Irish Intervarsity Mathematics Competition 2003

University College Dublin

Time allowed: Three hours

1. Let

$$f(x) = x^3 + Ax^2 + Bx + C,$$

where A, B, C are integers. Suppose the roots of f(x) = 0 (in the field of complex numbers) are α, β, γ . Prove that if

$$|\alpha| = |\beta| = |\gamma| = 1$$

then

$$f(x) \mid (x^{12} - 1)^3.$$

Answer: One or three of the roots must be real. But if $\alpha \in \mathbb{R}$ and $|\alpha| = 1$ then $\alpha = \pm 1$.

If the three roots are ± 1 then the result follows, since ± 1 are roots of $x^{12} - 1$.

So we may assume that one root, say α , is ± 1 , and the other two are complex conjugates $e^{\pm\theta}$. Since $\alpha + \beta + \gamma = -A$ is an integer, so is $\beta + \gamma = 2\cos\theta$. Thus either $\beta + \gamma = 0$, in which case $\beta, \gamma = \pm i$; or else $\beta + \gamma = \pm 1$, in which case $\beta, \gamma = \omega, \omega^2$ or $-\omega, -\omega^2$, where $\omega = e^{2\pi i/3}$. Since $\pm i, \pm \omega, \pm \omega^2$ are all roots of $x^{12} - 1$, the result follows.

2. Let n be a positive integer. Prove that when written in decimal form (in base 10),

$$\left(\sqrt{17}+4\right)^{2n+1}$$

has at least n zeroes following the decimal point.

Answer: Let

$$x = \sqrt{17 + 4}, \ y = \sqrt{17 - 4}.$$

Then

$$xy = 1;$$

while

$$x^{2n+1} - y^{2n+1} \in \mathbb{Z},$$

since the terms involving odd powers of $\sqrt{17}$ cancel out. It follows that the part of x^{2n+1} after the decimal point is y^{2n+1} . This gives the result, since x > 8 and so

$$y^{2n+1} < 64^{-n} < 10^{-n}.$$

3. Find all integers n for which

$$n^4 - 16n^3 + 86n^2 - 176n + 169$$

is the square of an integer.

Answer: Let the given expression be f(n), and let

$$g(n,c) = n^2 - 8n + c,$$

for integers c. Then

$$g(n,c)^{2} = n^{4} - 16n^{3} + (64 + 2c)n^{2} - 16cn + c^{2}.$$

Thus

$$f(n) = g(n, 11)^{2} + 48,$$

= $g(n, 12)^{2} - 2n^{2} + 16n + 25,$
= $g(n, 13)^{2} - 4n^{2} + 32n.$

It follows that if $f(n) = m^2$ then m > g(n, 11). But $m \le g(n, 13) = g(n, 11) + 2$ unless

$$4n^2 \le 32n,$$

ie

 $0\leq n\leq 8.$

If n = 0 or n = 8 then $f(n) = g(n, 13)^2$. So we need only consider $1 \le n \le 7$. We have

$$g(n,11) = (n-4)^2 - 5.$$

Thus

$$\begin{split} f(1) &= g(1,11)^2 + 48 = 4^2 + 48 = 64 = 8^2, \\ f(2) &= g(2,11)^2 + 48 = (-1)^2 + 48 = 49 = 7^2, \\ f(3) &= g(3,11)^2 + 48 = (-4)^2 + 48 = 64 = 8^2, \\ f(4) &= g(4,11)^2 + 48 = (-5)^2 + 48 = 73, \\ f(5) &= g(5,11)^2 + 48 = (-4)^2 + 48 = 64 = 8^2, \\ f(6) &= g(6,11)^2 + 48 = (-1)^2 + 48 = 49 = 7^2, \\ f(7) &= g(7,11)^2 + 48 = 4^2 + 48 = 64 = 8^2. \end{split}$$

Finally, if f(n) is a square for n outside the range [0,8] then $f(n) = g(n,12)^2$, in which case

$$2n^2 - 16n + 25 = 0,$$

which is impossible since the first two terms are even while the last is odd.

We conclude that f(n) is a square if and only if $n \in \{0, 1, 2, 3, 5, 6, 7, 8\}$.

4. Consider the sequence

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, \dots$$

in which each positive integer k is repeated k times. Prove that its n^{th} term is

$$\left[\frac{1+\sqrt{8n-7}}{2}\right],$$

where [x] denotes the greatest integer not exceeding x.

