariant index, one covariant index).

Note (The Transformation Law). Let p; be the transition matrix from

basis u; to basis w;, with inverse matrix qf Let T be a tensor M x M*x M —

K (say). Then

new comps. old comps.

T(wiv wja rwk) = T(q;uhpgusa qzut) = QZTP;QZ T(uh us’ ut)a

i.e. Upper indices contract with p, lower indices contract with q.
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5.4 Bases of Tensor Spaces

Let M x M* x M — K (x) (say) be a tensor with components a;’; wrt basis
u;. Then the tensor:

alput ® u; @ u® (k)
is of the same type as T', and has components

Ofijkui Qu; & Uk[ura usa ut] = aijk<ui7 ur><u87 uj><uk7 ut>
= Ckzjk5:,5j5f

= arst-
Therefore (k%) has the same components as T'. Therefore
T = ozijkui ® u; ®uk.

Therefore u* ® u; @ u® is a basis for the n>-dimensional space of all tensors
of type (x).

Cln
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Chapter 6
Vector Fields

6.1 The Definition

Let V be an open subset of R™. Let z',...,2" be the usual coordinate

functions on R™. Let V 5 R. Tf a = (a1,...,a,) € V then we define the
partial derivative of [ wrt " variable al a:

flay, ... ai+t, ... a,) — flay, ... a ... a,)

(see Figure 6.1). If it exists for each a € V then we have:
af

-V —> R.
oz’ -
Note that
dz ;
dzi ;-
If all repeated partial derivatives of all orders:
af 0 0

9z - Ozt Qah “.8:3“]6:‘/—)1&

exist we call f C*. We denote by C'™(V) the space of all C™® functions
V - R. C>®(V) is an R-algebra:

() (/f +9)(z) = [(z) + g(2),
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(i) (f9)(x) = [(x)g(=),
(iii) (af)(z) = a(f(2)).

FEach sequence o', ..., a" of elements of C°°(V) defines a linear operator

on C*(V), where

©f)(x) = o' (1) 2L @) 4 -+ 0 () 2L (2,
Such an operator
v:C®(V) - C™(V)

is called a (contravariant) vector field on V.
Now for each fixed a we denote by

0
ozt

a

the operator given by:

o ., Of
@:z:flf B axi(“)'

Thus aii acts on any function f which is defined and C' on an open set

containing a. We define the linear combination Y. o 82‘. by

< 1 9 + -4 a” 9 )f:ala_f(a)_|_...+a”8f(a)_

“ dz’, dz7 dz! dz”

The set of linear combinations

{la na
_|_..._|_a

a :
oz} dxn

a',. .. a" e COO(V)}

is called the tangent space to R™ at a, denoted T,R™. Thus T,R" is a real
n-dimensional vector space, with basis




The operators are linearly independent, since

ot
ozt

«

oxl dxn

a a

oz

a

0 0 0 : :
! B =0= (o' +e 4+ a” r¥=0=a =0,
Oz}

since g_;;(“) = ;

Ifov= QI% 4+ -4+ a”% (o/ € C>(V)) is a vector field on V' then we
have (see Figure 6.2), for each z € V a tangent vector

0
Ozl

0
_|_..._|_an($)

dxn

e T,.R".

v, = o' (z)

We call v, the value of v at x, and note that

1 0 " 0
oo = (@ erg @) )

= 0 (@) g ) o (@) ()

= (vf)(x)

for all z € V. Thus v is determined by its values {v, : € V}, and vice
versa. Thus a contravariant vector field is a function on V

T = Uy,

which maps to each point x € V a tangent vector v, € T,R".

6.2 Velocity Vectors

Let 3(t) = (B'(t),...,3"(t)) be a sequence of real valued C'* functions de-
fined on an open subset of R. Thus g = (8',...,3") is a curve in R™ (see
Figure 6.3). If f is a C'™ real-valued function on an open set in R” containing
B(t) then the rate of change of f along the curve 3 at parameter ¢ is

d d . n
SHBW) = SIE W, ()

_9f d 4 af d . ,

= G (5(15))%5 (t)+---+ Py (ﬂ(t))ﬁﬁ (t) (by the chain rule)
d 0 d . 0

- Eﬂ (t) 8:1,%(15) Tt E’B (*) @wg(t) /

= B(1)f,

6—3



where

| d . 9 D

— € TsR”
dt T5(1)

is called the velocity vector of 3 at t.
We note that if 4(¢) has coordinates

Bi(t) = 2 (B(1))

then ﬁ(t) has components

d
— t
G0 =geem
= rate of change of z' along 3 at { wrt basis - 9. aza
Ta(e) A1)

In particular, if @ = (a',...,a") € R" and a = (a',...,a") € R" then the

3

straight line through a (see Figure 6.4) in the direction of a:
(al +ta',. .., a" + ta™)

has velocity vector at ¢ = 0:

X 9 )

Thus each tangent vector is a velocity vector.

6.3 Differentials

Definition. If « € R”, and f is a ("™ function on an open neighbourhood
of a then the differential of f at a, denoted

dfa,

is the linear form on 7,R" defined by
. d .
(.. B0) = 4 7(8(0)) = B0}

for any velocity vector B(t), such that 3(t) =

Thus

64



(i) (dfs@), B(1)) = rate of change of f along 3 at ¢ (see Figure 6.5),
(ii) (dfs,v) =vf (for all v € T,R") = rate of change of f along v.

Theorem 6.1. dz' ... dz" is the basis of T,R™ dual to the basis %, ceey ain
for T,R™. ‘ ‘
Proof »

.0 dz ;
<d$“’ a:z:f;,> = 5w\ =0

Definition. If V is open in R”™ then a covariant vector field w on V is a
function on V:

as required. <«

w:x e w, € T,R™.
The covariant vector fields on V' can be added:
(W +n)s = we + N2y
and multiplied by elements of C*(V):
(feo)e = (2.
Each covariant vector field w on V' can be written uniquely as
wy = Pi(x)dzy + -+ + Bo(x)dz].
Thus
w = fdz" + -+ + B,dz"

(we confine ourselves to 3; € C*).
If f € C(V) then the covariant vector field

df : x — df,
is called the differential of f. Thus we have:

e contravariant vector fields:

0 0 :
= 1— PR n__— 2 oo .
v—aaxl—l— —I_aa:n”’ a' € C7(V);
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e covariant vector fields:
w=fdz' -+ fpdz”, e CF(V);
and more general tensor fields, e.g.

0 .
@ ® dl’k, O[Z']k € OOO(V),

a function on V whose value at z is

S = Ozijk d.TL‘Z ®

d
7 ® d$§7

T

Sy = aijk(;r:)d;c; ®

a tensor over T,R"™.
We can add, multiply and contract tensor fields pointwise (carrying out
the operation at each point z € V). For example:

(i) (R+95): = R:+ Sz,
(i) (R®S5), = R, ® 5.,

(iii

(i

(contracted S), = contracted (),

(fS)e = f(2)Se [ €C=(V).
Contracting the covariant vector field w = Bidx! + -+ + B,dz™ with the

contravariant vector field v = o' 88 oo 4 a”i gives the scalar field

(w,v) = Bra’ + -+ + B.a"
In particular, if f € C*(V) has differential df then the scalar field
(df,vy =vf

is the rate of change of f along v.
If w=pidet 4 -+ 4 B,dz"™ then

)
)
)
v)

. 0
B; = i component of w = <w, —> .
oz

In particular:

af

i compoment of df = <df, i> =
oz

dxt
Therefore
df = f d 44 aa—fd:z: Chain Rule,
"
8f 1 8f n
rate of change of f = F.rate of change of z" + --- 4 a—.rate of change of z".
z "
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6.4 Transformation Law

A sequence

y=(y'y") (v e CF(V))
is called a (C'™) coordinate system on V if

V - W
T — y(:v) = (yl('r)a - '7yn(x))

maps V' homeomorphically onto an open set W in R”, and if
= Fiy', .y,
where F*' € C*(W).

FExample: (r,0)is a C* coordinate system on {(z,y) : y or > 0} (see Figure
6.6), where r = 4/22 4 y2, 6 unique solution of z = rcosf,y = rsinf (-7 <
6 < ).

If a € V, and B is the parametrised curve — the curve along which all
y’ (j # 1) are counted, and y* varies by ¢ — such that

y(B(1)) = y(a) + te;
(see Figure 6.7) then the velocity vector of 8 at ¢t = 0 is denoted:

0
dy.

Thus if f is C* in a neighbourhood of a then

8f()_ 0
oy Byl

d
f= Ef(ﬁ(t))h:o = rate of change of f along the curve 3.

If we write f as a function of y!,... y™

f=F',....y")

(say), then
5 (a) = LB ma = GF WO oo = LF () + t6lima = 5 (0(a)
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gyf’ (a) write f as a function F of y',...,y", and calculate

(partial derivative of F' wrt ™ slot):

i.e. to calculate

oF
axt

af or "

Ify = (y*,...,y") is a C* coordinate system on V, and z = (2%,...,2")

is a C'™ coordinate system on W then for f € C'(V N W) we have:
f=F@'...,y"), ¥y =G("...,2").

Now if 8 is any parametrised curve at a, with 3(¢) = a (see Figure 6.8),
then

(dfs. 5) = S 1(3(0)

_ %F(yl(ﬁ(t)), Ly (B(1))
=3 TR B0,y (B S (D)
_ gfz(ﬁ(t)xdyi,ﬂ(t»
=1 y
Therefore
af, = §;<a) v
Therefore

df = —dy".
The operators

o
dys’ Oyn

are linearly independent, since %yi = 5; Therefore these operators form a

basis for T,R, with dual basis

dy;, o dylt
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since <dyé, a§;> = 35; (a) = 5;

If 2%, ...,2" is a C* coordinate system on W then on VN W:

dzt = azj.
=1 ay
ayf Z oy’ 82

on VNW.
If (say) ¢ = ¢i;dy’ ® dy’ is a tensor field on V| with component g;; wrt

coordinates ', then
dy dy dy' dy’
9=9 (ak )®<8ld) 927 81”d ® d7',
using s.c., and therefore g has component

Ay Oy’
0zFk ﬁgij

wrt coordinates z'.
Example: On R™

(i) usual coordinates z,y;

(ii) polar coordinates r, .

x=rcosf, y=rsind.

So
ox ox
dz gdr—l—%dé’—cos@dr—rsmﬁd&,
dy dy
dy = ard —I—aedﬁ—smedr—l—rcostH

The matrix
cosf) —rsinf
sinf)  rcosf
is the transition matrix from r, 8 to z,y:

0 dz 9 Oy

E—Ea—x Ea—y—cosé’a—x—l—smaay
o _owo oy __ 00
90~ 900x T o0y~ "Snlg, Treesty
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Chapter 7

Scalar Products

7.1 The Definition

Definition. A tensor of type M x M — K is called a scalar product or
(bilinear form) (i.e. two lower indices).

FExample: The dot product K" x K™ — K. Writing X,Y as n x 1 columns:

((ala R 7an)7 (517 . 7/3n)) = alﬂl + e+ O[nﬂn
(X,Y) - X'Y.

7.2 Properties of Scalar Products

1. If (+]-) is a scalar product on M with components GG = (g;;) wrt basis
u;, if = has components X = (¢') and y has components ¥ = (v')
(9ij = (uilu;) and (--) = giju’ ® u’) then

(zly) = (¢'uilv/u;)
= &' (uiluy)
= 9;;¢'v’
:(¢>1 gb”) J11 -+ Gin v!

= X'GY.

Note. The dot product has matrix I wrt e;, since e;.e; = 5;
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2. f P = (p;) is the transition matrix to new basis w; then new matrix of

(+]") is Q'GQ, where Q@ = P~

Proof of This > As a tensor with two lower indices, new components

of () are:
g = qfgug = Q'GQ.
Check:
(PX)'Q'GQ(P) = X'P'Q'GQP = X'GY.
<
3. (-]-) is called symmetric if
(zly) = (y|z)
for all 2, y. This is equivalent to G being a symmetric matrix Gf = G-
gii = (uilu;) = (u;lui) = gji.

A symmetric scalar product defines an associated quadratic form

F:M->K
by
Fla) = (o)
= X'GY
:(51 fn) g11 ... Gin fl
= gi;¢’,
i.e.
F = ( w' o ou” ) Ji1 .- Gin u' \ = gijutul.
Gnl  --- Onn u”

u'u? is a product of linear forms, and is a function:
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Example: If x,y, z are coordinate functions on M then

F:(;cyz) 3 2 3 x
2 =7 —1 Y
3 -1 2 z

=327 — Ty? + 22% + 42y + 622 — 2y=.
(Thus quadratic form = homogeneous 2"¢ degree polynomial).

The quadratic form F' determines the symmetric scalar product (-|-)
uniquely because:

(z +ylz+y) = (z]z) + (z|y) + (y[z) + (y]y),
2zly) = F(z +y)— F(z) = F(y) (if1+1#0),

and g;; = (u;|u;) are called the components of F wrt u;.
Definition. (-|-) is called non-singular if

(zly)=0forally e M = 2 =0,

ie.
X'GY =0forall Y € K" = X =0,
ie.
X'G=0=X=0,
ie.

det G # 0.

