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1. Find the sum of the series

∞∑
n=1

n

n4 + 4
.

Answer: These questions can nearly always be solved by using par-
tial fractions, if they have a solution. But sometimes a little subtlety
shortens the calculation.

In this case

n4 + 4 = (n−
√

2ω)(n−
√

2ω3)(n−
√

2ω5)(n−
√

2ω7)

where ω = e2π/8.

We can combine conjugate factors to give 2 real quadratics

x4 + 4 = (x2 + ax + b)(x2 + cx + d).

From the coefficients of x3 and x, we must have c = −a, b = d.

x4 + 4 = (x2 + ax + b)(x2 − ax + b).
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Thus
−a2 + 2b = 0, b2 = 4.

Hence b = 2, a = 2, yielding

x4 + 4 = (x2 + 2x + 2)(x2 − 2x + 2).

Now
1

n2 − 2n + 2
− 1

n2 + 2n + 2
=

4n

n4 + 4

Hopefully, the 2 terms will cancel out in some way. In fact

(n + 2)2 − 2(n + 2) + 2 = n2 + 2n + 2.

Thus the first term with n + 2 cancels out the second term with n. We
are left with the first term for n = 1, 2.∑ n

n4 + 4
=

1

4

(
1

1
+

1

2

)
=

3

8
.

2. Prove that there exist infinitely many positive integers n such that
2n + 1 and 3n + 1 are both perfect squares.

Answer: Suppose

2n + 1 = x2, 3n + 1 = y2.

Then
3x2 − 2y2 = 1.

Conversely, if x, y satisfy this equation then x is odd and

n =
x2 − 1

2

satisfies the original problem. Thus the question reduces to the solution
of the above diophantine equation.

This is closely related to Pell’s equation

u2 − 6v2 = 1,

which is solved by considering

z = u + v
√

6.



For if we set
z̃ = u− v

√
6,

then Pell’s equation can be written

zz̃ = 1.

Now suppose we have one solution u, v. Then we get an infinity of
solutions by considering

zn = (u + v
√

6)n = U + V
√

6.

For then
z̃n = U − V

√
6,

and so
U2 − 6V 2 = (zz̃)n = 1.

Going back to our equation for x, y, we see that we can write this

(3x)2 − 6y2 = 3,

say
X2 − 6Y 2 = 3,

In other words,
(X + Y

√
6)(X − Y

√
6) = 3.

Now suppose we have one solution (eg X = 3, y = 1). Then we can
get an infinity of solutions by taking

z = (X + Y
√

6)(U + V
√

6)

where U2 − 6V 2 = 1.

(This is the classical number theory of a real quadratic number field.)

3. Let A, C be points in the plane and B the midpoint of [AC]. Let S be
the circle with centre A and radius |AB| and T the circle with centre
C and radius |AC|. Suppose S and T intersect in R,R′. Let S ′, T ′ be
the circles with centres R,R′ and radii AR = AR′. Suppose S ′ and T ′

intersect in A and C ′. Prove that C ′ is the midpoint of [AB].

Answer: Let us choose euclidean coordinates with

A = (0, 0), B = (1, 0), C = (2, 0).



Then S has equation
x2 + y2 − 1 = 0,

and T has equation

(x− 2)2 + y2 − 4 ≡ x2 − 4x + y2 = 0.

The equation of the line RR′ is obtained by subtracting the equations
of S and T :

4x− 1 = 0.

This meets the line AB at the point

D = (1/4, 0).

Evidently RR′ is the perpendicular bisector of AC ′. It follows that

C ′ = (1/2, 0),

ie C ′ is the midpoint of [AC].

4. Let P (x) = a0+a1x+· · ·+anx
n be a polynomial with integer coefficients

ai. Suppose that z is an integer and that

P (P (P (P (z)))) = z.

Prove that P (P (z)) = z.

Answer: Let

z0 = z, z1 = f(z), z2 = f(z1), z3 = f(z2), z4 = f(z3).

We have to show that

z4 = z0 =⇒ z2 = z0.

We may suppose therefore that z2 6= z0. This implies that z1 6= z0.

Any change of coordinates x 7→ x− n (where n ∈ Z) will replace P (x)
by another polynomial P (x + n)−n with integral coefficients. Thus we
may suppose that z = 0.

Then
z1 = a0.

It is easy to see that
a0 | z1, z2, z3.



On the other hand

0 = f(z3) = a0 + z3(a1 + a2z3 + · · · )

implies that
z3 | a0.

It follows that
z3 = ±a0.

Since z3 = a0 = z1 =⇒ z4 = z2 6= 0, we must have

z3 = −a0.

Thus our cycle is
0 7→ a0 7→ z2 7→ −a0 7→ 0.

We have shown therefore that

z3 + z1 = 0 = 2z0.

