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A1. Find all continuous functions f : R → R such that f(x) − f(y) is
rational for all reals x and y such that x− y is rational.

A2. Denote by V the real vector space of all real polynomials in one variable,
and let P : V → R be a linear map. Suppose that for all f, g ∈ V with
P (fg) = 0 we have P (f) = 0 or P (g) = 0. Prove that there exist real
numbers x0, c such that P (f) = cf(x0) for all f ∈ V .

A3. Let p be a polynomial with integer coefficients and let a1 < a2 < ... < ak
be integers.

(a) Prove that there exists a ∈ Z such that p(ai) divides p(a) for all
i = 1, 2, . . . , k.

(b) Does there exist an a ∈ Z such that the product p(a1)·p(a2) · · · p(ak)
divides p(a)?

B1. Let n, k be positive integers and suppose that the polynomial x2k−xk+1
divides x2n + xn + 1. Prove that x2k + xk + 1 divides x2n + xn + 1.

B2. Two different ellipses are given. One focus of the first ellipse coincides
with one focus of the second ellipse. Prove that the ellipses have at
most two points in common.

B3. Let n be a positive integer. Prove that 2n− 1 divides∑
0≤k<n/2

(
n

2k + 1

)
5k.


