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Let 0 < a < b. Prove that
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Compute the sum of the series
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Z(4k+1)(4k+2)(4k+3)(4k+4) “1234 5678

k=0

Dene the sequence z1, xo, . .. inductively by x; = V5 and Tpt1 = mi —2
for each n > 1. Compute
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(a) A sequence xi,xs,... of real numbers satises
Tpil = Tp COS Ty
for all n > 1.
Does it follow that this sequence converges for all initial values
LL’l?
(b) A sequence ¥, ys, ... of real numbers satises
Yn+1 = Yn sin Yn
for all n > 1.

Does it follow that this sequence converges for all initial values
yl?
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Let ag,ay,...,a, be positive real numbers such that a1 —a > 1 for
all k=0,1,...,n— 1. Prove that
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Denote by S,, the group of permutations of the sequence (1,2,...,n).
Suppose that G is a subgroup of S, such that for every 7 € G \ {e}
there exists a unique k € {1,2,...,n} for which n(k) = k. (Here e is
the unit element in the group S,,.) Show that this k is the same for all
T e G\ {e}.
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