We have written the equation in this form so that it will remain true
under any change of coordinate x 7→ x− n. Thus if we start our cycle
with z2 we deduce that

z1 + z3 = 2z1 =⇒ z1 = 0.

[This last trick is not essential. The result can be proved by pursuing
the previous argument, showing that z2 = ±2a0, and deducing that
a0 = ±1, ±2 or ± 4.]

5. Let a, b, c (a < b < c) be the lengths of the sides of a triangle opposite
the interior angles A, B and C, respectively. Prove that if a2, b2, c2 are
in arithmetic progression, then so are cot(A), cot(B), cot(C).

Answer: We have to show that

a2 + c2 = 2b2 =⇒ cot A + cot C = 2 cot B.

By the ‘sine law’ for the triangle,

a : b : c = sin A : sin B : sin C.



Thus a2 + c2 = 2b2 if and only if

sin2 A + sin2 C = 2 sin2 B

= 2 sin2(A + C)

= 2 sin2 A cos2 C + 2 cos2 A sin2 C + 4 sin A sin C cos A cos C

= 2 sin2 A + 2 sin2 C − 4 sin2 A sin2 C + 4 sin A sin C cos A cos C,

that is, if and only if

sin2 A + sin2 C = 4 sin2 A sin2 C + 4 sin A sin C cos A cos C

On the other hand cot A + cot C = 2 cot B if and only if

cot A + cot C = −2 cot(A + C),

that is,
cos A

sin A
+

cos C

sin C
= −2

cos(A + C)

sin(A + C)
,

which simplifies to

sin2(A + C) = −2 sin A sin C(cos A cos C − sin A sin C).

Expanding,

sin2 A cos2 C + sin2 C cos2 A + 2 sin A sin C cos A cos C =

−2 sin A sin C(cos A cos C − sin A sin C),

which reduces to the same condition as before:

sin2 A + sin2 C = 4 sin2 A sin2 C + 4 sin A sin C cos A cos C.

6. Let

A =

(
1994 1993
1995 1994

)
.

Prove that A can be written as the product X1X2 · · ·Xr where r ≥ 1
and each

Xi ∈
{(

1 1
0 1

)
,

(
1 0
1 1

)}
(i = 1, 2, . . . , r)

in exactly one way.



Answer: The matrix A is unimodular, ie det A = 1. It is well-known
that the unimodular group

SL(2, Z) = {
(

a b
c d

)
: ad− bc = 1}

is generated by the matrices

U =

(
1 1
0 1

)
, V =

(
1 0
1 1

)
.

One can show this by multiplying successively on the right by U±1, V ±1.

In our case, suppose

X =

(
a b
c d

)
(ad− bc = 1)

with a, b, c, d > 0. Consider

XU−1 =

(
a b− a
c d− c

)
and XV −1 =

(
a− b b
c− d d

)
.

If b ≥ a then XU−1 has non-negative entries and is ‘smaller’ than X,
as measured say by the sum of the entries a + b + c + d. If b < a
then XV −1 has non-negative entries and is ‘smaller’ than X. Thus by
successively multiplying by U−1 or V −1 (ensuring at each stage that the
entries are non-negative) we must finally arrive at the identity matrix
I. In other words,

AX−1
1 X−1

2 · · ·X−1
r = I,

where each Xi is either U or V . Thus

A = X1X2 · · ·Xr.

7. Noah had 8 species of animals to fit into 4 cages of the ark. He planned
to put two species in each cage. It turned out that for each species,
there were at most three other species with which it could not share a
cage. Could Noah have carried out his plan while arranging that each
species shares with a compatible species?

Answer: There is probably a ‘smarter’ way of solving this than the
following ‘proof by cases’.



There are 28 possible pairings, of which 16 are compatible.

Take any species X. Let the species with which X is compatible form
the set

S = {A, B, C,D};
and let the remaining species from the set

T = {a, b, c}.

Consider the possible pairings inside T . There are 4 cases, according
as there are 0, 1, 2 or 3 pairings.

If there are no pairings inside T , then each of a, b, c must be compatible
with all of S = {A, B, C,D}. Thus we can pair off (a, A), (b, B), (c, C), (X, D).

Suppose there is one pairing inside T , say (a, b). Then c is com-
patible with all of S while a and b are each compatible with 3 of S.
Thus we know of 4 + 3 + 3 + 4 pairings; so there must be 2 pair-
ings within S. If (A, B) is one of these pairings, thus we can pair off
(A, B), (c, C), (X, D), (a, b).

Suppose there are two pairings inside T , say (a, b), (b, c). Then a and
b are each compatible with 3 of S, while c is compatible with 2. Thus
we know of 4+3+3+2 pairings; so there must be 4 pairings within S. If
these contain a triangle they can be taken in the form (A, B), (B, C), (C, A), (A, D).
If not, they can be taken as (A, B), (B, C), (C, D), (A, B). In either
case, D must be compatible with a or b. We may suppose it is compat-
ible with a; and then we can pair off (A, B), (X, C), (a, D), (b, c).