Definition. A tensor field (-|-) with two lower indices on an open set V' C R™
(1) = gijdy’ ® dy’
(say), y* coordinates on V, is called a metric tensor if
(+[)=
is a symmetric non-singular scalar product on T,R"” for each z € V| i.e.
gij = g5; and det g;; nowhere zero.
The associated field ds? of quadratic forms:
ds® = gijdyidyj

is called the line-element associated with the metric tensor.
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Example: On R”™ the usual metric tensor

dr @ dy + dy ® dx,

with line element ds* = (dz)? + (dy)?, has components

(07

wrt coordinates x, .

If
v = 01% —+ UQ%, w = wI% —I—wQ%
then
(v]w) = ( vl v? ) < 1 0 >< w! ) = vlw! + viw? (dot product)
0 1 w?
ds*[v] = (v|v) = (v")? + (v¥)* = ||v||* (Fuclidean norm).

If r, 0 are polar coordinates:
x=rcosf, y=rsind,
then

dx = cosf@dr — rsinf df,
dy = sinfdr + rcosfdb

and
45" = (da)? + (dy)’
= (cos@dr —r sin9d9)2 + (sin@dr + r cos 9d9)2
= (dr)2 + r2(d9)2

has components
10
0 r?

0 0
_ 19 o _ a9 2 U
vea r—l_a w_ﬁar—l_ﬁaQ

wrt coordinates r, 6.

If

then
(v|w) = '8 + r?a?p?,
[o]I? = (a')? + r?(a?)?,



7.3 Raising and Lowering Indices

Definition. Let M be a finite dimensional vector space with a fixed non-
singular symmetric scalar product (:|-). If € M is a vector (one upper
index), we associate with it

e M,
a linear form (one lower index) defined by:
(Z,y) = (z|ly) forally € M.

We call the operation

M - M
T T
lower the index. Thus
T = (z|-) = ‘take scalar product with z'.

If z = o'u; has components o then # has components
aj = (,u;) = (2|u;) = (a'uluy) = o' (uiluy) = o'gi;.
Since (+]-) is non-singular, g;; is invertible, with inverse g% (say), and we have
o = ;g
Thus
M — M~

T I

is a linear isomorphism, with inverse
feT

(say), called raising the index. So

and



To lower: contract with g;; (a; = a'g;;).
To raise: contract with ¢/ (o’ = a;g%).

Let M 55 M be a linear operator and (-|-) be symmetric. The matrix of

T is:
i i
a; = <u 7Tuj>7
one up, one down mixed components of T.
aij = (uilTuj),
two down covariant components of T.
k k k
aij = (uila"jur) = (uilur)a”; = giva’;
(lower by contraction with g¢;;). Therefore
i _ ik
a ;=g Oy

(raise by contraction with g*).
If we take the covariant components «;;, and raise the second index we
get

, y
af = g™,

a;; are the components of the tensor B (two lower indices) defined by:
B(z,y) = (z[Ty),
since
Blui, us) = (il Tuj) = aij.

a;' are the components of an operator T* (one upper index, one lower

index) defined by:
(T"zly) = («[Ty),
since T™ has components
vij = (il T uz) = (T"ujlus) = (u|Twi) = ayi,
and therefore T™* has mixed components:
7= 9" = g™ = oy

T* is called the adjoint of operator T.
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7.4 Orthogonality and Diagonal Matrix
Definition. If (+|-) is a scalar product on M and
(zly) =0,

we say that x is orthogonal to y wrt (-|-).
If N is a vector subspace of M, we write

Nt ={z € M:(z]y)=0for all y € N},

and call it the orthogonal compliment of N wrt (+|-) (see Figure 7.1).
We denote by (+|-)n the scalar product on N defined by

(zly)v = (z]y) forall z,y € N,
and call it the restriction of (-]-) to N.

Definition. Let NVq,..., N be vector subspaces of a vector space M. Then
we write

Ni4--+ Ny={x1+--+ap:21 € Ny,...,2 € Ni},

and call it the sum of Ny,..., Np. Thus M = Ny + -+ + Nj iff each x € M

can be written as a sum
r=x1+ -+ x1, x; EN;.
We call M a direct sum of Ny, ..., Ny, and write
M=N®---® N

if for each @ € M there exists unique (x1,...,zx) (for example, see Figure

7.2) such that
r=x1++++x and z; EN,.

Theorem 7.1. Let (+|-) be a scalar product on M. Let N be a finite-dimensional
vector subspace such that (-|-)n is non-singular. Then

M=Ng@N*".
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Proofw Let © € M (see Figure 7.3). Define f € N* by

{(fry) = (zly)
for all y € N.

Since (+|-)n is non-singular we can raise the index of f, and get a unique
vector z € N such that

{(fry) = (zly)
for all y € N, i.e.

(zly) = (z]y)
forall y € N, i.e.

(x—zly)=0
for all y € NV, i.e.

z—z€ Nt
ie.

r= z +(z—2)
EN enL

uniquely, as required. <

Lemma 7.1. Let (-|-) be a symmetric scalar product, not identically zero on
a vector space M over a field K of characteristic # 2. (i.e. 14+1#0). Then
there exists x € M such thal

() # 0.
Proofw Choose 2,y € M such that (z|y) # 0. Then

(z +yle+y) = (zlz) + (zly) + (ylz) + (yly).
Hence (z + y| + g), (z|z), (y|y) are not all zero. Hence result. <

Theorem 7.2. Lel (-|-) be a symmelric scalar product on a finite-dimensional
vector space M. Then M has a basis of mutually orthogonal vectors:

(uiluj) =0 if i # j,

7-8



i.e. the scalar product has a diagonal matriz

(65] 0 0
0 Qg ... 0
0 0 a,

where a; = (u;|u;).

Proof » Theorem holds if (z|y) = 0 for all 2,y € M. So suppose (-]-) is not
identically zero.

Now we use induction on dim M. Theorem holds if dim M = 1. So assume
dim M = n > 1, and that the theorem holds for all spaces of dimension less

than n.
Choose u; € M such that

(ur]uy) = ey # 0.

Let N be the subspace generated by uy. (-|-)x has 1 x 1 matrix (eq), and
therefore is non-singular. Therefore

M=N@N~*
dm:n=1+n—1.
By the induction hypothesis N has basis
Uy ey Up

(say) of mutually orthogonal vectors. Therefore uy,us,...,u, is a basis for
M of mutually orthogonal vectors, as required. <

If M is a complex vector space, we can put

Us;
w,; =
Vai
for each «;. Then (w;|w;) = 1 or 0, and rearranging we have a basis wrt

which (-]-) has matrix

(|1 )
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(r x r diagonal block top left), and the associated quadratic form is a sum
of squares:

If M is a real vector space, we can put

uify/a; o > 0;
w; = ui/\/—ai o; < 0;

U; a; = 0.

Then (w;|w;) = 1 or 0, and rearranging we have a basis wrt which (|-) has
matrix

\ X

and the associated quadratic form is a sum and difference of squares:

(w1>2 _I_ . _I_ (wr)2 - (wr-}—l)Q . (wr-}—s)Q‘

FExample: Let (-|-) be a scalar product on a 3-dimensional space M which
has matrix

4 2 2
A= 2 0 -1
2 -1 -3

wrt a basis with coordinate functions z,y, 2.
To find new coordinate functions wrt which (-|-) has a diagonal matrix.
Method: Take the associated quadratic form
F =42% — 32* + 4oy + 422 — 22,
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and write it as a sum and difference of squares, by ‘completing squares’. We
have:

$2+$y+xz)—322—2yz
Tty + 12 -y — 2% =2z — 327 — 2yz

v+ gy +32)° = (v +dyz + 42%)
x + %y + %Z)Q —(y + 222)2 + 022

4 0 0
D=0 -1 0
0 0 0

wrt to coordinate functions

uz:z;—l—%y—l—%z,
v=y+ 2z,

w = Zz.

The transition matrix is

v

Il

o
O o=
— DO~

Check: PIDP = A?

100 4.0 0 111 42 2
;10 0 -10 012 ]=[20 -1
21 0 0 0 00 1 2 -1 -3

For a symmetric scalar product on a real vector space the number of
+ signs, and the number of — signs, when the matrix is diagonalised, is
independent of the coordinates chosen:

Theorem 7.3 (Sylvester’s Law of Inertia). Lelu,...,u, andwy,..., w,
be bases for a real vector space, and let
F — (ul)Q _I_ . _I_ (ur)Q - (ur+1)2 . (ur+s)2
— (wl)Q _I_ . _I_ (wt)Q . (wt+1)2 L (wt+k)2

be a quadratic form diagonalised by each of the two bases. Then r =t and
s=k.
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Proof » Suppose r # t,r >t (say). The space of solutions of the n —r + ¢
homogeneous linear equations

has dimension at least
n—(n—r+4+t)=r—1t>0.
Therefore there exists a non-zero solution z so

Pla) = (@) 4o+ (o (@) > 0
= (@) == () <0,

which is clearly a contradiction. Therefore r = ¢, and similarly s = k. «

7.5 Special Spaces

Definition. A real vector space M with a symmetric scalar product (+|-) is
called a Fuclidean space if the associated quadratic form is positive definite,

ie.
F(z)= (z|z) >0 forall z #0,
i.e. there exists basis uq,...,u, such that (-|-) has matrix
1 0 0
0 1 0
0 0. 1

(all 4 signs).

F=(u) 4t (")

(tiluy) = 6,
i.e. uy,...,u, is orthonormal.
We write
2]l = V/(z]z) (2 € M),
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and call it the norm of x. We have
|z +y|| <zl + |yl (Triangle Inequality).

Thus M is a normed vector space, and therefore a metric space, and therefore
a toploogical space.
The scalar product also satisfies:

ely)| < lelllyl] (Schwarz nequality).

We define the angle § between two non-zero vectors =,y by:

(2ly) =cosf (0<0<n)
= Iyl

(see Figure 7.4).

If M is an n-dimensional vector space with scalar product having an
orthonormal basis (e.g. a complex vector space or a Euclidean vector space)
then the transition matrix P from one orthonormal basis to another satisfies:

PP =1,
new old
1.e.
PP=1

i.e. P is an orthogonal matriz, i.e.

: 10 ... 0

"'Z.thI‘OVVOfP"' jth O 1 O
col B : IR ’

of P 0 ... 0 1

ie.
(i row of P).(5 col of P) = &,

i.e. the columns of P form an orthonormal basis of K™.

Also

P orthonormal < P! = P!
o PPt =1

& the rows of P form an orthonormal basis of K™.
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Definition. A real 4-dimensional vector space M with scalar product (-|)
of type + + +— is called a Minkowski space. A basis uq, uq, usz, uy is called a
Lorentz basis if wrt u; the scalar product has matrix

1 00 O
010 0
001 0 ’
000 -1

F= (u1)2 + (uz)z + (ua)z . (u4)2.

The transition matrix P from one Lorentz basis to another satisfies:

100 O 1 00 O
1 01 0 0 | 01T 0 0
P 001 0 P= 001 0
000 -1 000 -1

Such a matrix P is called a Lorentz matriz.

Fzample: On C" we define the hermitian dot product (x|y) of vectors
= (ar,...,00), y=(L1,.-.,0)
to be
(z|y) = ai1Bi 4 -+ B
This has the property of being positive definite, since:

(z|lz) = ey + -+ + @, = lea || + -+ |lan]* >0 ifz #0.

More generally:

Definition. If M is a complex vector space then a hermitian scalar product
(+]') on M is a function

Mx M —C
such that
(i) (z+ylz) = (z]2) + (y]2),
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(ii

(iii

(az]z) = a(z]z),
(zly +2) = (2ly) + (2]2),
(

(iv) (z|ay) =a(z|y),

)
)
)
(v) (zly) = (ylo).

(i) and (ii) imply linear in the first variable, (iii) and (iv) imply conjugate-
linear in the second variable, (v) implies conjugate-symmetric.

If, in addition,
(z|z) >0
for all © # 0 then we call (-]-) a positive definite hermitian scalar product.

Definition. A complex vector space M with a positive definite hermitian
scalar product (+|-) is called a Hilbert space.

Note. For a finite dimensional complex space M with an hermitian form ()
we can prove (in exactly the same way as for a real space with symmetric
scalar product):

1. There exists basis wrt which (-]-) has matrix

([ \

\ o

2. The number of + signs and the number of — signs are each uniquely
determined by ().

3. M is a Hilbert space iff all the signs are +.
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Thus M is a Hilbert space iff M has an orthonormal basis. The transition
matrix P from one orthonormal basis to another satisfies:

PP =1,
new old
1.e.
PP=1.

Such a matrix is called a unitary matriz.

A Hilbert space M is a normed space, hence a metric space, hence a
topological space if we define:

2]l = /(z]z).

To test how many +, — signs a quadratic form has we can use determi-
nants:

Example:

b — b
F:a:z:2+26;r:y—|—cy2:a<g;_|__y)_|_ac y2
a a

on a 2-dimensional space, with coordinate functions matrix < Z Zc) ) . There-
fore
a b
++ & a>0, > 0,
b ¢
—— S a<, a b > 0,
b ¢
- e @bl
b ¢

More generally:

Theorem 7.4 (Jacobi’s Theorem). Let F' be a quadratic form on a real
vector space M, with symmeltric matriz g;; wrt basis u;. Suppose each of the
determinants

g1 ... g1
AZ: . .

g1 .. Gi
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is non-zero (1 = 1,...,n). Then there exists a basis w; such that F has

malriz
1
Aq
Ay
Ag
An—l
Ap
i.e.
1 Ay A,_q
Fe —(w)? 4+ 2 w224 ... n 72
A ) e S )
Thus

F is +ve definite & Ay, Ay, ..., A, all positive,
F is —ve definite & Ay <0,Ay > 0,A3 <0,....