Answer: Let the nth number in the sequence be a_n .

The first n for which $a_n = k$ is

$$n = 1 + 2 + \dots + (k - 1) + 1 = \frac{k(k - 1)}{2} + 1 = \frac{k^2 - k + 2}{2}.$$

The function

$$f(x) = \frac{x^2 - x + 2}{2}$$

is monotone increasing for $x \ge 1$. Thus

n = f(x)for a unique $x = x(n) \ge 1$; and $a_n = k$ if $k \le x(n) < k + 1$,

ie

$$a_n = [x(n)].$$

But x(n) is the solution of

$$x^2 - x + 2 = 2n.$$

Thus

$$a_n = \left[\frac{1 + \sqrt{1 - 4(2 - 2n)}}{2}\right] = \left[\frac{1 + \sqrt{8n - 7}}{2}\right].$$

5. Let ABC be an acute angled triangle and a, b, c the lengths of the sides BC, CA, AB, respectively. Let P be a point inside ABC, and let x, y, z be the lengths PA, PB, PC, respectively. Prove that

$$(x+y+z)^2 \ge \frac{a^2+b^2+c^2}{2}.$$

Answer: We have

$$x + y > c, \ y + z > b, \ z + x > a.$$

Thus

$$\begin{aligned} (y+z)^2 + (z+x)^2 + (x+y)^2 &= 2(x^2+y^2+z^2+yz+zx+xy) \\ &> a^2+b^2+c^2. \end{aligned}$$

Hence

$$2(x + y + z)^{2} = 2(x^{2} + y^{2} + z^{2} + 2(yz + zx + xy))$$

> $a^{2} + b^{2} + c^{2}$,

ie

$$(x + y + z)^2 > (a^2 + b^2 + c^2)/2.$$

6. Let ABCD be a convex quadrilateral with the lengths AB = AC, AD = CD and angles $B\hat{A}C = 20^{\circ}$, $A\hat{D}C = 100^{\circ}$. Prove that the lengths AB = BC + CD.

Answer: Since the triangle ABC is isosceles,

$$A\hat{B}C = A\hat{C}B = 80^{\circ}.$$

Similarly, since the triangle DAC is isosceles,

$$D\hat{A}C = D\hat{C}A = 40^{\circ}.$$

From the triangle ABC,

$$\frac{BC}{\sin 20} = \frac{AB}{\sin 80}.$$

Thus

$$BC = \frac{\sin 20}{\sin 80} AB.$$

Similarly, from the triangle ACD,

$$\frac{AC}{\sin 100} = \frac{CD}{\sin 40}.$$

Thus

$$CD = \frac{\sin 40}{\sin 100} AC = \frac{\sin 40}{\sin 80} AB.$$

Accordingly, we have to show that

$$\frac{\sin 20}{\sin 80} + \frac{\sin 40}{\sin 80} = 1,$$

ie

$$\sin 20 + \sin 40 = \sin 80.$$

But

$$\sin 20 + \sin 40 = \sin(30 - 10) + \sin(30 + 10)$$

= 2 \sin 30 \cos 10
= \cos 10
= \sin 80,

as required.

7. Let S be a set of 30 positive integers less than 100. Prove that there exists a nonempty subset T of S such that the product of the elements of T is the square of an integer.

Answer: If we take the numbers $\{1, 2, ..., 100\}$ modulo squares we obtain an abelian group A, in which $eg \ \overline{3} \cdot \overline{6} = \overline{2}$, The elements of A are all of order 2, and A is generated by the elements \overline{p} defined by primes p. There are 25 primes $p \le 100$, so

$$A = C_2^{25}.$$

We can regard A as a 25-dimensional vector space over the 2-element field \mathbb{F}_2 . If $s_1, \ldots, s_r \in S$ then

$$\bar{s_1} + \dots + \bar{s_r} = 0 \iff s_1 \cdots s_r$$
 is a square.

The 30 elements

 $\{\bar{s}: s \in S\}$

must be linearly dependent in the vector space A, is there is some relation

 $\bar{s_1} + \dots + \bar{s_r} = 0$

But then the product

 $s_1 \cdots s_r$

is a square.

