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Answer as many questions as you can; all carry the same mark. Give
reasons in all cases.

Tables and calculators are not allowed.

1. Compute
∞∑

n=1

n2

2n
.

Answer: First solution: Let

f(x) =
∞∑
0

xn

2n

= 1 +
x

2
+
x2

22
+ · · ·

=
1

1− x/2

=
2

2− x
.

Differentiating,
∞∑
1

nxn−1

2n
=

2

(2− x)2
.

Multiplying by x,
∞∑
1

nxn

2n
=

2x

(2− x)2
.



Differentiating again,

∞∑
1

n2xn−1

2n
=

2

(2− x)2
+

4x

(2− x)3
.

Substituting x = 1,
∞∑
1

n2

2n
= 2 + 4 = 6.

Second solution: Let

S =
∞∑
1

n2

2n

Then

2S =
∞∑
1

n2

2n−1

=
∞∑
0

(n+ 1)2

2n

= S + 2T +
∞∑
0

1

2n
,

where

T =
∞∑
1

n

2n
.

Thus
S = 2T + 2.

Similarly,

2T =
∞∑
1

n

2n−1

=
∞∑
0

n+ 1

2n

= T + 2.

It follows that
T = 2, S = 6.



2. A stick is broken in random in 2 places (the 2 break-points being cho-
sen independently). What is the probability that the 3 pieces form a
triangle?

Answer: We may suppose the stick has length 1. Let the 2 breaks occur
at distance x and y along the stick. We can represent this case by the
point (x, y) in the square 0 ≤ x, y ≤ 1. The probability will be given by
the area in this square corresponding to breaks which give pieces that
can form a triangle.

The condition for this is

x < 1/2, y < 1/2, 1− x− y < 1/2.

These inequalities define a triangle in the square, of area 1/4. Hence
the probability is 1/4.

3. For which real numbers x > 0 is there a real number y > x such that

xy = yx ?

Answer: Taking logs (to base e),

y log x = x log y.

Thus
log x

x
=

log y

y
.

Consider the function

f(x) =
log x

x
.

Differentiating,

f ′(x) =
1− log x

x2
.

As x → 0+, f(x) → −∞; and as x → ∞, f(x) → 0. Thus f(x)
increases from 0 to e, where it takes the value e−1, and then decreases
to 0. Also f(x) < 0 for 0 < x < 1, and f(x) > 0 for x > 1

It follows that there is a y > x with f(y) = f(x) if and only if

1 < x < e.



4. Show that there are an infinity of natural numbers n such that when
the last digit of n is moved to the beginning (as eg 1234 7→ 4123) n is
multiplied by 3.

Answer: Let
an an−1 . . . a1 a0

3
a0 an . . . a2 a1

First solution: it is clear that a0 ≥ 3, since it appears as the first digit
on the bottom.

Let us try a0 = 3. Then a1 = 9, and our sum starts

. . . 9 3
3

. . . 9

But then a2 = 7:
. . . 7 9 3

3
. . . 7 9

Continuing in this way, we determine a3, a4, . . . , successively. After a
long time we find we have completed a cycle, and are back where we
started:

1034482758620689655172413793
3

3103448275862068965517241379

This number with 28 digits is a solution to our problem; and we see
that the cycle could be repeated any number of times to give an infinity
of solutions with 2× 28, 3× 28, . . . digits.

Second proof: Let
n = 10b+ a,

where
a = a0, b = 10n−1an + 10n−2an−1 + · · ·+ a1.

Then
3(10b+ a) = 10na+ b.

Thus
29a = (10n − 3)b.

Hence
29 | 10n − 3.



On the other hand, if this is true then it is easy to see that we get a
solution with

a =
10n − 3

29
, b = 1.

(We will also have solutions with b = 2 and b = 3.) Thus we have to
show that there are an infinity of solutions n of

10n ≡ 3 mod 29.

This follows by a little group theory, applied to the multiplicative group
(Z/29)× formed by the 28 non-zero remainders modulo 29. By La-
grange’s Theorem, the order of 10 in this group divides 28, and is thus
2, 4, 7, 14 or 28. But

102 = 100 ≡ −12 mod 29, 104 ≡ 122 = 144 ≡ 3 mod 29.