Proofw F(z) = (z|z), where (+|-) is a symmetric scalar product, (u;|u;) = g¢;;.

Let
Ni = S(ul, .. ,uz)

(+|')n, is non-singular, since A; # 0 for : = 1,...,n.

Now
{0}c N>ycN,C---CN,,,CN;,C---CN, =M.
Therefore

N; = Ni_1 @ (N; N Ni-)
dim:e=(@—-1)+1.

Choose non-zero w; € N; N N-,. Then
Wy oo s Wj—1, Wiy ooy, Wy

are mutually orthogonal, and w; is orthogonal to wuy,...,u;_1. Therefore w;
is not orthogonal to u;, since (+|-) is non-singular. Therefore we can choose
w; such that (u;|w;) = 1.

It remains to show that
Aiy
A

(wifw;) =
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To do this we write
Aty + - Aoy + Auy = w;.
Taking scalar product with w;, uy, ug, ..., u; we get:

0+ + 0+ X = (wilw)

Mg+ Mcigiior + Aigs =0
Agar + o+ Mic1g2,i—1 + Aiga =0
Mgicia+ o+ Nic1Gicrio1 F NGz =0
Mgin + oo+ Nicigiior + Nig =1
Therefore
g1 oo G110
gi-1q - Gi—1i-1 0
g .o Giicr 1 A
(wilwi) = X = ==,
g11 e G141 914 A;
gi-11 .- Gi-1,4-1 Gi-1,4
gi <o Gig— Gii

as requried. <«

This has an application in Calculus:

Theorem 7.5 (Criteria for local maxima or minima). Let f be a scalar

field on a manifold X such that dfx =0, and lel y* be coordinales on X al
a. Pul

22f _02f
ayl? Tt aylay
Ai=| ;
3‘2]0 32
ayzayl L 8@/2

Then

1. If Aj(a) > 0 for v = 1,...,n then there exists open nbd V of a such
that

flz)> fla) forallzeV, x#a,

i.e. a is a local minima of f;
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2. If Aq(a) < 0,Az(a) > 0,As3(a) <0,... then there exists open nbd V of
a such that

flz) < fla) forallzeV, x#a,
i.e. a is a local maxima of f.

To make sure that ||z|| = 4/(z|z) is a norm on a Euclidean or a Hilbert
space we need to show that the triangle inequality holds.

Theorem 7.6. Let M be a Fuclidean or a Hilbert space. Then

(i) [zl < l=llllyll ~ Schwarz,

(ii) [z +yll < llzll +llyll ~ Triangle.
Proofw»

(i) Let x,y € M. Then

(ely) = Ialy)le®,  (yla) = (aly) e~
(say). So for all A € R we have:
0< ()\e_wx + y|)\6_i6:z; + )

= ||l2)IPA% + X (z]y) + A’ (y]z) + |ly]?
= ||lz[|* + 2M\(=]y)] + ||y||*-

Therefore
(zly)* < [lz]Plly]|*  (‘0* < 4ad).
Therefore
[(z]y)] < |lz|l]ly]l-
(ii)
Iz +ylI* = (z + yle +y)
= ||lz)* + (z|y) + (y|z) + [ly|”
<l ]l* + 2l [yl + lly]I*
= ([l[l + lly])*.
Therefore
|z +yll < [l=| + [ly].
R |
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Chapter 8

Linear Operators 2

8.1 Adjoints and Isometries

Let M be a finite dimensional vector space with a fixed non-singular sym-
metric or hermitian scalar product (|-). Recall that if

ML M
is a linear operator then the adjoint of T is the operator
M5 M,
which satisfies
(z[Ty) = (T"z|y)

for all z,y € M.
If (+]) has matrix G wrt basis u; and 7" has matrix A then 7™ has matrix

A= G'A'G (G-TAG in hermitian case)
because

X'GAY = X'GAGT'GY = [GT'A'GX]'GY,
and similarly

X'GAY = X'GAG'GY = [GTAGX]'GY.
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Examples:
1. M Euclidean, basis orthonormal:
A=A

2. M Hilbert, basis orthonormal:

1

A" =A.
3. M Minkowski, basis Lorentz:
1 00 0 1 00
efote s |afer
000 —1 000

o O O

—1

Definition. An operator M L M is called an isometry if

(Tz|Ty) = (z|y) for all z,y € M,

i.e. T preserves (-|-), i.e.

(I Tzly) = (zly),

ie.

™T =1,
ie.

T =171
Examples:

1. M Euclidean, basis orthonormal, A matrix of 7"
T is an isometry <& A'A =1,
i.e. A is an orthogonal matrix.
2. M Hilbert, basis orthonormal, A matrix of T':
T is an isometry < A'A = 1,

i.e. Ais a unitary matrix.
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3. M Minkowski, basis Lorentz, A matrix of T"
T is an isometry <> GA'GA = I & A'GA = G,
i.e. Ais a Lorentz matrix.

Definition. An isometry of a Euclidean space is called an orthogonal trans-
formation. An isometry of a Hilbert space is called a unitary transformation.
An isometry of a Minkowski space is called a Lorentz transformation.

Definition. An operator M L M is called self-adjoint if
™ =T,
ie.
(Tzly) = (z|Ty) for all z,y € M,
ie.
(uil T'uj) = (Tualuj) = (uj|Tus),
i.e. covariant components of 7" are symmetric.

(In quantum mechanics physical quantities are always represented by self-
adjoint operators).

Examples:
1. M Euclidean, basis orthonormal, A matrix of 7"
T is self-adjoint < A" = A,
i.e. Ais symmetric.
2. M Hilbert, basis orthonormal, A matrix of 7"
T is self-adjoint < A= A,
i.e. A is hermitian.
3. M Minkowski, basis Lorentz, A matrix of T

T is self-adjoint & GA'G = A.
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Summary: Let M T, M have matrix A wrt orthonormal or Lorentz basis.

Then:

Space: Euclidean Hilbert Minkowski

Matrix of 7™: Al A GA'G

T self-adjoint: At = A A=A |GAaG=4
A symmetric | A Hermitian

T an isometry: ATA=1T A =4 A'GA =G
A orthogonal | A unitary A Lorentz

8.2 Eigenvalues and Eigenvectors

Definition. A vector space N C M is called invariant under a linear oper-
T .
ator M — M if

T(N) C N,

e,z e N=Tzxe N.
A non-zero vector in a 1-dimensional invariant subspace under T is called
an eigenvector of T"

(i) * € M is called an eigenvector of T', with eigenvalue X if

(a) = #0,
(b) Tx = Az, where X is a scalar (see Figure 8.1);

(ii) A € K is called an eigenvalue of T if there exists x # 0 such that
Tx =z,
ie.
(T — X))z =0,
ie.

ker(T — A1) # {0}.

ker(T' —Al) ={z e M : Tz = Az}

is called the A-eigenvalue of T. Tt is a vector subspace consisting of all
eigenvectors of T having eigenvalue A, together with the zero vector.
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Definition. If M 55 M is a linear operator on a vector space of finite di-
mension n, with matrix A wrt basis u;, then the polynomial of degree n with
coefficients in K:

A - X A e AL
char 7' = det . = det(A — X1T)
S
is called the characteristic polynomial of T'.

charT' is well-defined, independent of choice of basis u;, since if B is the
matrix of T" wrt another basis then

B=PAP™!.
Therefore

det(B — X1I) = det(PAP™' — X1
— det P(A — XT)P~!
= det Pdet(A — XI)det P!
=det(A — X1),

since det Pdet P! = det PP~ =det I = 1.

Theorem 8.1. If M L M is a linear operator and dim M < oo and A € K
then

A is an eigenvalue of T' < X is a zero of charT.

Proof» Let T have matrix A wrt basis u;. Then

A is an eigenvalue of T' & there exists y € M such that (7' — Al)y =0
& there exists Y € K™ such that (A —A)Y =0
& det(A—- A1) =0
& Ais a zero of det(A — XT).

|

Corollary 8.1. If T' is a linear operator on a finite dimensional complex
space then T has an eigenvalue, and therefore eigenvectors.
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Theorem 8.2. Let M -5 M be a linear operator on a finite dimensional
vector space M. Then T has a diagonal matriz

M
An
wrt a basis uy,...,u, iff u; is an eigenvector of T', with eigenvalue X;, for
r=1,...,n.
Proofw»

Tuy = Mug + Oug + -+ + Ouy,
Tuy = Ouy + Agug + -+ + Ouy,

Tu, = 0uy + 0ug + «++ 4+ A uy,,
hence result. «

Theorem 8.3. Let M 55 M ba a self-adjoint operator on a Hilbert space
M. Then all the eigenvalues of T' are real.

Proofw Let Tx = Az, x #0, A € C. Then
Mzlz) = (Az|z) = (Tz|z) = (2|Tx) = (z|\z) = Az|z).
(z|z) # 0. Therefore A = . Therefore X is real. <

Corollary 8.2. Let A ba a hermitian matriz. Then C ACisa self-adjoint
operator wrl hermitian dot product. Therefore all the roots of the equation

det(A—XI)=0
are real.

Corollary 8.3. Let T' be a self-adjoint operator on a finite dimensional Ku-
clidean space. Then T has an eigenvector.

Proofw» Wrt an orthonormal basis 7" has a real symmetric matrix A:
A=Al = A

Therefore A is hermitian. Therefore det(A — XTI ) = 0 has real roots. There-

fore T' has an eigenvalue. Therefore T' has eigenvectors. <
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Theorem 8.4. Let N be invariant under a linear operator M L M. Then
Nt is invariant under T*.

Proofw» Let x € NL. Then for all y € N we have:
(T"z|y) = («[Ty) = 0.
Therefore T* € N*. <
Definition. M 55 M is a normal operator if
™r =TT,
i.e. T commutes with T™.
Examples:

(i) T self-adjoint = T normal.

(ii) T an isometry = T normal.

Theorem 8.5. Let S, T be commuting linear operators M — M (ST =TS).
Then each eigenspace of S is invariant under T.

Proof »
Sz =Ax = S(Tx)=T(Sz)=T(Ax) = \NTxz),

l.e. x € M-eigenspace of S = T'z € A-eigenspace of 5. <

8.3 Spectral Theorem and Applications

Theorem 8.6 (Spectral theorem). Let M L M be either a self-adjoint
operator on a finite dimensional Fuclidean space or a normal operator on
a finite dimensional Hilbert space. Then M has an orthonormal basis of
eigenvectors of T.

Proof » (By induction on dim M). True for dimM = 1. Let dimM = n,
and assume the theorem holds for spaces of dimension < n — 1.

Let A be an eigenvalue of T, M) the A-eigenspace. (+|-)as, is non-singular,
since (+|-) is positive definite. Therefore

M= M, ® Mj.
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M, is T-invariant. Therefore ]\@L is T*-invariant. 7™ commutes with 7.
Therefore M, is T*-invariant. Therefore M AL is T-invariant.

Now
(T7xly) = (z|Ty)
for all x,y € Mi-. Therefore (T*)MAJ_ is the adjoint of Ths1. Therefore
T self-adjoint = TMAL is self-adjoint,
and

T normal = Ty 1s normal.

But dim M{ < n — 1. Therefore, by induction hypothesis Mi has an
orthonormal basis of eigenvectors of T'. Therefore M = M, @ ZWAL has an
orthonormal basis of eigenvectors of T'. «

Applications:

1. Let A be a real symmetric n X n matrix. Then

(i) R™ has an orthonormal basis of eigenvectors uy,. .., u, of A, with
eigenvalues Ay, ..., A, (say),
(i) if P is the matrix having uq,...,u, as rows then P is an orthog-

onal matrix and

A0 .00

0 XA ... 0
pAapt=| 7 T | =0t40,

where Q = P71,

Proof » R™ is a Euclidean space wrt the dot product, e;,...,¢€, is an

orthonormal basis. Operator R A R” has symmetric matrix A wrt
orthonormal basis eq,...,e,. Therefore A is self-adjoint. Therefore R”
has an orthonormal basis uy,...,u,, with eigenvalues Ay,..., A,.

Let P be the transition matrix from orthonormal eq, ..., ¢, to orthonor-
mal uy, ..., u,, with inverse matrix (). P is an orthogonal matrix, and
therefore

Q=r"'=r.

8-8



@ is the transition matrix from u; to e;. Therefore

uj = gjer ot gien = (¢, q7)

row of P.

(
3 column of @
jth

Matrix of operator A wrt basis u; is:

MO 0
A 0

PAP~' = PAP! = L
0 0 A,

|

. (Principal axes theorem) Lel F' be a quadratic form on a finite
dimensional Fuclidean space M. Then M has an orthonormal basis
Uty ... U, which diagonalises F':

F = Al(ul)Q 4+ 4 )\n(un)Q.
Such a basis is called a set of principal axes for F.

Proofw F(z) = B(z,z), where B is a symmetric bilinear form. Raising
an index of B gives a self-adjoint operator 7"

(z|Ty) = B(z,y) = (Tz|y).

