Problem Solving Set 20

22 July 2012

- 1. Denote by S_n the group of permutations of the sequence (1, 2, ..., n). Suppose that G is a subgroup of S_n such that for every $\pi \in G \setminus \{e\}$ there exists a unique $k \in \{1, 2, ..., n\}$ for which $\pi(k) = k$. (Here e is the unit element in the group S_n .) Show that this k is the same for all $\pi \in G \setminus \{e\}$.
- 2. If $n = 4444^{444}$, a is the sum of all the digits of n, b is the sum of all the digits of a, and c is the sum of all the digits of b, find c.