8. Let

$$f(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e,$$

where a, b, c, d, e are integers, and suppose that f(x) = 0 has no integer roots. Suppose also that f(x) = 0 has roots α, β (in the field of complex numbers) with $\alpha + \beta$ an integer. Show that $\alpha\beta$ is an integer.

Answer: Suppose

 $\alpha + \beta = n.$

Consider the factorisation of f(x) into irreducible polynomials over the rationals \mathbb{Q} . We know that any such factorisation is in fact a factorisation into monic polynomials over \mathbb{Z} . Since f(x) has no integral root it cannot have a factor of degree 1. Thus either f(x) is irreducible, or else it factorises into 2 irreducible polynomials, of degrees 2 and 3.

Suppose first that f(x) is irreducible. Then $\beta = n - \alpha$ is a root of f(n-x), as well as of f(x). It follows that

$$f(n-x) = -f(x)$$

Thus from the coefficients of x^4 ,

$$5n + a = -a,$$

ie

$$5n = 2a.$$

In particular, n is even.

The roots of f(x) must divide into pairs $\{\theta, n-\theta\}$ with at least one root satisfying $\theta = n - \theta$. But that is impossible, since f(x) has no integral root. It follows that f(x) cannot be irreducible.

Thus f(x) factorises, say

$$f(x) = g(x)h(x),$$

where α is a root of g(x).

As before, $\beta = n - \alpha$ is a root of g(n - x), as well as of f(x). Thus g(n-x) is (to within a factor ± 1) either g(x) or h(x). Since $\deg g(x) \neq \deg h(x)$,

$$g(n-x) = \pm g(x).$$

Suppose first that g(x) is cubic, say

$$g(x) = x^3 + Ax^2 + Bx + C.$$

If the third root is γ then

$$\alpha + \beta + \gamma = -A \implies \gamma = -(A+n),$$

giving an integral root of f(x), contrary to assumption. Hence g(x) is quadratic, say

$$g(x) = x^2 + Bx + C.$$

Then $\alpha\beta = C$ is integral, as required.

9. Let x be a real number with 0 < x < 1. Let $\{a_n\}$ be a sequence of positive real numbers. Prove that the inequality

$$1 + xa_n \ge x^2 a_{n-1}$$

holds for infinitely many positive integers n.

Answer: Suppose to the contrary that

$$a_n < xa_{n-1} - \frac{1}{x}$$

for all sufficiently large n, say $n \geq N$.

This implies in particular that a_n is decreasing for $n \ge N$. Hence a_n converges to a limit $\ell \ge 0$, satisfying

$$\ell \le x\ell - \frac{1}{x}.$$

But this implies that

$$(1-x)\ell \le -\frac{1}{x} < 0 \implies \ell < 0,$$

which is impossible since $a_n \ge 0$.

10. Find the least positive integer n for which

$$m^n - 1$$
 is divisible by 10^{2003}

for all integers m with greatest common divisor gcd(m, 10) = 1. Answer: We have to find n such that

$$m^n \equiv 1 \bmod 2^{2003}$$

and

$$m^n \equiv 1 \bmod 5^{2003}.$$

The group $(\mathbb{Z}/2^n)^{\times}$, ie the group of odd numbers modulo 2^n , contains

$$\phi(2^n) = 2^{n-1}$$

elements. Thus the order of any odd number in this group is 2^r for some r.

It is not hard to show that if $n \geq 2$,

$$(\mathbb{Z}/2^n)^{\times} \cong \mathbb{Z}/(2) \times \mathbb{Z}/(2^{n-2}).$$

Thus every odd number has order dividing 2^{n-2} , and some odd numbers have this order.

The group $(\mathbb{Z}/5^n)^{\times}$, ie the group of numbers coprime to 5 modulo 5^n , contains

$$\phi(5^n) = 4 \cdot 5^{n-1}$$

elements. is 2^r for some r. Again, it is not hard to see that this group is cyclic. Thus every number coprime to 5 has order dividing $4 \cdot 5^{n-1}$, and some such numbers have this order.

It follows that the least number n such that all m coprime to 10 satisfy

$$m^n \equiv 1 \bmod 10^{2003}$$

is

$$n = \operatorname{lcm}(2^{2000}, 4 \cdot 5^{2001})$$

= 2²⁰⁰⁰5²⁰⁰¹
= 5 \cdot 10²⁰⁰⁰.