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1. Let
f(x) = x3 + Ax2 + Bx + C,

where A, B, C are integers. Suppose the roots of f(x) = 0 (in the field
of complex numbers) are α, β, γ. Prove that if

|α| = |β| = |γ| = 1

then
f(x) | (x12 − 1)3.

Answer: One or three of the roots must be real. But if α ∈ R and
|α| = 1 then α = ±1.

If the three roots are ±1 then the result follows, since ±1 are roots of
x12 − 1.

So we may assume that one root, say α, is ±1, and the other two are
complex conjugates e±θ. Since α + β + γ = −A is an integer, so is
β +γ = 2 cos θ. Thus either β +γ = 0, in which case β, γ = ±i; or else
β + γ = ±1, in which case β, γ = ω, ω2 or −ω,−ω2, where ω = e2πi/3.

Since ±i,±ω,±ω2 are all roots of x12 − 1, the result follows.

2. Let n be a positive integer. Prove that when written in decimal form
(in base 10), (√

17 + 4
)2n+1

has at least n zeroes following the decimal point.

Answer: Let
x =

√
17 + 4, y =

√
17− 4.



Then

xy = 1;

while

x2n+1 − y2n+1 ∈ Z,

since the terms involving odd powers of
√

17 cancel out.

It follows that the part of x2n+1 after the decimal point is y2n+1. This
gives the result, since x > 8 and so

y2n+1 < 64−n < 10−n.

3. Find all integers n for which

n4 − 16n3 + 86n2 − 176n + 169

is the square of an integer.

Answer: Let the given expression be f(n), and let

g(n, c) = n2 − 8n + c,

for integers c. Then

g(n, c)2 = n4 − 16n3 + (64 + 2c)n2 − 16cn + c2.

Thus

f(n) = g(n, 11)2 + 48,

= g(n, 12)2 − 2n2 + 16n + 25,

= g(n, 13)2 − 4n2 + 32n.

It follows that if f(n) = m2 then m > g(n, 11). But m ≤ g(n, 13) =
g(n, 11) + 2 unless

4n2 ≤ 32n,

ie

0 ≤ n ≤ 8.



If n = 0 or n = 8 then f(n) = g(n, 13)2. So we need only consider
1 ≤ n ≤ 7. We have

g(n, 11) = (n− 4)2 − 5.

Thus

f(1) = g(1, 11)2 + 48 = 42 + 48 = 64 = 82,

f(2) = g(2, 11)2 + 48 = (−1)2 + 48 = 49 = 72,

f(3) = g(3, 11)2 + 48 = (−4)2 + 48 = 64 = 82,

f(4) = g(4, 11)2 + 48 = (−5)2 + 48 = 73,

f(5) = g(5, 11)2 + 48 = (−4)2 + 48 = 64 = 82,

f(6) = g(6, 11)2 + 48 = (−1)2 + 48 = 49 = 72,

f(7) = g(7, 11)2 + 48 = 42 + 48 = 64 = 82.

Finally, if f(n) is a square for n outside the range [0, 8] then f(n) =
g(n, 12)2, in which case

2n2 − 16n + 25 = 0,

which is impossible since the first two terms are even while the last is
odd.

We conclude that f(n) is a square if and only if n ∈ {0, 1, 2, 3, 5, 6, 7, 8}.

4. Consider the sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, . . .

in which each positive integer k is repeated k times. Prove that its nth

term is [
1 +

√
8n− 7

2

]
,

where [x] denotes the greatest integer not exceeding x.

Answer: Let the nth number in the sequence be an.

The first n for which an = k is

n = 1 + 2 + · · ·+ (k − 1) + 1 =
k(k − 1)

2
+ 1 =

k2 − k + 2

2
.

The function

f(x) =
x2 − x + 2

2



is monotone increasing for x ≥ 1. Thus

n = f(x)

for a unique x = x(n) ≥ 1; and an = k if

k ≤ x(n) < k + 1,

ie

an = [x(n)].

But x(n) is the solution of

x2 − x + 2 = 2n.

Thus

an =

[
1 +

√
1− 4(2− 2n)

2

]

=

[
1 +

√
8n− 7

2

]
.

5. Let ABC be an acute angled triangle and a, b, c the lengths of the sides
BC, CA, AB, respectively. Let P be a point inside ABC, and let x, y, z
be the lengths PA, PB, PC, respectively. Prove that

(x + y + z)2 ≥ a2 + b2 + c2

2
.

Answer: We have

x + y > c, y + z > b, z + x > a.

Thus

(y + z)2 + (z + x)2 + (x + y)2 = 2(x2 + y2 + z2 + yz + zx + xy)

> a2 + b2 + c2.

Hence

2(x + y + z)2 = 2(x2 + y2 + z2 + 2(yz + zx + xy))

> a2 + b2 + c2,

ie
(x + y + z)2 > (a2 + b2 + c2)/2.



6. Let ABCD be a convex quadrilateral with the lengths AB = AC, AD =
CD and angles BÂC = 20◦, AD̂C = 100◦. Prove that the lengths
AB = BC + CD.

Answer: Since the triangle ABC is isosceles,

AB̂C = AĈB = 80◦.