Let wuy,...,u, be an orthonormal basis of M of eigenvectors of T', with
eigenvalues A1,..., A, (say). Then wrt the quadratic form F' has ma-
trix:

Bus,uj) = (ui|Tuj) = (uilAjuz) = A6

777
l.e.
M O 0
0 A 0
0 0 A,

as required. <«
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Note. If F' has matrix A = («;), and (+|-) has matrix G = (g;;) then
T has matrix

(a'j) = (9% ar;) = GT' AL
Therefore A, ..., A, are the roots of
det(G™'A - XT) =0,
ie.
det(A — XG) = 0.
. Consider the surface
ax® + by2 +e? + 2hxy 4 2gxz + 2fxz =k (k> 0)
in R? The LHS is a quadratic form with matrix

a h g
A=\ h b f
g | ¢

wrt usual coordinate functions x,y,z. By the principal axes theorem
we can choose new orthonormal coordinates X, Y, Z such that equation
becomes:

)\1X2 —|— /\2Y2 + )\322 - ]{f,
where A1, Ay, A3 are eigenvalues of A.
The surface is:
an ellipsoid if A, Ay, Ag are all > 0, i.e. if the quadratic form is
positive definite, i.e.

a>0, ab—h?*>0, det A>0 by Jacobi;

a hyperboloid of 1-sheet (see Figure 8.2) if the quadratic form is
of type + + — (e.g. X24V2=7%24+ 1), i.e.
a>0, ab—h*>>0, det A <0
or a>0, ab—h* <0, det A <0
or a <0, ab—h* <0, det A < 0;
a hyperboloid of 2-sheets (see Figure 8.3) if the quadratic form is
of type + — — (e.g. X?+VY2=72-1),1e.
a>0, ab—h*><0, det A>0
or a <0, ab—h?><0, det A>0
or a <0, ab—h*>0, det A > 0.
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Chapter 9

Skew-Symmetric Tensors and

Wedge Product

9.1 Skew-Symmetric Tensors
Definition. A bijective map
o {1,2,...,r} = {1,2,...,r}

is called a permutation of degree r. The group &, of all permutations of
degree r is called the symmetric group of degree r. Thus S, is a group of
order r!.

Let 7™M denote the space of all tensors over M of type
MxMx---xM-—K.
Thus 7™M consists of all tensors T' with components

T(wiyy ... ui,) = ;. (r lower indices),

T=aj. ,u" @ - @u".

Ul ® -+ ® ulr is a basis for 7" M.
For each o € §,, and each T' € T"M we define 0. T € T"M by:

(0. T)(x1,. .. 20) = T(2o01), -+ To(r))-

If " has components «;,. ;, then ¢.T has components 3;,. ; , where

/32'1“.” = (O‘.T)(uil, e ,uir) = T(uig(l), Ceey uicm) = aic(l) e aio(r)‘
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Theorem 9.1. The group S, acts on T"M by linear transformations, i.e.
(i) o.(aT 4+ 3S) = a(o.T) + p(0.5),
(i) o.(7.T) = (o1).T,

(iii) 1.T =T

foralla,pe K, o,7€S,, S, TeT" M.

Proofw e.g. (ii)

[o.(7.T)(z1,...,2,) = (6.T)[z,0),- -

Therefore o.(7.T) = (o7).T. «
Note. If 0 € §,, we put

» _J +1 if o is an even permutation;
© 7Y =1 ifoisan odd permutation

} = sign of o.

We have:

Definition. 7' € T"M is skew-symmetric if
o T =¢T foralloces,,
ie.
T(2zs0)s -y To@y) = €T (21,...,2,)
forall 0 € §,, z1,...,2, € M, i.e. the components «, ; of T satisfy:
=€ a;, .,

aic(l)...ic(r)
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Example: T € T>M, with components a;j; is skew-symmetric iff

ik = —Qjik = Qjki = —Qji = Qgij = —Qigj-

It follows that if 7" is skew-symmetric, with components a;, ;, (from now
on assume K has characteristic zero, i.e. « 20 = a+a+---+ a # 0) then

1. ay.q, =0if 29,...,2, are not all distinct;
2. if we know «y, ;, for all increasing sequences 1, < --- < 1, then we
know «;, ;, for all sequences iy,...,1,;

3. if T'is skew-symmetric, with components «;,._;, and S is skew-symmetric,
with components 3;, ;. , and if «; ;. = Bi .4, for all increasing se-
quences 17 < --- < 2, then T'= 5.

Theorem 9.2. Let T € T" M. Then

Z o T

oES,

is skew-symmeltric.

Proofw let 7 € S,. Then
T. (Z EUO'.T> =€ Z € (ro).T =€ Z o€’ (0.T),
oESy o€Sy oESy
as required. <
Definition. The linear operator
A:T"M -T"M

defined by

AT = % Z o T

oES,

is called the skew-symmetriser.
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Example: Let T € T>M have components a;jz. Then
AT (z,y,2) =

%[T(:U?yvz) - T(yaxaz) + T(y,z,;l;) - T(y,x,z) + T(Z,:E,y) - T(Z,y,:p)],

and AT has components

Bijk = é(

Qijk — Qjik + Qb — Qi + Qi — Qi)

Theorem 9.3. Let S€T°M, T € T'M. Then
(i) A[(AS)@T]=A[S®T] = A[S® AT],
(it) A(S®T) = (—1)"AT® S).

Proof »

(i) We first note that if 7 € S, then

(7.9) @ T)(x1,. . Ty o1y s Tope) = (T.9) (21, .oy 2s) T (Tot1, - - -
= S(xra)ys - Tr(s) T (g1, - -

,$s+t)

-7$s+t)

= S(;L’Tl(l), ey LL‘T/(S))T(:L'T/(S+1), Ce $71(5+t))
= [T (SQT)(@1y. .y Tsy Tty -y Tort),

where

_ 1 S s+1 ... s4+1
T (1) ... 7(s) s+1 ... s+t )’

(1.9)QT =7.(5QT)

A[(AS)® T = ﬁ Z 0. !(% Z eTT.S> T

0ESs 4t TES,

1 1 o’ /
=3 Z 7(3—|—t)' Z € (o) (SQ®T)

) TES, ) UESS-I-t

1
= Y AS®T)

TES,

—A(S®T).
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(i) et
_ 1 S s+1 ... s4+1
TTNt+L L t+s 1 L
so that € = (—1)*. Then

[T (S®T)(1,. ., Ts, Tsp1yeveyTspt) =S Q@ T [Xpg1,y vy Tigsy T1y e vy Ty
= T(Cﬂl, e ,.’L’t)S(l’H_l, Ce wt—l—s)
= (T®S)[$1,...,$t+5].

Therefore
7.(S®T)=TQ®S
Therefore
1 aT
AS®T) = e z Tor.(T® 9)
€Syt
1
_ T a . T
2 Colres)

— (-)"AT ®S).

as required. <«

9.2 Wedge Product

Definition. If S € 7°M and T' € T'M, we define their wedge product (also
called exterior product) by

(s +1)!

1 a
S/\T:ﬁ Z o(SRT) = 17

UESS-I-t

AS®T).

Frample: Tet S, T € M* have components a;, 3 wrt ;. Then
SAT=5T-T®S.
Therefore
SAT[z,yl = S(@)T(y) = T(2)5(y),
and S AT has components
vig =S AN Tuiyug] = S(wi) T (uj) = T(ui)S(u;) = il — Bicy;.
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Theorem 9.4. The wedge product has the following properties:
1. (R+S)NT=RAT+SAT,
2. RAN(S+T)=RAS+RAT,
3. (AR)AS =ARAS)=RA(AS),
J. RA(SAT)=(RAS)AT,
5. SANT =(=1)"T' NS,
6. RiA- ARy =" ARy @ - @ Ry).

(2), (22) and (2ie) imply bilinear; (1v) implies associative; (v) implies graded

commutative.

Proofw» e.g. 4.
_(r—l—s—l—t)! (r+s)!

(RAS)AT = 5 )i A T (AAR®S)®T

_ (r+s+1)!
= AResSeT)
M RA(SAT).

5.

t)! l !
sar =S ys o) = (-1 4 r e 5) = (<1 A S,

slt! tls!

6. By induction on k: true for & = 1, assume true for £ — 1. Then:

(Rl/\---/\Rk_l)/\Rk
(ri 4+ 151 +13)! riAee )

N (r1 4 -+ rp—1)lrg! A ril ! A((Fr ® -+ @ Fi1) ® Ry)
!
_ (ri4---+78) AR, ® -+ ® Ryl.
!

<4
Note. For each integer r > 0 we write

M) for the space of all skew-symmetric tensors of type

Mx---xM— K;

—r—
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M,y for the space of all skew-symmetric tensors of type

M*x. o x M* - K;

—r—

MO = K = M.

IfSeM®orSe M,y, we say that S has degree s, and we have

Thus

Theorem 9.5. Let M be n-dimensional, with basis uy, ...

(i)

SAT =(=1)"TAS ifs=degS, t=degT.

SAT =TAS if either s or T has even degree;
SAT =—-=TASif both S and T have odd degree;
SAS =0if S has odd degree, since SAS =—-5AS;

TYNTON---ANSA---ASA---ANT, =0if S has odd degree;

If z4,...,2, € M and 11,...,1, are selected from {1,2,..

Ty N ANxy =€ i, 1 NTa N - Ny,

where

1 if2q,...,2, 1s an even permutation of 1,...
€iyody = —1 if2y,...,2, 1s an odd permutation of 1,...

0 otherwise

is called a permutation symbol;

;= a;yi, (at) = A€ K™ then

J

Ti A Ay = (ailyi ) A A (ainys)
:o/f...affyil/\"‘/\yir
A
= (det A)ys A -+ Ay,

if r > n then M) = {0},

9-7
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(i) if 1 <r <n then

dim M) = ™

rl(n —r)!’
and {u A -+ Auit}i e, is a basis for M),

Proofw»

(i) fr>nand T € M) has components oy, ;, then the indices iy, . ..

cannot be distinct. Therefore T = 0.

(ii) We have
i\ L 2=y; _
(u,u]>—{0 P2 }—5]-.

WA AU g,

= Z Ut Q- ® u“[uja(l), . ,ujc(r)]

More generally:

gES,
— g il ir
- 2 : ¢ 5]&(1) o '5ja(r)
oES,
1 if 21,...,2, are distinct and an even premutation of 7;,...

=< —1 ifeq,..., 2, are distinct and an odd premutation of jq,...

0 otherwise

= 52'1...2;],1“% (general Kronecker delta).

7Z7’

3 Jrs
3 Jrs

It follows that if 1 < r < n, and if T" € M) has components ay, i,

then the tensor:
(%) Z @iyt A
i1 <<y

has components

. . Z'1 e (28 . . — ;. . Z'1~~~Z'r . .
§ : Ay a4, U A Nu [uh? R u]r] - E : 021---%6 J1eedr

i1<"'<ir 21<<2T

= aj1~~~jr7

provided j; < --- < j,. Therefore (%) has the same components as 7.

Therefore
(**) {Uil /\ ce /\ Uir}i1<...<ir
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generate M), Also

Therefore (%%) are linearly independent. Therefore (x%) form a basis

for M("), 4
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Chapter 10

Classification of Linear
Operators

10.1 Hamilton-Cayley and Primary Decom-
position

Let M 5 M be a linear operator on a vector space M over a field K.
Let K[X] be the ring of polynomials in X with coefficients in K. If p =
a0+ X +aX? 4+ a, X7, write

p(T) = apl + onT + aT?*+ - 4 a,T € L(M).

Theorem 10.1 (Hamilton-Cayley). Let T € L(M) have characteristic
polynomial p, and let dim M < oo. Then p(T) = 0.

Proof » Let T have matrix aé wrt basis u;. Put P = (p;), where pé =
a; — X¢;. Then P is an n X n matrix of polynomials, and det P = p is the
characteristic polynomial.

Let q;. = (—1)"*’ be the determinant of the matrix got from P by removing
the " column and ;% row. Then Q = (q;) is also an n X n matrix of
polynomials, and

PQ = (det P)I,
1.e.
Pid; = ps;
Therefore

p(T)u; = p(T)8%u; = pi(T)qF (T )us



Therefore p(T') = 0, as required. <

Example: ( 3 g ) :R? - R2
a—X I3

p= ~ 6— X

‘:XQ—(oz—l—é)X—l—aﬁ—ﬂ'y.

Therefore

2
a f a a 10
31 Y ez D)3 )

({00
S\ 0 0/
Theorem 10.2 (Primary Decomposition Theorem). Let T € L(M),
and let
(T =XM1 (T = X1)™ =0,

where Ai,..., A\, are distinct scalars, and ri,...,rp are posilive inlegers.

Then
M=M®&- - & M,

where M; = ker(T — \1)™ fori=1,... k.

Proof » Let
F=(X =) (X =),
g’L = (X —_— )\i)ri7
=gl

(say), so f(T) =0 and M; = ker¢,(T).
Now hq, ..., hg have hcf 1. Therefore there exist

O4,...,0; € K[X]
such that
©1hy + -+ Ophy = 1.

