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Answer as many questions as you can; all carry the same mark. Give
reasons in all cases.

Tables and calculators are not allowed.

1. For which integers a does the equation

x3 − 3x + a

have three integer roots?

Answer: Suppose the roots are u, v, w. Then

u + v + w = 0, uv + uw + vw = −3, uvw = −a.

Setting
w = −(u + v),

the second equation becomes

uv + uw + vw = −3,

ie

uv − (u + v)2 = −3,



ie

u2 + uv + v2 = 3.

We have to find solutions u, v ∈ Z of this equation. We can write the
equation in the form

(u + v/2)2 + 3v2/4 = 3.

Thus

3v2/4 ≤ 3,

ie

v2 ≤ 4,

ie

|v| ≤ 2.

Similarly
|u| ≤ 2.

On going through the possibilities

u, v ∈ {−2,−1, 0, 1, 2}

we see that the only integer solutions are

(u, v) = (−2, 1), (−1,−1), (1, 1), (2,−1).

Substituting for w, the complete solutions are

(u, v, w) = (−2, 1, 1), (−1,−1, 2), (1, 1,−2), (2,−1,−1).

Thus there are really just two solutions (up to order) namely

±(1, 1,−2)

giving
a = −uvw = ±2.



2. Find all solutions in integers a, b, c of

a2 + b2 + c2 = a2b2.

Answer: One solution is evidently

a = b = c = 0.

Suppose we have a different solution.

If x ∈ Z then
x2 ≡ 0 or 1 mod 4

according as x is even or odd.

Suppose a, b are both odd. Then

a2b2 ≡ 1 mod 4,

while
a2 + b2 + c2 ≡ 2 or 3 mod 4.

Thus one (at least) of a, b is even. Hence

a2b2 ≡ 0 mod 4,

and so
a2 + b2 + c2 ≡ 0 mod 4,

which is only possible if a, b, c are all even.

Let 2r be the highest power of 2 dividing a, b, c. Then r ≥ 1 from above.
Suppose

a = 2ra′, b = 2rb′, c = 2rc′.

Then
a′

2
+ b′

2
+ c′

2
= 22ra′

2
b′

2
.

Hence
a′

2
+ b′

2
+ c′

2 ≡ 0 mod 4,

which as we have seen implies that a′, b′, c′ are all even, contrary to our
choice of r as the highest power of 2 dividing a, b, c.

We conclude that
a = b = c = 0

is the only solution.



3. Find all polynomials P (x) satisfying

P (x2) = P (x)P (x− 1).

Answer: Suppose the roots of P (x) are

α1, . . . αn.

Then the roots of P (x2) are

±
√

α1, · · · ±
√

αn,

while the roots of P (x)P (x− 1) are

α1, α1 − 1, . . . , αn, αn − 1.

These must be the same, up to order.

Let
max|αi| = M.

Then
max|

√
αi| =

√
M.

Thus if M > 1 there is no way of matching the roots.

Similarly, let
min
αi 6=0

|αi| = m.

Then
min
αi 6=0

|
√

αi| =
√

m.

Thus if m < 1 there is no way of matching the roots.

We conclude that the non-zero roots must all lie on the unit circle:

αi 6= 0 =⇒ |αi| = 1.

Now suppose α 6= 0 is a root of P (x). Then α+1 is a root of P (x−1).
It follows that either α = −1 or else

|α| = 1, |α + 1| = 1.

These two equations represent the two circles of radius 1 centred on 0
and −1, meeting in the points ω, ω2 (where ω = exp(2πi/3)).

We conclude that if α is a roots of P (x) then

α ∈ {0,−1, ω, ω2}.



If 0 is a root of P (x) then −1 is a root of P (x−1), and so ±i are roots
of P (x2). Hence i (for example) is a root of P (x) or P (x− 1), ie i or
i + 1 is a root of P (x), both of which we have already excluded.

Similarly if −1 is a root of P (x) then ±i are roots of P (x2), which we
have just seen is impossible.

It follows that the only possible roots of P (x) are

α = ω or ω2.

Moreover these roots must occur equally often. For

ω + 1 = −ω2, ω2 + 1 = −ω;

and √
ω = ±ω2,

√
ω2 = ±ω.

