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Answer all questions.
Calculators permitted.

1. Solve the equation
(x− 2)(x− 3)(x + 4)(x + 5) = 44.

Answer: Let x− 2 = y − 3, ie y = x + 1. Then the equation becomes

(y − 3)(y − 4)(y + 3)(y + 4) = 44.

In other words,
(y2 − 9)(y2 − 16) = 44.

Let z = y2. We have a quadratic

(z − 9)(z − 16) = 44.

This gives
z2 − 25z + 100 = 0.

Let z = 5u. Then

25u2 − 125u + 100 = 0 =⇒ u2 − 5u + 4 = 0

=⇒ (u− 4)(u− 1) = 0

=⇒ u = 1 or 4

=⇒ z = 5 or 20

=⇒ y = ±
√

5 or ± 2
√

5

=⇒ x = ±
√

5− 1 or ± 2
√

5− 1.



2. Find the greatest value of
x + 2

2x2 + 3x + 6
.

Answer: To maximize

f(x) =
x + 2

2x2 + 3x + 6
,

it is sufficient to minimize

g(x) =
2x2 + 3x + 6

x + 2
.

Setting x + 2 = y,

g(x) =
2(y − 2)2 + 3(y − 2) + 6

y

=
2y2 − 5y + 8

y

= 2y − 5 +
8

y

= 2

(
√

y − 2
√

y

)2

+ 3.

Thus
gmin = 3,

the minimum being attained when y = 2. Hence

fmax =
1

3
,

the minimum being attained when x = 0.

3. Writing numbers to the base 8, show that there are infinitely many numbers which
are doubled by reversing their ‘digits’.

Answer: Consider 2 ‘digit’ numbers x = ab, ie

x = 8a + b (0 ≤ a, b ≤ 7).

This is doubled on reversal if

8b + a = 2(8a + b) =⇒ 15a = 6b

=⇒ 5a = 2b.

This has the solution a = 2, b = 5, ie

2 · 258 = 528.

Now we see that any number of the form

2525 · · · 258

has the required property.
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4. Show that for any positive real numbers a, b with a > b,

an − bn > n(a− b)(ab)(n−1)/2.

Answer: We have

an − bn

a− b
= an−1 + ban−2 + · · ·+ bn−1.

Thus
an − bn

n(a− b)
=

1

n

(
an−1 + ban−2 + · · ·+ bn−1

)
.

The quantity on the right is the arithmetic mean of an−1, ban−2, . . . , bn−1. Using
the result that Arithmetic Mean ≥ Geometric Mean, with equality only when all
terms are equal, we deduce that

an − bn

n(a− b)
>

(
an−1 · ban−2 · · · · · bn−1

) 1
n

= (ab)
n−1

2 .

5. Describe geometrically the points P , Q in an arbitrary triangle ABC that minimize

(a) AP + BP + CP

(b) AQ2 + BQ2 + CQ2.

Answer: (a) The point P minimizing AP + BP + CP is the unique point P such
that

AP̂B = BP̂C = CP̂A =
2π

3
(= 120◦).

(To construct this point, draw a circular arc on AB such that AP̂B = 2π/3 for all
points P on the arc; and a similar circular arc on BC such that BP̂C = 2π/3 for
all point on the arc. Then the required point P is the 2nd point—apart from the
point B—where these 2 arcs meet.)

Suppose that P minimizes AP + BP + CP . Keep CP fixed, allowing P to vary on
a circle centred on C. Draw the tangent t to this circle at P .

A small variation dP of P along the tangent t must leave AP + BP unchanged, to
the first order in dP . It follows that P must be the point on t minimizing AP +BP .

But by the Law of Reflection, this will occur when AP and BP make the same
angle θ with t. (To see this, let B′ be the reflection of B in t. Then

AP + BP = AP + PB′

will be minimized when APB′ is a straight line.)
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But now
AP̂C = θ +

π

2
= BP̂C.

Thus at the minimizing point,

AP̂C = BP̂C.

By the same argument with B in place of C,

AP̂B = CP̂B.

Hence all 3 angles AP̂B,BP̂C, CP̂A are equal; and since they add up to 2π (360◦),
each must be equal to 2π/3 (120◦).

(b) The point minimizing AP 2+BP 2+CP 2 is the centroid G of ABC. For suppose
Q is the minimal point. Let A′ be mid-point of BC. Then

AQ2 + BQ2 = 2A′Q2 + 2A′B2.