Put P, = ©;(T)h(t). Then
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(i) PA+---+ P, = 1. Also:
(ii) for each z € M,
gi(TPx = g;(T)O,(T)hi(T)x = f(T)O;(T)x = 0.
Therefore Px € M;,
(ii1) if x; € M; and j # ¢ then
Pz, =0;(T)h;(T)x; = 0,
since g; is a factor of hj, and ¢;(T)z; = 0.
Thus
1. for each x € M we have
r=le=PFPx+---+ Px, PaxeM;
2. ifx =214 -+ xp, with x; € M,, then (for example, see Figure 10.1)
=P+ 4+ P, = P = Pi(x1+ -+ + x) = P
Therefore x; is uniquely determined by x. Therefore
M=M®o-- &M,

as required. <

Note. Each subspace M; is invariant under T', since

reM = g(T)r=0

= Tg(T)xr=0
= gz(T)T;z: =0
= Tx e M,.

Therefore, if we take bases for My, ..., My, and put them together to get a
basis for M, then wrt this basis T" has matrix

Ay 0
Ay
0 Ay
where A; is the matrix of Thy,, the restriction of T' to M,;.
Note also that
(Ta, — M) =0.
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Example: Let M L Mand T2 =T (T a projection operator). Then
T(T—1)=0.
Therefore, by primary decomposition,

M =ker(T — 1) @ ker T

= 1 — eigenspace @ 0 — eigenspace.

If T has rank r, and wuq,...,u, is basis of l-eigenspace; w,4q,...,u, is
basis of 0-eigenspace then, wrt uq,...,u, T has matrix

(11 ...0 )

P 0

0 ... 1 I 0

o .ol ( 0 0>'
0 R

\ 0 ... 0|)

10.2 Diagonalisable Operators

Let M 5 M; dim M < oo. Then:

(T —XM1)...(T—=X1)=0 (Aq,..., A distinct)

= M =ker(T — 1)@ ---@® (T — A1) by Primary Decomposition

= M = (M — eigenspace) @ - - - & (A, — eigenspace)

= T has a diagonal matrix wrt some basis of M

= M has basis consisting of eigenvectors of T'; and (T'— M1)... (T = A 1)u =0
for each eigenvector u, where Ay, ..., Ay are the distinct eigenvalues of T

=S (T —=M1)...(T=X1)=0 (Aq,..., A distinct).

Definition. A linear operator 7" with any one (and hence all) of the above
properties is called diagonalisable.

10 2 2
<1 1).R - R
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Example: The operator



is not diagonalisable.

Proof of This > The characteristic polynomial is

1-X 0 | _ 2
‘ 1 1—X‘_(1_X)'

Therefore 1 is the only eigenvalue.

Also

Therefore 1-eigenspace = {3(0,1) : 8 € R} is 1-dimensional. Therefore R?

11

does not have a basis of eigenvectors of bo ) <

Theorem 10.3. Let S,T € L(M) be diagonalisable (dim M < oo). Then
there exists a basis wrt which both S and T have diagonal matrices (S, T
simultaneously diagonalisable) iff ST =TS (S, T commute).

Proofw»

(i) Let M have a basis wrt which S has diagonal matrix

M
A=
An
and T has diagonal matrix
Ha
B =
fin

Then AB = BA. Therefore ST =T'S.

(ii) Let ST =TS. Since S is diagonalisable we have:

M=M@---dM & D My,
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distinct sum of eigenspaces of S. Since S and T commute, T' leaves
each M; invariant:

T, : M; — M,.
Since T' is diagonalisable we have:
(T — ). (T —wl)=0,
distinct pq, ..., g Therefore
(Ta, — palngy) oo (T, — pulag,) = 0.

Therefore Thy, is diagonalisable. Therefore M; has a basis of eigenvec-
tors of T'. Therefore M has a basis of eigenvectors of S, and of T
<4

10.3 Conjugacy Classes
Problem: Given two linear operators

S, T: M — M,

to determine whether they are equivalent up to an isomorphism of M, i.e. is

there a linear isomorphism M K M so that the diagram

M =M

r| |7

M — M

T
commutes, 1.e.
RS =TR,

ie.

RSR™' =17

Definition. S is conjugate to T if there exists a linear isomorphism R such
that

RSR™'=T.
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Conjugacy is an equivalence relation on L£(M ); the equivalence classes are
called conjugacy classes.

If T'e L(M) has matrix A € K™ wrt some basis of M then the set of
all matrices which can represent T' is:

{PAP™': P € K™ is invertible},

which is a conjugacy class in K™*".

Conversely, the set of all linear operators on M which can be represented

by A is:
{RTR™': R is a linear isomorphism of M},

which is a conjugacy class in L(M).

Hence we have a bijective map from the set of conjugacy classes in L(M)
to the set of conjugacy classes in K™*" (see Figure 10.2).

The problem of determining which conjugacy class T' belongs to is thus
equivalent to determining which conjugacy class A belongs to.

A simple way of distinguishing conjugacy classes is to use properties such
as: rank, trace, determinant, eigenvalues, characteristic polynomial, which
are the same for all elements of a conjugacy class.

Examples:

1. Let

a Jordan A-block of size 4.

3

O O = >
O = > O
— > O O
> O O O

(4 x 4, X on diagonal, 1 just below diagonal, zero elsewhere).

0 0 0O
1 0 00
J=AM=1"49 199
0 01 O
Therefore

(J — )\])61 = €9,

(J — )\])62 = €3,

(J — )\])63 = €4,

(J—)\])64:0



Thus

€1 €2 €3 €4

! L
im(J — A1) es e3 eq4 0
! Ll
im(Jy1)? es eqs 0O
! Lol

im(; — AT)? eqs 0
! !
{0} 0

Thus

im(J — A1) has basis e, 3, €4, rank(J — A[) = 3,
im(J — AI)? has basis e3, €4, rank(J — A1) = 2,
im(J — AI)?

( has basis e4, rank(J — Al) =1,
(J—AD)*=0.
A—X 0 0 0
char J = (1) )\—1X )\_OX 8 =(\—X)"
0 0 1 A—X

Therefore X is the only eigenvalue of .J, and the A-eigenspace = ker(.J —
Al) has basis ey.

2. Let
(|00 )
1 A0 0 0
1 X
J = A0
0 1) 0
A0
0 0 1)\)
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(Jordan A-blocks on diagonal: 3 x 3,2 x 2,2 x 2).

K7 €1 €9€4€g €3€5€7
M~ Y =
51 52 53

!

im(J — A1) €y esezer

51 52

l
im(J — AT)? \ef_/

1

l
{0}

where s1, $3 and s3 are the dimensions of the kernel of (.J—AT) restricted
to im(J — AI)%,im(J — AI) and K7 respectively.

char J = (A — X)7. X is the only eigenvector; dim \-eigenspace = 3 =
number of Jordan blocks.

( Jer = €3
(-] — )\)62 = €3
(J —X)es =0 eigenvector

~
po

(J — )\)64 = €5
(J —X)es =0 eigenvector

(J—Xee =er
(J—Xer =0 eigenvector.

10.4 Jordan Forms

Definition. A square matrix J € K"*" is called a Jordan matriz if it is of
the form

Ji
Jo

Ji

where each J; is a Jordan block.
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Example:

O = >
—_ > O
-0 O

_ >

L
Il
> O

— =
= o

—_

\

(where A # p (say)) is a 9 x 9 Jordan matrix.
Note that

iy

(i) charJ = (A — X)?(p — X)*; eigenvalue A, with algebraic multiplicity 5;
eigenvalue p, with algebraic multiplicity 4.

(i)
dimension of A — eigenspace = number of A — blocks

= geomelric multiplicity of eigenvalue A = 2;

geometric multiplicity of eigenvalue p = 2.
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(iii)

(J = M) =

Therefore

000 )
1 00
010
00
1o :
p—A 0 .
1 « non-sing.
. R p—A 0
non-sing. S }
000
0 00
1 00
00
00
)2
(1 1/\) (/L—O)\)Q < non-sing.
: (p—N)? 0
non-sing. — ) (i — V)2
000 )
000
000
00
00
N.S.

rank(J — M) =2+ 1414,
ramk(J—)\])2 =1+0+4,
rank(]—)\])320—|—0—|—4.
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More generally, if .J is a Jordan n x n matrix, with

b1 A — blocks of size 1,
ba A — blocks of size 2,

mﬁ—bb¢s&gmk,
and if ) has algebraic multiplicity m then
by + 2by + 3bg + -+ = m,
rank(J — AI) has rank:
0by + 1by + 2bg + 3bs + -+ + (n — m),

rank(.J — )J)2 has rank:

06y + 0by + 1b3 + 2bs + - -+ + (n — m),

rank(.J — AI)? has rank:

0b1 + 0by + 0b3 + 1bs + 2b5 + -+ - + (R — m),

and so on. Hence the number by of A-blocks of size k in J is uniquely
determined by the conjugacy class of J.

Theorem 10.4. Let T € L(M) be a linear operator on a finite dimensional
vector space over a field K which is algebraically closed. Then T can be
represented by a Jordan matriz J. The matriz J, which by the preceding is
uniquely determined, apart from the arrangement of the blocks on the diago-
nal, is called the Jordan form of T.

Proof » Since K is algebraically closed, the characteristic polynomial is a
product of linear factors; so, by Hamilton-Cayley we have

(T — M1)™ .. (T = A1) =0

(say), with Ay, ..., Ax distinct factors.
By primary decomposition:

M=M®&- & M,
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where M; = ker(T — A;1)"". We will show that M, has a basis wrt which Ty,
has a Jordan matrix with A; on the diagonal.

Put S = TMz — )\le, Then
M; > M,

and S = 0, i.e. S is a nilpolent operalor. Suppose S™ = 0 but S™™! #£ 0,
and consider:

M; ap...Ggby . bey ooy Ys 21 2,

| (x)

: -3

imS” T oo Tyt e YspZ1 v Dy v By v e - P

: -2

imS” Y1 oo Ysy 21w Zsq v - Zsy

: -1

imS” 21... 2

{o}

Choose a basis 21, ..., 2, for im S™™'. Choose yi,...,ys, € imS™"% such that
Sy; = z;. Extend to a basis z1,...,24,...,2s, for the kernel of im 5"~% —
ST=1 Thus Y1, ..., Ysyy 21, - - - 25, 18 a basis for im S7=2.

Now repeat the construction: choose z1,..., 25, ¥1,...,¥s, € iMS™™3
such that Sz; = y;, Sy; = 2z;. Extend to a basis 2z,...,2,,,...,2, for
the kernel of im S”™=3 — im S™72. Thus @1, ..., Ts, Y1y« sYsyy Z1y -+ 5 Zs 15 @
basis for im S™2,

Continue in this way until we get a basis

gy sy b1y by Y1y Ys, 3 21y e e ey 2,

(say), for M;, with
Saj = b]‘,Sb]’ = C]‘,. . .,Sy]‘ = Z]',SZ]‘ = 0

Now write the basis elements in order, by going down each column of (%)
in turn, starting at the left most column (and leaving out any column whose
elements have already been written down).
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Relative to this basis for M; the matrix of S is a Jordan matrix with zeros
on the diagonal. Therefore the matrix of Thy, = S+ X\; 1, 1s a Jordan matrix
with A; on the diagonal.

Putting together these bases for My,..., My we get a basis for M wrt
which 7" has a Jordan matrix, as required. <

Example: To find a Jordan matrix .J conjugate to the matrix

The characteristic polynomial is

5-X 4 3
p= -1 -X -3

1 —2 1-X
= (5— X)[-X(1 = X) = 6] —4[—(1 — X) +3] + 32+ X]
= (5 X)[X* = X —6] —4[X +2] + 32+ X]
=5X2-5X —30—- X? 4+ X2 46X —4X —8+3X +6
= —X°4+6X*—-32
= (X +2)(-X*+8X — 16)
= —(X +2)(X —4)%

Therefore, by Hamilton-Cayley the operator R A R3 satisfies:
(A+20)(A—41)* = 0.
Therefore, by primary decomposition:

R3 = ker(A + 27) @ ker(A — 4])2.

Now
7 4 3
ker(A+2[)=ker | -1 2 -3
-2 3
7 4 3
ker| 0 18 —18 row 3 + row 2
o 0 0 Trow 2 4+ row 1
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Therefore

(o, B,v) Eker(A+2]) & Ta4+43+3y=0

B—y=0
S Ta+7y=0
B—y=0

& (a,8,7) = (a,—a,—a) = a(—1,-1,—1).

Therefore ker(A + 27) has basis uy = (1,—1,—1).

1 4 3
ker(A —4I)> =ker | —1 —4 -3
1 -2 -3
0 —18 -—18
=ker| 0 18 18
0 18 18
01 1
=ker| 0 0 O
0 0O

Therefore

(a,,7) Eker(A -4 & +v=0
And (aaﬂaﬁy) = (O[757_/3) = 01(1,0,0) +/3(0717_1)

Therefore (1,0,0),(0,1,—1) is a basis for ker(A — 47)%.
Put

Ug = (1,0,0), Uz = (A — 4])UQ = (1, —1, 1)

So uy, Uy, us is a basis for R? such that

(A + 2])U1 = 0,

(A — 4])U2 = Us,

(A — 4])U3 = 0,
ie.