Thus if ω occurs r times and ω2 occurs s times as roots of P (x) then
ω,−ω, ω2,−ω2 occur with multiplicities s, s, r, r in P (x2), and with mul-
tiplicies r, s, r, s in P (x)P (x− 1).

Since
(x− ω)(x− ω2) = x2 + x + 1,

we have shown that the only solutions of the given relation are

P (x) = (x2 + x + 1)n

for n = 0, 1, 2, . . . (to which should be added the trivial solution P (x) =
0).

4. If the plane is partitioned into two disjoint subsets, show that one of
the subsets contains three points forming the vertices of an equilateral
triangle.

Answer: There are probably many ways of doing this.

Let us call the two sets A and B. If A and B are empty the result is
trivial; so we may assume that there are points A ∈ A, B ∈ B.

Consider the line AB, and equidistant points

. . . , P−2, P−1, A,B, P1, P2, . . .

on the line. There are two possibilities. Either these points are alter-
nately in A and B,

. . . , A−1, B−1, A0, B0, A1, B1, . . . ;



or we can find three equidistant points X, Y, Z with the central point X
in the same set as just one of the end-points X, Z, eg

A1A2B1.

In the first case, consider the equilateral triangles

AiXiAi+1 and AiYiAi+1,

with all the points Xi on the same side of the line. Then the points
Xi, Yi must all lie in B; and so

X1Y2X3

is an equilateral triangle in B.

In the second case we may assume the three equidistant points are

A1A2B1.

Consider the hexagon
A1P1P2B1P3P4

with centre A2 and diagonal A1B1. Then P1 ∈ B, or A1P1A2 would be
an equilateral triangle in A. Similarly P4 ∈ B. But then P1B1P4 is an
equilateral triangle in B.

More questions overleaf !



5. For which real numbers x is

sin(cos x) = cos(sin x)?

Answer: If
sin(cos x) = cos(sin x),

then
sin(cos x) = sin(π/2− sin x).

But
sin A = sin B ⇐⇒ A = B + nπ,

where n ∈ Z. Thus

cos x = nπ + π/2− sin x.

Since
|cos x|, |sin x| ≤ 1,

this is only possible if
n = 0 or − 1.

Thus
cos x + sin x = ±π

2
.

Squaring both sides,

cos2 x + 2 cos x sin x + sin2 x =
π2

4
.

Since
cos2 x + sin2 x = 1, 2 cos x sin x = sin 2x,

our equation gives

sin 2x =
π2

4
− 1.

But π2 > 9, and so
π2

4
− 1 >

9

4
− 1 > 1.

Since |sin 2x| ≤ 1 for all x, we conclude that the original equation has
no solution.



6. For which real numbers c 6= 0 does the sequence defined by

a0 = c, an+1 =
1

2

(
an +

1

an

)
converge?

Answer: Suppose the sequence converges to `. Then

` =
1

2

(
` +

1

`

)
Hence

` =
1

`
,

ie

` = ±1.

If c is replaced by −c then an is replaced by −an for all n. Thus it is
sufficient to consider the case c > 0; if an → ` when a0 = c > 0 then
an → −` when a0 = −c.

If c > 0 then an > 0 for all n. Thus if an is convergent then an → 1.

By the inequality between the arithmetic and geometric means (or by a
simple calculation) if an > 0 then

1

2

(
an +

1

an

)
≥ 1.

Thus
an ≥ 1

for n ≥ 1.

Also

an+1 ≤ an ⇐⇒ 1

an

≤ an

⇐⇒ an ≥ 1

Hence the sequence an is decreasing for n ≥ 1, and so must converge
to a limit, which we have seen must be 1.

We conclude that the sequence always converges if c 6= 0:

an →

{
1 if c > 0,

−1 if c < 0.



7. Show that for any sequence an of strictly positive real numbers one (or
both) of the series ∑ an

n2
and

∑ 1

an

must diverge.

Answer: Suppose the two series both converge. Then

1

an

→ 0 =⇒ an →∞.

Since an > 0 we can re-arrange the series without affecting their con-
vergence or divergence. Thus we may assume that the an are increasing:

an+1 ≥ an.

Let π(m) denote the number of an which are ≤ m:

π(m) = |{n : an ≤ m}|.