Finally, suppose there are three pairings inside T . Then a, b, c are each
compatible with 2 of S. Thus we know of 4 + 2 + 2 + 3 pairings; so
there must be 5 pairings within S. There are 6 possible pairings in S,
so there is 1 ‘non-pairing’, say (A, B). Then B must be paired with one
element of T , say a; and we can pair off (X, A), (B, a), (C, D), (b, c).

8. The function
∞∑

n=1

nxn

1− xn
(|x| < 1)

is expanded as a power-series
∑∞

k=1 akx
k. Prove that n = 1994 is the

largest even integer with an = n + 1000.

Answer: This is almost trivial if I have the correct question.

The term
nxn

1− xn
= nxn + nx2n + nx3n + · · · )



will contribute n to each ak with n | k. In other words, ak is just the
sum of the factors of k:

ak = S(k).

But if k = 2m then certainly k has factors 1, 2, m, k. Thus

S(k) ≥ k + 3 + m.

So if k > 1994, ie m > 997 then

S(k) > k + 1000.

Hence k = 1994 is the largest number with S(k) = k + 1000.

9. Let a, b, c be positive real numbers. Prove that

[(a + b)(b + c)(c + a)]1/3 ≥ 2√
3
(ab + bc + ca)1/2.

Answer: This is a straightforward exercise in partial differentiation.

Let

f(a, b, c) =
[(a + b)(b + c)(c + a)]1/3

(ab + bc + ca)1/2
.

We want to determine the minimum of f(a, b, c). At such a minimum,

∂f

∂a
=

∂f

∂b
=

∂f

∂c
= 0.

But on differentiating log f ,

1

f

∂f

∂a
=

(b + c)(2a + b + c)

3(a + b)(b + c)(c + a)
− b + c

2(ab + bc + ca)
.

Thus

2a + b + c =
3(a + b)(b + c)(c + a)

2(ab + bc + ca)
.

Similarly

a + 2b + c = a + b + 2c =
3(a + b)(b + c)(c + a)

2(ab + bc + ca)
.

Thus
2a + b + c = a + 2b + c = a + b + 2c,



from which we deduce that

a = b = c.

Since

f(a, a, a) =
2√
3
,

the result follows.

10. Let n > 1 be a positive integer. Prove that

n−1∑
j=1

j cosec2

(
πj

n

)
=

n(n2 − 1)

6
.

Answer: The factor j is somewhat misleading, since

cosec

(
π(n− j)

n

)
= cosec

(
πj)

n

)
.

Thus the jth and (n− j)th terms combine to give

n cosec2

(
πj)

n

)
.

Hence

S =
n−1∑
j=1

j cosec2

(
πj

n

)

=
n

2

n−1∑
j=1

cosec2

(
πj

n

)
=

n

2
S ′,

say. Now we are on more familiar ground. Sums like S ′ can usually be
calculated in the following way.

Consider the equation
tan nθ = 0.

We can express tan nθ as a rational function in cot θ:

tan nθ =
P (cot θ)

Q(cot θ)
,



where P (x), Q(x) are polynomials. But

tan nθ = 0 ⇐⇒ nθ = jπ

for some integer j. It follows that the polynomial P (x) vanishes when

x = cot
jπ

n
= γj,

say, for j = 1, . . . , n−1. These roots are distinct; so if P (x) has degree
n− 1 we must have

P (x) = c(x− γ1) · · · (x− γn−1).

Thus we should be able to calculate symmetric functions of the γ’s from
the coefficients of P (x).

Let
u = cot θ, z = eiθ.

Then

u = i
z + z−1

z − z−1
= i

z2 − 1

z2 + 1
;

and so

z2 =
u− i

u + i
.

But

tan nθ =
1

i

zn − z−n

zn − z−n

=
1

i

z2n − 1

z2n + 1

=
1

i

u− i))n − (u + i)n

(u− i)n + (u + i)n
.

It follows that (up to a scalar multiple)

P (x) =
1

i
((u− i)n − (u + i)n)

= −2nun−1 + 2
n(n− 1)(n− 2)

6
un−3 + · · · .

Thus ∑
γj = 0,

∑
γjγk = −(n− 1)(n− 2)

6
.



Now

cosec2

(
jπ

n

)
= 1 + γ2

j .

Thus

S =
n

2

(
n− 1 +

∑
γ2

j

)
=

n

2

(
n− 1 + (

∑
γj)

2 − 2
∑

γjγk

)
=

n

2

(
n− 1 +

n− 1)(n− 2)

3

)
=

n

6
(3n− 3 + (n− 1)(n− 2))

=
n(n2 − 1)

6
.