So we have to minimize
2A′Q2 + QA2.

Evidently this will be minimal when AQA′ lie in a straight line. Thus Q must lie
on the median AA′. Similarly it must lie on the other 2 medians. Hence it lies at
the centroid G of ABC.

6. For m a positive integer, let k(m) denote the largest integer k such that 2k divides
m!. Let c(m) denote the number of 1’s in the binary representation of m. Show
that k(m) = m− c(m).

Answer: To compute k(m), consider how many of the numbers 1, 2, . . . ,m are
divisible by 2i. [

m
2

]
numbers are divisible by 2.[

m
4

]
numbers are divisible by 4.

. . .

We deduce that

k(m) =
[
m

2

]
+
[
m

4

]
+ · · · .

Note that
m =

m

2
+

m

4
+ · · · .

Consider repeated division of m by 2. At the first step we obtain [m
2
], with remainder

1 if m is odd, ie if the last bit of m is 1. At the second step we obtain [m
4
], with

remainder 1 if the second last bit of m is 1. And so on.

We conclude that the sum of the remainders is equal to c(m), the number of bits
of m equal to 1. Thus

k(m) = m− c(m).
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7. If x1, x2, . . . , xn are positive numbers and s is their sum, prove that

(1 + x1)(1 + x2) · · · (1 + xn) ≤ 1 + s +
s2

2!
+ · · ·+ sn

n!
.

Answer: We have

ex = 1 + x +
x2

2!
+ · · · .

Thus

(1 + x1) · · · (1 + xn) ≤ ex1 · · ·xxn = es = 1 + s +
s2

2!
+ · · · .

But we can go further. The left hand side only contains terms of degree ≤ n in
x1, . . . , xn. Therefore we need only include terms on the right of degree ≤ n. But
sn+1, sn+2, . . . only contain terms of degree > n, and can therefore be omitted. Thus

(1 + x1)(1 + x2) · · · (1 + xn) ≤ 1 + s +
s2

2!
+ · · ·+ sn

n!
.

8. A table tennis club with 20 members organises 14 singles games (2-player games)
one Saturday morning in such a way that each member plays at least once. Show
that there must be 6 games involving 12 different players.

Answer: Call the players 1, . . . , 20. Let player i play 1+ni games. Then the total
number of games is

1

2

∑
(1 + ni) = 10 +

1

2

∑
ni.

But we know that there are 14 games. Hence∑
ni = 8.

Now let us go through the 20 players. For each player with ni > 0, delete ni of his
games. This leaves at least

1

2
(20− 8) = 6 games.

By construction, no player plays in more than 1 of these 6 games.

9. Let a1, a2, . . . be the sequence of all positive integers with no 9’s in their decimal
representation. Show that the series

1

a1

+
1

a2

+
1

a3

+ · · ·

converges.

Answer: Consider numbers with exactly k digits. Each such number is

≥ 10 · · · 0 = 10k−1.
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There are 10k − 10k−1 k-digit numbers, of which 9k − 9k−1 do not contain the digit
9. Thus the k-digit numbers not containing 9 contribute

≤
(
9k − 9k−1

)
10−(k−1)

≤ 10
(

9

10

)k

to the sum. Hence ∑ 1

ai

≤ 10
∑(

9

10

)k

= 100.

In particular the series converges.

10. In a convex quadrilateral ABCD, let E and F be the midpoints of the sides BC
and DA (respectively). Show that the sum of the areas of the triangles EDA and
FBC is equal to the area of the quadrilateral.

Answer: Writing |XY Z| for the area of the triangle XY Z,

|EDA| = 1

2
|DA| × p,

where p is the perpendicular distance from E to DA. But

p =
1

2
(p1 + p2).

where p1, p2 are the perpendicular distances from B, C to DA, respectively. Hence

|EDA| =
1

4
|DA| × p1 +

1

4
|DA| × p2

=
1

2
(|BDA|+ |CDA|) .

Similarly

|FBC| = 1

2
(|ABC|+ |DBC|) .

Hence

|EDA|+ |FBC| =
1

2
(|BDA|+ |DBC|+ |CDA|+ |ABC|)

=
1

2
(|ABCD|+ |ABCD|)

= |ABCD|
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