Au1 = —2U1,

Aug = 4uy + us,

AUg = 4U3.
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Therefore wrt basis

U1 = (1, —1, —1) = €1 — €3 — €3,
uy = (1,0,0) = ey,
U3:(1,—1,1) 261—62—|—€3

the operator A has matrix

-2 0 0
J = 0 4 0
0 1 4
Let P be the transition matrix from (e, ez, e3) to (u1, ug, us
L Y A s B 0o -1
P=| -1 0 -1 =3 2 2 0 =11 1
-1 0 1 1 -1 1 0 —%
Therefore
0 —5 -1 5 4 3 11
PAP'=| 1 1 0 -1 0 =3 -1 0
0 —% —% 1 -2 1 -1 0
0 1 1 1 1 1
=14 4 0 -1 0 -1
1 -1 2 -1 0 1
-2 0 0
= 0 4 0 | =J
0 1 4
as required.
Note. (i)
U1 = €1 — €9 — €3 €1 = U
Uy = €1 = U1—|—U3:2€1—262
uz =e; —eyt+e3 Uy — uz = —2e3
€1 = U
= 62——%U1+U2—%U3
e3 = —3u1 + jus
o
=P=11 1 0
o
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1 1 1 00 11T 1100 111 1 0

—101010 ocoro11o0}]~10101 1

-1 0 1 001 012101 0020 -1
220 2 1 2000 -1 -1

~1 0101 1 0101 1 0
0020 -1 0020 -1 1

Example: To find the Jordan form of

1 1 3
A= 5 2 6
-2 -1 -3
1-X 1 3
char A = 5 2—X 6
-2 -1 -3-X

=(1-X)[(2-X)(=3—=X)+6] —[5(=3 = X)+12] +3[-5+2(2 — X)]
=(1—-X)[X*+ X] - [-5X —3] +3[-1 - 2X]

= X4+ X-X*—-X?4+5X+3-6X -3

= X3

Therefore operator R? A R3 satisfies

A® =0.
Now
1 1 3 1 1 3 0 0 0
A? = 5 2 6 5 2 6 = 3 3 9
-2 -1 -3 -2 -1 -3 -1 -1 -3
So put

Uy = €1 = (1,0,0) = €1,
Ug = A61 = (1,5, —2) = €1 + 562 — 263,
= A261 = (0,3, —1) = 362 — €3.

So wrt new basis uq, uy, ug operator A has matrix

J =

o = O

0
0
1

o OO
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Also

So

Thus

Therefore PAP™!

Check:

PA=JP &

O = O OO

’UQ—QU3 = €1 — €.

€y = Uy — Uy + 2us,

€3 = 362 — Uz = 3u1 - 3UQ + 5U3.

€1 :ul,
€y = Uy — Uy + 2us,

€3 = 3u1 - 3UQ —|— 5U3.

= .J, where
1 1 3
P=10 -1 -3
0 2 5
1 3 1 1 3
-1 -3 5 2 6 =
2 5 -2 -1 =3
0 0 0 0 0
1 3 = 1 1 3
-1 -3 0 -1 -3

10.5 Determinants

Let M be a vector space of finite dimension n, and M L, M be a linear
operator. The pull-back (or transpose) of T is the operator

defined by

ME M

(T°f,2) = ([, T).
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The transpose of T* is T itself (by duality) written 7. So:

If 7" has matrix A = (oz;) wrt basis u; then

(T™u?  u;) = (v, Tous) = (u?, oFuy) = a?.

Therefore T has matrix A* wrt basis u’.
More generally we have the pull-back

MO Lm0,
and push-forward
T
My = Mg
defined by

(T"S)(x1,...,2,) = S(Texr, ..., Tx,),
(LS)(['sos f7) = ST, T ),

These maps T™, T, are linear, and preserve the wedge-product. In particular

the spaces M) and My are 1-dimensional. Therefore the push-forward:

T
M) = M),
and the pull-back

M T a0

must each be multiplication by a scalar (called det T, det T respectively).
To see what these scalars are let 7' have matrix A = (aé-) wrt basis u;.

Then

Te(ur A= ANuy) =Tug A= ANTuy,
= (af'ug ) Ao A (o) ug,)

=det Au; A -+ A u,.
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Therefore M, Ty M,y is multiplication by det A. Similarly MO o) s
multiplication by det A* = det A. Therefore

det T'=det T = det A,

independent of choice of basis.

Example: Let dim M = 4, and M L, M have matrix A = (a;) wrt basis ;.
Then

, 4!
dlmM(g) = ﬁ = 6,

and wrt basis uy A ug, uy A us, Uy A ug, Uy A us, g A g, uz A uy
T* : M(Q) — M(g)
satisfies

T*(ul N UQ) = Tu1 N TUQ
= (oz%ul + Q%UQ + a§u3 + a‘llu4) A (oz%ul + agqu + a§u3 + a§u4)

1.2 2.1
= (o —ajag)us Aug + .. ..

Therefore matrix of 7, is a 6 X 6 matrix whose entries are 2 x 2 subdetermi-
nants of A.

Theorem 10.5. If M L M has rank r then
(i) M Iy M,y is non-zero,
(ii) Myp1) 5 Mpyy) is zero.
Proofw»
(i) Let y1,...,y, be a basis for imT', and let y; = T'z;. Then
Tixy NN, =Tey A---ANTx, =y A--- Ay, #0.

(ii) Let u; be a basis for M. Then
T*uil A "'/\uir+1 = Tuil A ---/\Tuzﬂl = O,

since T'u;,...,Tu; ., € imT, which has dimension r. Therefore lin-
early independent. <

Corollary 10.1. If T' has matriz A then rankT = r & all (r + 1) x (r +
1) subdeterminants are zero, and there exists al least one non-zero r X r
subdeterminant.
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Chapter 11

Orientation

11.1 Orientation of Vector Spaces

Let M be a finite dimensional real vector space. Let P = (p;) be the transi-
tion matrix from basis uq,..., u, to basis wy,...,w,:

uj:p;wz-.
Then
U A Auy, =det Pwg A -+ A w,.

Definition. uq,...,u, has same orientation as wy,...,w, if uy A+ Au,
is a positive multiple of wy A +++ A w,, i.e. det P > 0. Otherwise opposite
orienatation as,i.e. det P < 0.

‘Same orientation as’ is an equivalence relation on the set of all bases
for M. There are just two equivalence classes. We call M an oriented vec-
tor space if one of these classes has been designated as positively oriented
bases and the other as negatively oriented bases. We call this choosing an
orientation for M.

For R" we may designate the equivalence class of the usual basis e, ..., ¢,
as being positively oriented bases. This is called the usual orientation of R".

Ezample: ITn R3, with usual orientation. eq, ez, e3 (see Figure 11.1) is posi-
tively oriented (by definition).

62/\61/\63:—61/\62/\63,

62/\63/\61:61/\62/\63.

Therefore ey, €1, €5 1s negatively oriented and ey, e3, €1 1s positively oriented.
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Definition. Let M be a real vector space of finite dimension n with a non-
singular symmetric scalar product (-|-). We call uq,...,u, a standard basis

if
+1

(uiluj) =

+1

Recall that such bases for M exist, and the number of — signs is uniquely
determined.

Theorem 11.1. Let M be oriented. Then the n-form
vol = u' Au A -er Au”

is independent of the choice of positively oriented standard basis for M. It is
called the volume form on M.
If vi,...,v, is any positively oriented basis for M then

vol = \/(—1)5 det(v;|v;)v" Aer A0

Proofw»

1. Let wq,...,w, be another positively oriented standard basis for M:
w' = p}uj (say). Therefore

w A Aw" =det Put A - Au
But det P > 0 and

+1 +1

P! P = )
+1 +1
Therefore
(—1)*(det P)? = (—1)*.
Therefore
(det P)? = 1.

Therefore det P = 1. Therefore

w A AWt =ut A Au™ = vol,

as required.
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2. Let u' = p;vj (say), det P > 0. Then
+1
Pt P
+1

I
“

where g;; = (vi|v;). Therefore
(—1)*(det P)* = det G.
Therefore

det P = 4/(—1)*det G.

Therefore
vol=u' A--- Au" =det Pv' Ao Av™ = y/(=1)sdet Go' A--- A",

as required. <«

Corollary 11.1. vol has components /| det g;;| €, .4, wrt any positively ori-
ented basis.

Example: Take R™ with usual orientation and dot product. Let
D={t"vy++ +1",:0< 1t <1}
be the parallelogram spanned by vectors vy,...,v,. Let A be the matrix

having vy,...,v, as columns.

A
R™ > R", v; = Ae;.

(for example, see Figure 11.2).
vol(v1,...,v,) = vol(Aey,..., Ae,)
= det Avol(eq,...,e,)
= det A
= +|det A|

= +Lebesgue measure of D,

and Lebesgue measure of D = /| det(v;|v;)].

We continue to consider a real oriented vector space M of finite dimension
n with a non-singular symmetric scalar product (+|-) with s— signs.
M) denotes the vector space of skew-symmetric tensors of type

Mx-.-xM - K.

—r—
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Theorem 11.2. There exists a unique linear operator
M) 2 ppnr),

called the Hodge star operator, with the property that for each positively
oriented standard basis uq,...,u, we have

*(u' A AU) =540 8 u" T A AU (o summation here),

where

Example: Tt M is 3-dimensional oriented Euclidean, and wuq,uy, us is any
positively oriented orthonormal then

LY AN VA N,V AC ey VIO
with

*(aqu' + agu® + azu®) = ap W Au® + g Au' + azu! Au?,

*(a1u2 Aud+ a2u3 Aut + agul A u2) = alul + a2u2 + oz3u3.
Thus, if v has components «; wrt u;, and w has components 3; wrt u; then
*(v Aw) has components ¢/*a; B wrt u; for any positively oriented orthonor-
mal basis u;.

We write v x w = *(v A w), and call it the vector product of v and w
because:

v X w=*(vAw)
= x[(aqu’ + agu® + azu’) A (Biu' + Bau® + Bau’)]
= *[(apB3 — azfBa)u* Au® + .. ]
= (2B — azf)u' + ...,

as required.

Proof w(of theorem) If % exists then it must be unique, from the definition.
Thus it is sufficient to define one such operator *. For any positively oriented
basis we define *w by contraction as:

—1)% .. o
(*0)i, 41 in = =1 ,) g g wi g af et gigl € iy i -
r N——

~ J
-~

w
vol
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xw 1s then well-defined independent of choice of basis, since contraction is
independent of a choice of basis. Thus wrt a positively oriented standard
basis uy, ..., Uy,

gij:{ 82 z;; } and w=u"A---Au.
w;..» = 1, other components of w by skew-symmetry, otherwise zero. There-
fore

1)
(%) rt1,..m = %3132 e Spwr ol = 8y n L S,

as required. <«
Theorem 11.3. There is a unique scalar product (-|-) on each M) such
that
w A n = (*w|n)vol

for each w € M), 5 € M=) . The scalar product is non-singular and
symmetric for a standard basis

(W' A AUt A AT = (Wt ul) L (W ) =
and u' Au" is orthogonal to the other basis element of {u"" A-+-Au'r}; c..ci -
P?"(oof)p Define (-|-) by w A p = (*w|n)vol. Then (-]-) is a bilinear form on
MU=

If uy,...,u, is a positively oriented basis for M then
vol=u' Ao AU AW T A AU

w 7

= (Spq1 -8 TP A AU [T A - A ) Vol

N
*w n

Therefore

(WA AU T A AU = S5, = (WY L (W),
as required. <«

Similarly other scalar products give zero.

Ezample: If uy, uy, us is an orthonormal basis for M then u?Au®, u*Au', u' Au®
is an orthonormal basis for M) since

(u* APlu? Au?) = (W) (vPlu’) = 1.1 = 1,
(w* APl Au') = (WP u®) (v’ lu') = 0.0 = 0.
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11.2 Orientation of Coordinates Systems

Definition. Let X be an n-dimensional manifold. Two coordinate systems
on X: y',...,y" with domain V, and z',..., 2" with domain W have the
same ortentation if

on VAW. We call X oriented if a family of coordinate systems is given on
X whose domains cover X, and such that any two have the same orientation.
We then call these coordinate systems positively oriented.

Note. On VAW,

Ay
dy* = ——dz’.
V= 9L
Therefore
a 2
dy' A /\dy"zde‘u( y.)dl/\ A dz"
0z
ay',...,y"
— (y7 7y)d21/\ -/\dzn
a(zt,...,z")
Therefore for each a € VAW, 337}1, ceey % has same orientation as 397(11, ey 32};'

Thus each tangent space T, X 1s an n-dimensional oriented vector space.

If X has a metric tensor (:|-) then 7,X has a non-singular symmetric
scalar product (|-), for each a € X. Therefore we can define a differential
n-form vol on X, called the volume form on X by:

(vol), = the volume form on 7, X.

Also, if w is a differential r-form on X then we can define a differential
(n — r)-form on X, *w, called the Hodge star of w by

(¥w), = *#(w,) for each a € X.
If uy,...,u, are positively oriented vector fields on X with domain V', and
ds® = £(u')? £+ £ (u")?
then

vol = ut A v A ™
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on V.

If y',...,y™ is a positively oriented coordinate system on X with domain

V then
vol = 4/ |det g;;| dy" A -+ A dy”

(2,9
gi; = @yl ayj .

