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1. Let

f(z) =2* + Az* + Bx + C,

where A, B, C are integers. Suppose the roots of f(x) =0 (in the field
of complex numbers) are «, [3,. Prove that if

ol =18l =l =1

then

fla) | (z = 1)°.
Answer: One or three of the roots must be real. But if « € R and
la] =1 then a = £1.

If the three roots are +1 then the result follows, since £1 are roots of
x'? — 1.

So we may assume that one root, say «, is 1, and the other two are
complex conjugates e*?. Since a + 3+ = —A is an integer, so is
B+~ = 2cosf. Thus either 3+~ =0, in which case 3,y = %i; or else
B4~ = %1, in which case 3,7 = w,w? or —w, —w?, where w = e2™/3,

Since +i, +w, +w? are all roots of x'? — 1, the result follows.

. Let n be a positive integer. Prove that when written in decimal form
(in base 10),

<\/1_7 . 4) 2n+1

has at least n zeroes following the decimal point.

Answer: Let

v =V1T+4, y=17—4.



Then
ry =1
while

g2t el e g

since the terms involving odd powers of \/17 cancel out.

It follows that the part of x*" ! after the decimal point is y***1. This
gives the result, since x > 8 and so

< 647 < 107

. Find all integers n for which
n* — 16n® + 86n* — 176n + 169

is the square of an integer.

Answer: Let the given expression be f(n), and let
g(n,c) =n®>—8n+c,
for integers c. Then
g(n,c)? =n* — 160 + (64 + 2¢)n* — 16¢n + 2.
Thus

g(n,11)* + 48,
g(n,12)* — 2n® + 16n + 25,
g(n,13)* — 4n* + 32n.

f(n)

It follows that if f(n) = m? then m > g(n,11). But m < g(n,13) =
g(n,11) + 2 unless

4n? < 32n,

1€



Ifn =0 orn = 8 then f(n) = g(n,13)%. So we need only consider
1<n<7. We have

g(n,11) = (n — 4)* — 5.

Thus

f(1) =g(1,11)* + 48 = 4> + 48 = 64 = 87,
f(2) =g(2,11)> 448 = (—1)* + 48 = 49 = 7°,
f(3) =g(3,11)> + 48 = (—4)* + 48 = 64 = &,
f(4) = g(4,11)* + 48 = (—5)> + 48 = 73,
f(5) = g(5,11)* 448 = (—4)* + 48 = 64 = &,
f(6) = g(6,11)> + 48 = (—1)> + 48 = 49 = 7°,
f(7)=g(7,11)> + 48 = 4* + 48 = 64 = 8°.

Finally, if f(n) is a square for n outside the range [0,8] then f(n) =
g(n,12)2, in which case

2n? —16n 4+ 25 =0,

which is impossible since the first two terms are even while the last is
odd.

We conclude that f(n) is a square if and only ifn € {0,1,2,3,5,6,7,8}.

. Consider the sequence
1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, ...
in which each positive integer k is repeated k times. Prove that its n'"

term is
14++/8n—7
2 )
where [x] denotes the greatest integer not exceeding x.

Answer: Let the nth number in the sequence be a,.

The first n for which a, =k is

_ 2 _
Bk—1) P -kt2

=1+24+... k—1 1=
n=1+2+ -+ )+ 5 5

The function



is monotone increasing for x > 1. Thus
n=f(z)
for a unique x = x(n) > 1; and a,, = k if
E<xz(n)<k+1,
e
an = [x(n)].
But x(n) is the solution of

> —x+2=2n.

Thus
o 1+\/1—4(2—2n)]
" 2
_ {1—1-\/871—7}
——

. Let ABC be an acute angled triangle and a, b, ¢ the lengths of the sides
BC,CA, AB, respectively. Let P be a point inside ABC', and let z,y, z
be the lengths PA, PB, PC, respectively. Prove that

a® + b + 2
($+y+2)2ZT-
Answer: We have

r+y>c,y+z2>0b0, z4+2x>a.
Thus

(y+2)°+(z+2)° + (v +y)° =2(2" +y° + 22 +yz + 20 +ay)
> a? +b? 4 A
Hence
20w +y+2)? =2 +y* + 22+ 2(yz + 22 + 1Y)
> a? + b* + ¢,

e

(x+y+2)?2>(a®+b+c)/2.



6. Let ABC'D be a convex quadrilateral with the lengths AB = AC, AD =
CD and angles BAC = 20°, ADC = 100°. Prove that the lengths
AB =BC+CD.

Answer: Since the triangle ABC' is isosceles,
ABC = ACB = 80°.
Similarly, since the triangle DAC' is isosceles,
DAC = DCA = 40°.