Similarly, since the triangle DAC is isosceles,

DÂC = DĈA = 40◦.

From the triangle ABC,

BC

sin 20
=

AB

sin 80
.

Thus

BC =
sin 20

sin 80
AB.

Similarly, from the triangle ACD,

AC

sin 100
=

CD

sin 40
.

Thus

CD =
sin 40

sin 100
AC =

sin40

sin80
AB.

Accordingly, we have to show that

sin 20

sin 80
+

sin 40

sin 80
= 1,

ie

sin 20 + sin 40 = sin 80.

But

sin 20 + sin 40 = sin(30− 10) + sin(30 + 10)

= 2 sin 30 cos 10

= cos 10

= sin 80,

as required.



7. Let S be a set of 30 positive integers less than 100. Prove that there
exists a nonempty subset T of S such that the product of the elements
of T is the square of an integer.

Answer: If we take the numbers {1, 2, . . . , 100} modulo squares we
obtain an abelian group A, in which eg 3̄ · 6̄ = 2̄, The elements of A are
all of order 2, and A is generated by the elements p̄ defined by primes
p. There are 25 primes p ≤ 100, so

A = C25
2 .

We can regard A as a 25-dimensional vector space over the 2-element
field F2. If s1, . . . , sr ∈ S then

s̄1 + · · ·+ s̄r = 0 ⇐⇒ s1 · · · sr is a square.

The 30 elements
{s̄ : s ∈ S}

must be linearly dependent in the vector space A, ie there is some rela-
tion

s̄1 + · · ·+ s̄r = 0

But then the product
s1 · · · sr

is a square.

8. Let
f(x) = x5 + ax4 + bx3 + cx2 + dx + e,

where a, b, c, d, e are integers, and suppose that f(x) = 0 has no integer
roots. Suppose also that f(x) = 0 has roots α, β (in the field of complex
numbers) with α + β an integer. Show that αβ is an integer.

Answer: Suppose
α + β = n.

Consider the factorisation of f(x) into irreducible polynomials over the
rationals Q. We know that any such factorisation is in fact a factori-
sation into monic polynomials over Z. Since f(x) has no integral root
it cannot have a factor of degree 1. Thus either f(x) is irreducible, or
else it factorises into 2 irreducible polynomials, of degrees 2 and 3.

Suppose first that f(x) is irreducible. Then β = n − α is a root of
f(n− x), as well as of f(x). It follows that

f(n− x) = −f(x).



Thus from the coefficients of x4,

5n + a = −a,

ie

5n = 2a.

In particular, n is even.

The roots of f(x) must divide into pairs {θ, n−θ} with at least one root
satisfying θ = n− θ. But that is impossible, since f(x) has no integral
root. It follows that f(x) cannot be irreducible.

Thus f(x) factorises, say

f(x) = g(x)h(x),

where α is a root of g(x).

As before, β = n − α is a root of g(n − x), as well as of f(x). Thus
g(n−x) is (to within a factor ±1) either g(x) or h(x). Since deg g(x) 6=
deg h(x),

g(n− x) = ±g(x).

Suppose first that g(x) is cubic, say

g(x) = x3 + Ax2 + Bx + C.

If the third root is γ then

α + β + γ = −A =⇒ γ = −(A + n),

giving an integral root of f(x), contrary to assumption.

Hence g(x) is quadratic, say

g(x) = x2 + Bx + C.

Then αβ = C is integral, as required.

9. Let x be a real number with 0 < x < 1. Let {an} be a sequence of
positive real numbers. Prove that the inequality

1 + xan ≥ x2an−1

holds for infinitely many positive integers n.



Answer: Suppose to the contrary that

an < xan−1 −
1

x

for all sufficiently large n, say n ≥ N .

This implies in particular that an is decreasing for n ≥ N . Hence an

converges to a limit ` ≥ 0, satisfying

` ≤ x`− 1

x
.

But this implies that

(1− x)` ≤ −1

x
< 0 =⇒ ` < 0,

which is impossible since an ≥ 0.

10. Find the least positive integer n for which

mn − 1 is divisible by 102003

for all integers m with greatest common divisor gcd(m, 10) = 1.

Answer: We have to find n such that

mn ≡ 1 mod 22003

and

mn ≡ 1 mod 52003.

The group (Z/2n)×, ie the group of odd numbers modulo 2n, contains

φ(2n) = 2n−1

elements. Thus the order of any odd number in this group is 2r for
some r.

It is not hard to show that if n ≥ 2,

(Z/2n)× ∼= Z/(2)× Z/(2n−2).

Thus every odd number has order dividing 2n−2, and some odd numbers
have this order.



The group (Z/5n)×, ie the group of numbers coprime to 5 modulo 5n,
contains

φ(5n) = 4 · 5n−1

elements. is 2r for some r. Again, it is not hard to see that this group
is cyclic. Thus every number coprime to 5 has order dividing 4 · 5n−1,
and some such numbers have this order.

It follows that the least number n such that all m coprime to 10 satisfy

mn ≡ 1 mod 102003

is

n = lcm(22000, 4 · 52001)

= 2200052001

= 5 · 102000.