1. R? with usual coordinates: z,y, and polar coordinates: r, 8 (see Figure
11.3). Take z,y as positively oriented:

on V', where

Examples:

x=rcosf, y=rsind.
Therefore
dz Ndy = (cos@dr —rsin@df) A (sin@dr +rcosfdf) =rdrAdb.
r > 0. Therefore r, 8 is positively oriented.

area element = dx A dy = rdr A db,
ds? = (d:l:)2 + (dy)2 = (dr)2 + (r d9)2.

Therefore

xdr = dy, *dy = —dzx,
xdr =rdf, *(rdf)=—dr.

2. Unit sphere S? in R?: 22 + y? 4+ 22 = 1. On 5? we have:
xdr +ydy+ zdz = 0.
Therefore (wedge with dx):
ydr ANdy + zdx ANdz = 0.
Therefore

de Ndy = Zdz A de.
y
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Therefore the coordinate system =,y on z > 0 has the same orientation
as the coordinate system z,x on y > 0.

We orient S? so that these coordinates are positively oriented. Now
ds* = (do)? + (dy)? + (d=
_ 2 2 T YN
= (dz)* + (dy)” + ( Zd;z: Zdy) (on z > 0)

2

z’ 2 ryY Y 2
= <1 + z_2> (dz) ‘|'22_2d$dy + <1 + 2 (dy)*.

Therefore wrt coordinates x, v,

Therefore
:EQ 2 $2 _I_ 2 _I_ 22 1
detgz’jzl-l-——l-y—Q:y—Q:—z.
z z z z
Therefore
1
area element = —dzx A dy.

2|
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Chapter 12

Manifolds and (n)-dimensional
Vector Analysis

This chapter could be considered a continuation of Chapter 11.

12.1 Gradient

Definition. If f is a scalar field on a manifold X, with non-singular metric
tensor (+|-), then we define the gradient of f to be the vector field grad f
such that

(grad f|v) = (df|v) = vf = rate of change of f along v
for each vector field v.
Thus grad f is raising the index of df.
af

i = ey
has component
of
oy’
and
L df 0

d = g" =—
grad f =g By 9y

has component
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Theorem 12.1. If the metric tensor is positive definite then

(1) grad f is in the direction of fastest increase of f;

(ii) the rate of change of f in the direction of fastest increase is || grad f||;
(iit) grad f is orthogonal to the level surfaces of f (see Figure 12.1).
Proof »

(i) The rate of change of f along any unit vector field v has absolute value

[vf| = |(grad flv)| < | grad [{[[[o]l = || grad ],

by Cauchy-Schwarz.

(ii) For
grad f
V=
| grad f||
the maximum is attained:
grad f
vf| = gradf7>‘: grad f||.
il = | (et g )| = a1

(iii) If v is targeted to the level surface f = e then

(grad flv) =vf = 0.
|

Definition. If [ is a scalar field on a 2n-dimensional manifold X, with
coordinates

and skew-symmetric tensor
()= dpi Adq'
i=1

then along a curve a whose velocity vector is grad f we have:

dxi_ ija

a9 e

12-2



1.e.

0
dg™ 1 of
| = Wl
dt —1 Er'n
0 .

) I\ o)

l.e.
dgt  0f
dt B apZ"
dp; _ 9f
dt — J¢

(Hamiltonian Fquations of Motion).

Note.

2 1) = 2L (a() 2 (0(1) = 4%(0(1)) 22 al1) 2L (a(1)) = .

since ¢ is skew-symmetric.

Also,
rate of change of f along grad f = (df,grad f) = (grad f|grad f) = 0,

since (+|-) is skew-symmetric.

12.2 3-dimensional Vector Analysis

Given X a 3-dimensional manifold, z,y, z positively oriented coordinates, i.e.
metric tensor with line element (d:v)2 + (dy)2 + (dz)Z. Write

d 0 0
dS = (dy Ndz, dz Ndzx, dz Ndy), dV =dzANdyAdz,
af af of
_ ol p2 g3y _ _ (&9 Y
F=(F F*F°)=(F Fy F3), Vf_(@x Iy az> for a scalar field f,
oF?  oF? oFt  oF* oF?
VXF_(B;‘%@vv ) V= ey e
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The vector field

- 0 0 0
F=rv=rL il pl
v Ox + dy + 0z

components F', corresponds, lowering the index, to the 1-form (components

F)

F.dr = Fidx + Fody + Fsdz,
&f = (Vf).dr,
d[F.dr] = (V x F).dS,
d[F.dS] = (V.F)dV,

x1 =dV,
xdr = dJS,
*xdS = dr,
xV = 1.

Now

QX) - QI(X) — QQ(X) — QS(X)

Fdr % (VxF).dS

N\ *
[ VFE.dr F.dS % (V.F)dV

(V x F).dr, F, grad f, curl

12.3 Results

Field | Components | Form
grad f Vf vector
curl F V x F vector
div F V.F vector

Theorem 12.2. Let v be a vector field on a manifold, with non-singular
symmetric metric tensor. Let w be the 1-form given by lowering the index of

v. Then the scalar field dwv defined by:

d*w = (divo) vol
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is called the divergence of v. If v has components v' wrt coordinates y* then

0
5,7 VT

) 1
dive = —
NG
where g = | det g,;].
Proofw»
(40 )irins = 970IVG €irins = VIV s -
Therefore
_ 172 3 n 251 3 n
*w = /gv dy" Ndy’ N+ Ndy" —Jgvidy ANdy® A ANdy" + ...

Therefore
1 0
V9 Oy’

0 : :
d*w= T(\/gvl)dyl ANdy* A+ ANdy™ = (v/gv")vol,
yZ

as required. <«

Theorem 12.3. Let f be a scalar field on a manifold, with non-singular
symmetric metric tensor. Then the scalar field

Af =divgrad f = xd x df

is called the Laplacian of f. Wrt coordinates y* we have

10 ,af>
Af = —— T .
/ V9 Oy <\/§g oy’

Thus
) 1 3 3 11 in of
Af:ﬁ(ﬁ 5 VI [ 9 9: e
gnl . g'rm %

Eg. R? Euclidean, R* Minkowski.
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Examples:

(i) R, with (ds)? = (dz')? + -+ + (dz™)?, (¢") = I, g = 1. Therefore

0*f 0 f
N B 2 af _
Af—(m cer Bgm w _a$12+...+axn2.
3
dxn
Therefore
0? 0?
A = EIRE 4o 4 52 usual Laplacian.

(i) R*, with (ds)* = (dz)* + (dy)* + (dz)? — (dt)*: Minkowski.
Af=(% 3 % #)/[1

BT i
C0x? Oy 022 Ot
Therefore
0? 0? 0? ?

A= —+ —+ — wave operator.

022 T oy? ' 922 o2

. . 1 0 .
(iii) S2, with (ds)? = (d8)* + (sinfdp)?, gi;j = < 0 sin0 ) ,g = sinf.

1 (0 0 . 10 o
Af = - — 0 2
/ sin 0 <89 899) o < 0 sinl2e ) < % )
1 9 9 sin @ g—g
~ sinf \ 90 dyp prea £
1 a (. Of 0 1 adf
= — — |sinf—= )+ ——=—1]|.
sind | 00 00 dp \sinf dy
Definition. Let X be a 3-dimensional oriented manifold with non-singular
symmetric metric tensor. Let v be a vector field corresponding to the 1-form

w. Then curlv is the vector field corresponding to the 1-form %dw. Wrt
positively oriented coordinates y*, curl v has components:

ik L (Ove _ Ov;
VI \oyi  oy*)’

where g = | det g;;].
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12.4 Closed and Exact Forms

Definition. A differential form w € Q7(X) is called
(i) closed if dw = 0;
(i1) ezact if w = dn for some np € Q"7 X).
We note that
1. wexact = w closed (ddn = 0),

2. w an exact 1-form = w = df (say)

j/w_/#_ﬂ

for each closed curve «a.

Examples:
1. f w=Pdz+ Qdyis a 1-form on an open V C R? then
w=dP ANdx +dQ Ndy

— (a—Pdm + 8—de) A dx + @—Qd:c + a—Qdy) A dy
X

0 0 dy
0Q JP
=|—=—— = )dzAdy.
<8$ 8y> v
Therefore
P
w 1is closed < aa—y = g—g on V,
wisexact@P:g—i,Q:g—g
for some vector field f on V.
2. The 1-form
rxdy —ydz
Y + 2

on R? — {0} is called the angle-form about 0. We have:

0 x _ 4 1 222 oyt
ox $2+y2 - $2+y2 ($2+y2)2 - (:EQ—I-yQ)Q’

0 —Y a 1 i 2y2 Y — z?
ay $2—|-y2 - $2+y2 ($2+y2)2 - ($2+y2)2'
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Therefore w is closed.

w is not exact because if a(t) = (cost,sint) is the unit circle about 0
(0 <t <2rx) then

/w _ /27T cost.sint — Sint-(—smt)dt — /Qﬂldt =27 # 0.

cos?t + sin ¢

However, on R? — {negative or zero x-axis} we have
x=rcosf, y=rsind,
where 6 is a scalar field, with —7 < # < 7 and

rcosf.(—rcosf) — rsinf.(—rsin )

r2 cos?2f + r2sin? 6

df = do.

w =
Therefore, if « is a curve from a to b (see Figure 12.2),
/w = /d9 = 6(b) — f(a) = change in angle along a.

Note.
dz  zdz (x—y)(de+idy) ;z;d;t—l—ydy_l_,xdy—ydx
— = = i :

pe Zx ;z:2+y2 - $2+y2 $2+y2

Therefore w = im «.

It

- 0 0 0
_ 9 2 U 30
F=F 8x+F 8y+F 0z

is a force field in R? then
F.dr = Fide 4+ Fody + Fydz, F,=TF"

is called the worker element.

/ F.dr = work done by the force F along the curve a.

.
Fis conservative if F.dr is exact, 1.e.

F.dr =dV,
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where V is a scalar field. V is called a potential function for F.

Work done by F along o from a to b (see Figure 12.3) is
/F.dr = / dV = V(b) — V(a) = potential difference.

A necessary condition that F' be conservative is that F.dr be closed,
ie.

V x F=0.

12.5 Contraction and Results

Definition. An open set V' C R”" is called contractible to a € V if there
exists a O map

Vx[0,1]5V
such that
oz, 1) ==z,
p(z,0) =
for all z € V.

FExample: V star-shaped = V contractible. p(z,t) = tz+(1—1)a (see Figure
12.4).

Theorem 12.4 (Poincaré Lemma). Let w € Q'(V), where V is a con-
tractible open subset of R", and r > 1. Then w is exact iff w is closed.

Proof » Let I = [0,1] be the unit interval 0 < ¢ < 1, and define a linear
operator (‘homotopy’)

OV xS o)
for each r > 1 by

H[f dt A dz’] = </1fdt) da”,
H[fdz'] = 0.

Now calculate the operator dH + Hd:
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(i) if p = fdt Adz” then

1
dHn + H dn :d[(/ fdt) d:v‘]] + H [—%dt/\dmi/\da}‘]]

af J af J
_</0 o )d A dz </0 o )d A dz
(i) if n = fdz”’ then

af of
dt A dz” + 2L dat A de
St A dat 4 o A ]

_(/ Wi )d +0

= [f(x,1)]iZoda”.

dHn+Hdn:0+H[

(iii) Now let V' be contractible, with

VxISV

a C'* map such that (see Figure 12.5)

ple,1) =,

p(x,0) =
So

p'(z,1) = ',

#'(x,0) =a"
Therefore

agoi_ 5;- at 1 = 1;
1o att=0.

Let w € Q7 (V), say w = g(z)dz™ A --- Adz'. Apply p*:

o w = g(p(x,1))de" A+ Adp™
Dipht

D Dir D'
— g((z, 1)) [a —da?t + g dt] [ajrd ir 4 gt dt]

899“ atp“ ) ] 8@“ 899“
= g(p(z,1)) [axﬁ . &Cﬂrd zl < Ada?m + % o dt A -

12-10
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Apply dH + Hd:

dp't Dt , ,
(dH + Hd)p*w = g(go(x,t))a"oj 8"9]. dz? A A dzi 40
xh xir
= g(:z:)5ﬁ .. .5;:d:r;j1 Ao Adat
= g(x)dz" A+ Adz”
= 0.
Hence:

(dH + Hd)p"w = w
for all w € Q7 (V).
(iv) Let w be closed. Then
dep*w = p*dw = 0.
Therefore
dHp " w = w.
Therefore w is exact. <

Theorem 12.5. Let w be a closed r-form, with domain V' open in manifold
X. Let a € V.. Then there exists an open neighbourhood W of a such that w
s exaclt in W.

Proof » Let y be a coordinate system on X at a, domain U C V, say. Let
W C U be an open neighbourhood of a such that y(W) is an open ball (see
Figure 12.8).

Consider

w5 y(W), W« y(W)

@

(open ball), where ¢ is the inverse map.

w, Y.

Prw n

dp*w = p*dw = 0, since w is closed. Therefore ¢*w is closed. Therefore
©*w = dn on y(W), by Poincaré. Therefore

dy™n =y*dn =y'p'w=w
on W. Therefore w is exact on W. <«
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Theorem 12.6. Let X be a 2-dimensional oriented manifold with a positive
definite metric tensor. Let uy,uy be positively oriented orthonormal vector
fields on X, with domain V (moving frame). Then there exists a unique
1-form w on V such that

du! 0 —w ul
o (e )= (2 57) 2 ()
on V. w is called the connection form (gauge field) wrt moving frame wuq, us.