From the triangle ABC),

BC  AB
sin20  sin80°
Thus 190
sin
C= AB.
sin 80
Similarly, from the triangle ACD,
AC CD
sin100  sin40’
Thus in 40 n40
D=""""A0 =""" 4B,
sin 100 51n80

Accordingly, we have to show that

sin 20 N sin 40 B
sin&)  sin8&)

1€
sin 20 + sin 40 = sin &80.

But

sin 20 4 sin 40 = sin(30 — 10) + sin(30 + 10)
= 2sin 30 cos 10
= cos 10

= sin 80,

as required.



7. Let S be a set of 30 positive integers less than 100. Prove that there
exists a nonempty subset 7" of S such that the product of the elements
of T is the square of an integer.

Answer: If we take the numbers {1,2,...,100} modulo squares we
obtain an abelian group A, in which eg 3-6 = 2, The elements of A are
all of order 2, and A is generated by the elements p defined by primes
p. There are 25 primes p < 100, so

A=CP.

We can regard A as a 25-dimensional vector space over the 2-element
field Fy. If s1,...,s. € S then

S+ 45 =0 << s1---5, 15 a square.

The 30 elements
{s:s5€ S}
must be linearly dependent in the vector space A, ie there is some rela-
tion
S+ +5=0
But then the product
Sl . .. ST’

1S a square.

8. Let
f(z) = 2° + az* + ba® + ca® + dx + e,

where a, b, ¢, d, e are integers, and suppose that f(z) = 0 has no integer
roots. Suppose also that f(x) = 0 has roots «, 3 (in the field of complex
numbers) with a + 3 an integer. Show that a3 is an integer.

Answer: Suppose
a+ [ =n.

Consider the factorisation of f(x) into irreducible polynomials over the
rationals Q. We know that any such factorisation is in fact a factori-
sation into monic polynomials over Z. Since f(x) has no integral root
it cannot have a factor of degree 1. Thus either f(x) is irreducible, or
else it factorises into 2 irreducible polynomials, of degrees 2 and 3.

Suppose first that f(x) is irreducible. Then § = n — a is a root of
f(n—x), as well as of f(x). It follows that

fn—2)=—f(2).



Thus from the coefficients of x*,

on + a = —a,
1€
on = 2a.

In particular, n is even.

The roots of f(x) must divide into pairs {0, n—0} with at least one root
satisfying 0 = n — 0. But that is impossible, since f(x) has no integral
root. It follows that f(x) cannot be irreducible.

Thus f(x) factorises, say

f(@) = g(x)h(z),

where « is a oot of g(x).

As before, f = n — « is a root of g(n — x), as well as of f(z). Thus
g(n—x) is (to within a factor 1) either g(x) or h(x). Since deg g(x) #
deg h(x),

g(n —x) = +g(z).

Suppose first that g(x) is cubic, say
g(x) = 2° + Ax* + Bz + C.
If the third root is v then
a+f+y=—A = vy=—(A+n),

giving an integral root of f(x), contrary to assumption.

Hence g(z) is quadratic, say
g(x) = 2>+ Bz + C.
Then af = C' is integral, as required.

. Let = be a real number with 0 < < 1. Let {a,} be a sequence of
positive real numbers. Prove that the inequality

1+ za, > 2%a,_1

holds for infinitely many positive integers n.



10.

Answer: Suppose to the contrary that

1
Ay < TQp_1 — —
T

for all sufficiently large n, say n > N.

This implies in particular that a, is decreasing for n > N. Hence a,
converges to a limit £ > 0, satisfying

ﬁgxé—l.
x

But this implies that

1
l—al<——<0 = (<0,
T

which is impossible since a, > 0.

Find the least positive integer n for which
m" — 1 is divisible by 102%

for all integers m with greatest common divisor ged(m, 10) = 1.

Answer: We have to find n such that

m" = 1 mod 22093
and

m"” = 1 mod 5203,

The group (Z)2™)*, ie the group of odd numbers modulo 2", contains
6(27) =2

elements. Thus the order of any odd number in this group is 2" for
some .

It is not hard to show that if n > 2,
(Z)2") = Z/(2) x Z/(2"7?).

Thus every odd number has order dividing 2"2, and some odd numbers
have this order.



The group (Z/5™)*, ie the group of numbers coprime to 5 modulo 5",
contains

o(5") =45

elements. is 2" for some r. Again, it is not hard to see that this group
is cyclic. Thus every number coprime to 5 has order dividing 4 - 5™ 1,
and some such numbers have this order.

It follows that the least number n such that all m coprime to 10 satisfy
m"™ = 1 mod 10%%
18

n = 1C1’n(22000, 4. 52001)
_ 2200052001

=5. 102000'