Thus
1028q+4 ≡ 3 mod 29,

giving an infinity of solutions to our problem.

5. What is the whole number part of

1 +
1√
2

+
1√
3

+ · · ·+ 1√
1997

?

Answer: I was surprised no-one made a serious effort at this, as the
basic idea — to approximate the sum

∑
f(n), where f(x) is an increas-

ing or decreasing function, by the integral
∫
f(x) dx — is quite often

used. It is the basis for example of the standard derivation of Stirling’s
approximation to n!, which on taking logs reduces to approximating∑

log n.

In our case we can approximate

S =
N∑

n=1

1√
n

by ∫
1√
x
dx = [2

√
X].

Since 1/
√
x is decreasing,∫ N+1

1

1√
x
dx ≤

N∑
n=1

1√
n
≤ 1 +

∫ N

1

1√
x
dx.



But is that good enough? Almost certainly not, since the 2 values differ
by almost 1. However, it cannot be out by more than 1. Thus

2(
√

(1998)− 1) < I < 1 + 2(
√

(1997)− 1).

Now
452 = 81× 25 = 2025, 442 = 452 − 90 + 1 = 1936.

Thus √
(1997) ≈ 44.7

and so
[S] = 87 or 88.

There are two ways of improving the estimate. We could start further
into the sum, which would bring the bounds together; for example∫ N+1

4

1√
x
dx ≤ I − 1− 1√

2
− 1√

3
≤ 1

2
+

∫ N

4

1√
x
dx.

An alternative way — which we shall follow — is to take the integral∫ n+1/2

n−1/2

f(x) dx

as an estimate for f(n).

In our case this means taking

2
√

(n = 1/2)− 2
√

(n− 1/2)

as an approximation to 1/
√
n. Since the function f(x) = 1/

√
x is

concave, it follows that

1√
n

<

∫ n+1/2

n−1/2

1√
x
dx

= 2
(√

(n+ 1/2)−
√

(n− 1/2)
)
.

It follows that

S > 1 + 2(
√

1997.5−
√

1.5)

≈ 1 + 2(44.7− 1.2)

≈ 88.

We conclude that
[S] = 88.



6. Prove that

n(n+ 1)(n+ 2) >

(
n+

8

9

)3

for any integer n ≥ 3.

Answer: This is the easiest question on the paper, even if it is stated
in a slightly misleading way, since the result has nothing to do with
integers. In effect it concerns the polynomial

f(x) = x(x+ 1)(x+ 2)−
(
x+

8

9

)3

=

(
3− 23

3

)
x2 +

(
2− 26

33

)
x− 29

36
.

This is a quadratic, and f(x) → ∞ as x → −∞ and as x → ∞. It
follows that f(x) has a minimum where f ′(x) = 0, ie where

2

3
x =

10

27
,

that is,

x =
5

9
.

It follows that f(x) is increasing for x ≥ 3; so it is sufficient to show
that

f(3) > 0,

ie

3 · 4 · 5 ≥
(

35

9

)3

,

ie
37 · 4 ≥ 73 · 52,

ie
8748 ≥ 8575.

7. Show that the determinant of the 3× 3 matrix

A =

sin(x1 + y1) sin(x1 + y2) sin(x1 + y3)
sin(x2 + y1) sin(x2 + y2) sin(x2 + y3)
sin(x3 + y1) sin(x3 + y2) sin(x3 + y3)


is zero for all real numbers x1, x2, x3, y1, y2, y3.



Answer: This problem can be solved by computing the determinant ∆
directly. But the following argument is quicker.

Consider ∆ as a function of x1. Evidently

∆ = A sinx1 +B cosx1,

where A,B are functions of x2, x3, y1, y2, y3.

The determinant vanishes if x1 = x2, since the first 2 rows are then
equal. Similarly it vanishes if x1 = x3. It follows that

A sinx2 +B cosx2 = 0 = A sinx3 +B cosx3.

This implies that either A = B = 0, in which case ∆ = 0, or else

sinx2 cosx3 = sinx3 cosx2,

ie
tanx2 = tanx3,

ie
x2 − x3 = nπ

for some n ∈ N. We can write this

x2 ≡ x3 mod π.