Proofw Any 1-form w on V can be written uniquely as:

w=oau'+ Bu*, «,p scalar fields.

w satisfies (%) & du' = —w A v,
du®* = w A u'
& du' = —(au' + fu’) Au® = —au' A,
du® = —(au' + Bu®) Au' = Bu' Au

Thus «a, # are uniquely determined. <«

Theorem 12.7. Let X be a 2-dimensional oriented manifold with positive
definite metric tensor. Let uy,uy be a moving frame with domain V', with
connection form w and

dw = Ku' ANu? = K.area element.

Then the scalar field K is independent of the choice of moving frame, and is
called the Gaussian curvature of X.

Proofw Let wy,wy be another moving frame with domain V:

w' \  f cos —sind ul
w? /7 \ sinf cosb u?
(say). Write this in matrix form as:

w = Pu.

()= (2 w)r ()

Also



Write this in matrix form as:

du = QA u.

= (dP + PQ) A P™'w
= [(dP)P™" + PQP A w

B —sinfdf —cos0db cosf sinf
o cosfdf —sinfdb —sinf cos¥
cosf) —sind 0 —w cosf sinb A
+ sinf  cos# w 0 —sinf cosé w
0 —db 0 —w
()4 (2 7))

:< 0 —(w+d0))/\w‘

(
(
= (dP + PQ) A u
(
[

w + df 0
Therefore w + df 1s the connection form wrt moving frame wy, wy and
dlw+ df] = dw + ddf = dw,
as required. <«

Ezxample: On S%, with angle coordinates 6, v,
ds* = (d0)* + (sinfdyp)?, u'=dh, u®=sinbde.
Recall
w= —cosfdp,
dw =sin0df A dp = u* A u®.
Therefore Gaussian curvature is constant function 1.

Theorem 12.8. Let X be an oriented 2-dimensional manifold with positive
definite metric tensor. Then the Gaussian curvature of X s zero iff for each
a € X there exists local coordinales x,y such thal

ds® = (dz)* + (dy)?,

10
9=\ 0 1)
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Proof » Let uy,us be a moving frame with connection form w on an open
neighbourhood V' of @ on which the Poincaré lemma holds. Then, on V:

Gaussian curvature is zero < dw = 0
& w = —df (say), by Poincaré
Sw+dd=0
& ug, ug can be rotated to a new frame wy, woy
having connection form 0
& dw' =0,dw? =0
& w' =dz,w? =dy (say), by Poincaré
& ds? = (d$)2 + (dy)Q.

12.6 Surface in R

Let X be a 2-dimensional submanifold of R3. Denote all vectors by their
usual components in R3. Let N be a field of unit vector normal to X, ¢!, ?

91 91 e 4 basis for vectors

be coordinates on X, and let r = (z,y,2). Let 55, 55

tangent to X (see Figure 12.9).

o))
15
=
Il
o

b

A
Therefore

TR T T
If u is a vector field on X tangent to X then

0%r N or ON

along u. Therefore
(V.N).N+N.V,N =0.

Therefore V, N is tangential to X.
So define tensor field S on X



S is called the operator, and measures the amount of curvature of X in R3.
Wrt coordinates ¢!, #? S has covariant components

d .., 0 or  ON D%z
Sij = <%|S$> BT T T I T

(symmetric).

Therefore 9, is a self-adjoint operator on T, X for each a. Therefore it has real
eigenvalues K7, Ky and orthonormal eigenvectors uq,uy (see Figure 12.10)
exist, (say) Ky > Ks.

If we intersect X by a plane normal to X containing the vector

cos 0 uy + sin O uqy

at a, we have a curve a of intersection along which the unit tangent vector
t satisfies:

| e~

N =0.
Therefore
(Vit).N + (V. N) = 0.
Therefore
KN.N—-1.5t=0

at a, where K is the curvature of « at a. Therefore

K =1.5t = (cosQuy + sinfuz).S(cosfuy +sinfuy) (at a)
= Ky cos? 0 + Ky sin?0.

Therefore u; is the direction of maximum curvature K, and us is the direc-
tion of minimum curvature K.
Put N = ug, with uq, us, u3 a moving frame.

1 2 3
Vius = —w; @ up — w3 Q@ ug — wy @ us.
Therefore
1 2
Sup = =V, uz = (w3, ur)ug + (w3, ug)uz,
1 2
Suy = =V ,us = (wg, uz)ug + (w3, ug)us.
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Therefore
[(1 [(2 = det S

= <w§7u1><w§7u2> - <w%7u2><w§7u1>

= wy A ws(ur,uy)
= dw,(uy,uz)

= Ku'A uz(ul,u2)
=K

(since d) = —Q A Q, 50 dwl = —w} Awh = —wl Awd = wl Aw?).

12.7 Integration on a Manifold (Sketch)

Let w be a differential n-form on an oriented n-dimensional manifold X. We
want to define
fi=
X
the integral of w over X.
To justify in detail the construction which follows X must satisfy some

conditions. It is sufficient, for instance, that X be a submanifold of some

RN,
(i) Suppose

= fly',...,y")dy' Ao Ady”
=y [f(z',...,a")da" Ao A da]

_ *
=Yy w

on the domain V of a positively oriented coordinate system y' (see
Figure 12.11), and that w is zero outside V, and that

supp f = closure of {z € y(V): f(z) # 0}

is a bounded set contained in y(V'). Then we define

1.e.

/ fyt . oyM)dy' A Ady = / flz,. . xn)dey .. day,
X y(V)



(Lebesgue integral). The definition of wa does not depend on the
choice of coordinates, since if z* with domain W is another such coor-
dinate system,

w = z"wy
(say), then
YWy = wi,

where ¢ = z 0 y~' (see Figure 12.12). Therefore

/ wlz/ wlz/ L,o*wgz/ wgz/ ws.
y(V) y(VAW) y(VAW) 2(VAW) z(W)

(ii) For a general n-form w on X we write
w=w;+ -t w,

where each w; is an n-form satisfying the conditions of (i), and define

[o=[ars [ o
b'e X b

and check that the result is independent of the choice of wy, ..., w,.

Definition. If X has a metric tensor then

volume of X :/Volume form.
X

Example: 1f

is a vector field in R3,
v =v1dr +vody + v3dz = v.dr
is the corresponding 1-form (v; = v*), and

xv = vy dy ANdz +vadz ANdx + v3de ANdy = v.ds
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is the corresponding 2-form then if u; is a moving frame, with us = N normal
to surface S (see Figure 12.13), then

= i
v = a'uy,

v = a;u’,

*v:a1u2/\u3—|—a2u3/\u1—|—a3u1/\u2,
where «; = of. Therefore pull-back of *v to X is
asu' Au? = (5.N)d$,

where dS = u' A u? (area form). Therefore

/Q.ﬁ: /(ﬁ.ﬁ)dS = flux of U across S

M.ﬁ:/dS:areaofS.

Note. v.dr is work element, v.ds is flux element, N.ds is area element of
vector field v.
12.8 Stokes Theorem and Applications

Theorem 12.9 (Stokes). (George Gabriel Stokes 1819 - 1903, Skreen Co.
Sligo) Let w be an (n — 1)-form on an n-dimensional manifold X with an

(n — 1)-dimensional boundary 0X (see Figure 12.14). Then

/dw:/ v w,
X ax

where 9X 5 X is the inclusion map.
Proof »(Sketch) We write
w=wy + -+ wr,

where each w; satisfies the conditions of either (i), (ii) or (iii) below, and we
prove it for each w;. It then follows for w.
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(i) Let
w=fly',...,y")dy* A ANdy"
on the domain V of a positively oriented coordinate system y* such that
y(V)=(=1,1) x --- x (=1,1) (cube),

w zero outside V, and supp f a closed bounded subset of y(V) (see

Figure 12.15).
/ 7w =0,
E)'¢
af

dw = —=dy' Ndy* A - A dy".
oy’

since w is zero on 0.X.

Therefore

/ dw = / a—fldmldasg ...dz,
X y(V) dz

1 1 1 af
_[1[1 [[1%d$1] d:l?gdiﬂn

:/_11.../_11[f(1,;z:2,...,xn)—f(—l,a;Q,...,:z;n)]dxg...d:z;n
0.

Therefore

/dszz/ Fw.
X axX

For (ii) and (iii), let w be zero outside the domain W of functions
y',y%, ...,y", with y a homeomorphism:

y(W)=(-1,0] x (—=1,1) x --- x (=1,1)

(see Figure 12.16), where y' y* ..., y" are positively oriented coor-
dinates on X with domain W — (W A 9X), y' = 0 on W A 90X,
and y%,...,y" are positively oriented coordinates on 9X with domain
W AOX. Then
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(if) if
=y 9%y )y A Ady" (say),
(supp f closed bounded subset of y(W)) then
w=f(0,y% ..., y")dy* A--- Ady",

af "
dw = ald Ady* A A dy™.

/ / 5 ld.f[fldl'g .dz,

_/ f(0 29, ... 2,)d2sy .. . dx,
y(WAIX)

= / 1 w;
8Xx

Therefore

(iii) if
w=fly', .y )y Ay A Ady”

(say), (supp f closed bounded subset of y(W)) then

7w =0,
since y! =0 on W A 0X. Also
dw = —ﬁaly1 Ady* A« A dy™
0y?
Therefore
1
/dw:—/ / [/ —d$2:|d’171 .dz, =0
X -1 _y Oz?
Therefore
/ dw =020 :/ 1w
X ax
L |
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Applications of Stokes Theorem:
1. In R%: w 1-form (see Figure 12.17).

/ i*w:/dw,
oD w

/ (Pdz 4+ Qdy) = / (8_@ — 8_P> dx A dy Green’s Theorem.
8D p \Jz dy

In particular:

(a)

1
/ J:dy:—/ yda::—,/ gdzz/d;z;/\dy:areaofD.
aD aD 2t Jop D

(b) if f =u+iv, w= fdz then

Now
dw = 0 < f holomorphic ,

by Cauchy-Riemann. Therefore

f(2)dz = 0 if f holomorphic (Cauchy).
aD

2. In R X surface (see Figure 12.18).

[ par=[(vxpuas= [ (vxr.ns,
D¢ X X
i.e.

work of F' around loop X = flux of V x F across surface X
= flux of V x F' through loop 0X.

3. In R

[ pxas= [ pas— [v.p,
aD aD D

i.e. (see Figure 12.19)

flux of F' out of region D = integral of V.F over interior of D.
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If V.F' > 0 at a then a is a source for F,
if V.F <0 at a then a is a sink for F,
if V.IF' =0 then F is source-free (see Figure 12.20).

4. If X is n-dimensional and w A 5 an (n — 1)-form then
/ wAn= / d(wAn) (by Stokes)
ax b'e

:/X(dw)/\nir(—l)T/Xw/\dm

w an r-form, by Leibsing. Therefore

/(dw)/\n:/ wAn —I—(—l)TH/w/\dn
X 5X X
—_—

boundary term
(integration by parts) (see Figure 12.21).

FEzample: X connected, 3-dimensional in R?.

[VfndS= | [(V[.dS)
oX 0.4

; (VIVf+ fV.(V])]
- /X 112 + FV2flav
Therefore

Vif=0;forVfn=0mdX=>Vf=0on X=f=00nX

(Dirichlet Neumann).

If X has a metric tensor and no boundary then
/ (*dw|n) vol = (— )T'H/ (*w|dn) vol .
X X

If (say) the metric is positive definite and n odd then xx = 1, so putting
xw in place of w:

/X((_uud*wm)ml:/X(w|dn)vol.
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Therefore (—1)" * dx is the adjoint of the operator d. Hence § = + % dx
is the operator adjoint to d.

A=dé+ od

is self-adjoint, and is called the Laplacian on f.
. If X is the unit ball in R” (see Figure 12.22), with n > 2:

X={zeR":) z7<1}
then X is the (n — 1)-dimensional sphere

X ={zr eR":) al=1}.
Theorem 12.10. There is no C'*° map

X 50X

which leaves each point of the sphere 0X fixed.

Proofw Suppose ¢ exists. Then we have a commutative diagram:

w X 5 ax

T/
a 0X 1
where ¢ is the inclusion map and 1 the identity map.
Let
w=z'de* Ao Adz", o =i"w.
So

dw = dz' Ndz® A--- Adx"  (volume form on X),
da =0,

since da is an n-form on (n — 1)-dimensional .X. Therefore

K TRk
Tw=a=1¢ a.

ok R
/ 1w = / e a.
ax ax

Therefore volume of X is

/dw:/dtp*a:/go*da/tp*():().
be b X b

This is a contradiction so the result follows. <«

Therefore
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6. In R* Minkowski: the electromagnetic field is a 2-form:
F=(Edr)Ndt+ B.dS,

where £ is components of electric field, and B are components of mag-
netic field.

One of Maxwell’s equations is:
dF =0
(the other is d x F' = .J charge-current), i.e.

d[(E.dr) A dl + B.dS] = 0,

i.e.
dB
i.e.
0B
=
V x 5
V.B=0,

i.e. magnetic field is source free.

Therefore electromotive force (EMF) around loop 9.X (see Figure 12.23)

18
/ E.@Stozkes\/(vxﬁ).ﬁ
X X

Magvell _i ﬁds
di Iy

= rate of decrease of magnetic flux through loop.
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