The number of an in the range [m, 2m) is

π(2m)− π(m).

The an in this range contribute

≥ π(2m)− π(m)

2m

to the second series
∑

1/an.

It follows that
π(2m)− π(m)

2m
→ 0

as m →∞. In particular there is an N > 0 such that

π(2m)− π(m)

2m
<

1

8

ie

π(2m)− π(m) <
1

4
m

for m ≥ N .



Thus

π(2N)− π(N) ≤ 1

4
N,

π(4N)− π(2N) ≤ 1

4
2N,

. . .

π(2r+1N)− π(2r2N) ≤ 1

4
2rN.

Adding,

π(2r+1N)− π(N) ≤ 1

4

(
1 + 2 + 22 + · · ·+ 2r

)
N

≤ 1

4
2r+1N

Thus if
2rN ≤ n < 2r+1N

then

π(n) ≤ π(2r+1N)

≤ π(N) +
1

2
2rN

≤ π(N) +
1

2
n.

We conclude that, for some N1 ≥ N ,

π(n) ≤ n

for n ≥ N1.

But
π(n) ≤ n =⇒ an ≥ n.

Thus
an

n2
≥ 1

n
for n ≥ N1; and so the first series∑ an

n2

diverges by comparison with ∑ 1

n
.



8. The point A lies inside a circle centre O. At what point P on the
circumference of the circle is the angle OPA maximised?

Answer: It is evident that

OP̂A < π/2,

eg by drawing the diameter D1OAD2 through A, and comparing OP̂A
with D1PD2 = π/2.

Applying the sine law to the triangle OPA,

sin OP̂A

OA
=

sin OÂP

OP

ie

sin OP̂A =
OA

OP
sin OÂP.

Now OP̂A is maximised when sin(OP̂A) is maximised. Since OA and
OP are fixed (with OA < AP ) this will occur when sin(OÂP ) is max-
imised, ie when OÂP = π/2.

We conclude that OP̂A is maximised when P is one of the two points
where the line through A perpendicular to OA meets the circle.

9. What is the maximum volume of a cylinder contained within a sphere
of radius 1?

Answer: This is straightforward. Clearly the largest cylinder will have
its centre at the centre of the sphere. Suppose the radius of the cylinder
is r, and the height h. Then

r2 + h2 = 1.

The volume of the cylinder is

V = πr2h

= πh(1− h2).

We have to maximise this function, with the restriction that 0 < h < 1.

Let
f(x) = x(1− x2) = x− x3.

Then f(0) = f(1) = 0 and

f ′(x) = 1− 3x2.



Thus f(x) attains its maximum when

x =
1√
3
;

and
Vmax =

π√
3
.

10. The function f(x) is twice-differentiable for all x, and both f(x) and
f ′′(x) are bounded. Show that f ′(x) is also bounded.

Answer: Suppose

|f(x)| ≤ C, |f ′′(x)| ≤ C.

Suppose f ′(x) is large at some point, say x0. On taking −f(x) in place
of f(x) if necessary, we may suppose that

f ′(x0) = X > 0.

Since f ′′(x) is bounded, f ′(x) must remain large for a considerable in-
terval beyond x0. More precisely, suppose

f ′(x) < X/2

for some x > x0. Then

f ′(x0)− f ′(x) > X/2.

But we know, from Rolle’s Theorem, that

f ′(x)− f ′(x0)

x− x0

= f ′′(ξ)

for some ξ ∈ (x0, x). Thus

x− x0 =
f ′(x)− f ′(x0)

f ′′(ξ)

≥ X

2C
.

In other words,
f ′(x) ≥ X/2

for x ∈ [x0, x1], where

x1 = x0 +
X

2C
.



But this in turn means that f(x) is increasing steadily over this interval.
More precisely, for some η ∈ (x0, x1),

f(x1)− f(x0) = (x1 − x0)f
′(η)

≥ (x1 − x0)
X

2
.

Thus

f(x1)− f(x0) ≥
X2

4C
.

But since
|f(x) ≤ C

it follows that

|f(x1 − f(x0)| ≤ |f(x1||+ |f(x0)| ≤ 2C.

Hence

X2

4C
≤ 2C,

ie

X < 23/2C.

So we have shown that
|f ′(x)| ≤ 23/2C

for all x.