Similarly, if ∆ 6= 0 then

x3 ≡ x1 mod π, x1 ≡ x2 mod π.

It follows that 2 (at least) of x1, x2, x3 differ by a multiple of 2π, say

x1 ≡ x2 mod 2π.

But then the first 2 rows of ∆ are equal, and ∆ vanishes.

8. Let

A(m,n) =
m!(2m+ 2n)!

(2m)!n!(m+ n)!

for non-negative integers m and n. Show that

A(m,n) = 4A(m,n− 1) + A(m− 1, n)

for m ≥ 1, n ≥ 1. Hence or otherwise show that A(m,n) is always an
integer.



Answer: If m,n ≥ 1,

4A(m,n− 1) + A(m− 1, n) = 4
m!(2m+ 2n− 2)!

(2m)!(n− 1)!(m+ n− 1)!
+

(m− 1)!(2m+ 2n− 2)!

(2m− 2)!n!(m+ n− 1)!

=
(m− 1)!(2m+ 2n− 2)!

(2m)!n!(m+ n− 1)!
(4mn+ 2m(2m− 1))

=
m!(2m+ 2n− 2)!

(2m)!n!(m+ n− 1)!
(2(2n+ 2m− 1))

=
m!(2m+ 2n− 1)!

(2m)!n!(m+ n− 1)!
2

=
m!(2m+ 2n)!

(2m)!n!(m+ n)!

= A(m,n).

On the other hand,

A(m, 0) =
m!(2m)!

(2m)!m!
= 1,

while

A(0, n) =
(2n)!

n!n!
= C2n

n ,

an integer.

But now it follows by induction on d = m + n that A(m,n) is an
integer. This is true when d = 0, since A(0, 0) = 1 as we have seen.
Now suppose it true for all m,n with m+n = d. Then if m+n = d+1,
the terms on the right in the recursion formula A(m,n) = 4A(m,n −
1) + A(m − 1, n) have already been proved integral, and so A(m,n) is
also integral.

9. Let P (x) = a0 + a1x+ · · ·+ anx
n be a real polynomial of degree n ≥ 2

such that

0 < a0 < −
[n/2]∑
k=1

1

2k + 1
a2k

(where [n/2] denotes the integer part of n/2). Prove that the equation
P (x) = 0 has at least one solution in the range −1 < x < 1.

Answer: The conditions can be written

a0 > 0, a0 +
1

3
3 +

1

5
5 + · · · < 0.



But ∫ 1

−1

P (x) dx = 2

(
a0 +

1

3
3 +

1

5
5 + · · ·

)
.

Thus

f(0) > 0,

∫ 1

−1

f(x) dx < 0.

From the second condition, f(x) < 0 for some x ∈ (−1, 1). Thus f(x)
changes sign in (−1, 1), and so has a zero there.

10. Suppose a1, a2, a3, . . . is an infinite sequence of real numbers satisfying
0 < an ≤ 1 for all n. Let Sn = a1 + a2 + · · · + an and Tn = S1 + S2 +
· · ·+ Sn. Show that

∞∑
n=1

an

Tn

<∞.

Answer: The idea is to “bunch together” the an’s, and treat each bunch
as one element.

More precisely, if
∑
an converges then the result is immediate, since Tn ≥

a1 and so ∑ an

Tn

≤ 1

a1

∑
an.

We may assume therefore that ∑
an =∞.

Now let us divide the an’s successively into bunches, each with sum ≥ 1
but < 2, say

1 ≤ a1 + a2 + · · ·+ am1 < 2, 1 ≤ am1+1 + · · ·+ am2 < 2,

and so on. Then
Sm1 ≥ 1, Sm2 ≥ 2, Sm3 ≥ 3, . . .

and
Tm1 ≥ 1, Tm2 ≥ 3, Sm3 ≥ 6, . . . .

In general

Smr ≥ r, Tmr ≥
r(r + 1)

2
.

But now

amr+1

Tmr+1

+ · · ·+
amr+1

Tmr+1

≤
amr+1 + · · ·+ amr+1

Tmr

≤ 2

Tmr

.



Thus ∑ an

Tn

≤ 2

(
1

Tm1

+
1

Tm2

+ · · ·
)

≤
∑ 1

r(r + 1)
<∞


