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1. Show that each rational number z is uniquely expressible
as a finite sum of the form

o a9 as Qp,
T=ad gt

where aq,as,...,a, are integers with 0 < a, < r for r =
2,3,...,n.

Answer: We denote the fractional part of the real number
x by {x}, so that
r = [z]+{z}.

Let us define x1,x9,...;0a1,0as9,...;51,S9,... successively as
follows:

a) = [x]yxl - {x}ysl = ay;,

as = [2x1], x0 = {221}, $9 = $1 + as/2!;

Ay = [Txr—l]a Ly = {7“:177«_1}, Sp = Sp—1 T CLT/’I“!

Then
rTy_1 = Qp + Ty,
and

0<z,1<1 = 0<aqa,<r.



Also, it follows by induction that

Ly

xzsr—k—'.
T

This 1s true when r = 1; and if it 1s true for r — 1 then

Lyr—1

(r— 1!
rTr—1

r=S_1+

r!
ar + Ty

rl

= Sp_1 +

T
=85, + —.
r!

To see that the series terminates if x is rational, evidently
nlx € Z
for some n. Let n be the least positive integer with this

property.

We can see by induction that
rls, € Z.
For this is true when r = 1; and if it is true for r — 1 then

rls, =rls,_1 +a, € Z.

Now
T
nlz =nls, + —

Since nlz,nls, € Z it follows that x, € Z. But 0 < {z} <
1. Hence

{,} =0 = ap1 =0,
so the series terminates at this point.

Finally, to show that the series is unique, suppose

B as an bo b
x—a1+§+---+m—b1+5+---+ﬁ.

We can assume that ay, b, # 0.



We argue by induction on max(m,n). The result is trivially
true ifm =n = 1. Suppose m # n, saym < n. Multiplying
the equation by (n — 1)!,

a
—nEZ,
n

and so a, = 0. Again, if m = n then multiplying the equa-
tion by (n — 1)1,

i _bncg
n o n
and so a,, = b, Thus
a2 an—1 ba by—1
— 2. — b+ L
S T T P Tk

and 1t follows from the inductive hypothesis that a, = b, for
all r.

. Each of four people A, B, C, D tell the truth just 1 time in
3. A makes a statement, and B says that C says that D
says that A is telling the truth. What is the probability
that A is actually telling the truth?

Answer: Let
a,b,c,d= =1

according as each of A, B,C, D 1is telling the truth or not.
We are told that A is telling the truth if

abed = 1.

Thus we have to compute the relative probability that a = 1
given that abed = 1. e

prob(a =1 & bed = 1)
prob(abed = 1)

Now abed =1 if eithera =b=c=d =1 or else just two
of a,b,c,d 1s 1. We can choose these two in 6 ways. Thus

prob(abed = 1) = (%)4 L6 (%>2 @)2

25

81



Stmalarly bed = 1 if either b= c=d =1 or else just one of
a,b,c is 1, which can be arranged in 3 ways. Thus

prob(a =1 & bed = 1) = prob(a = 1) - prob(bed = 1)

LY Ll (2 ?
- 3\\3 3\3
13
81
Hence the relative probability is
13
25°
. Suppose «, # are positive irrational numbers satisfying
1/a+1/8 = 1. Show that the sequences

o], [2a], [3a],... and [g],[28],]38], ...

together contain each positive integer just once.

Answer: Clearly o, 8 > 1. It follows that
[(r+1)a] > [ra], [(s+1)5] > [sf].

So the integers in each of the two sequences are distinct.

We claim that no integer can occur in both the sequences.
For suppose

[ra] = [s8] = n.
Then
n<ra<n+1l, n<sfg<n+1,
e
n< <n+1 n< <n+1
—<r —<s )
a a 3 6]

(Note that we have inequality rather than equality on the
left because o, 3 are irrational.) Adding,

n<r+s<n+41,

which 18 impossible.



Next we show that there are n — 1 elements of the two se-
quences in the range [1,n — 1] For suppose [ral,[s( are the
largest elements of the two sequences in this range. Then

ra<n<(r+1l)a, sB<n<(s+1)3,

e
n n
r<—<r4+1,s<-=<s+1.
o &
Adding,
r+s<n<r+s-+2.
Hence

r+s=n-—1.

Since the elements of the sequences in the range are all
different, it follows that every number in the range appears
in one sequence or the other; and so this is true for all
positive integers.

. Find all pairs of distinctive positive rationals x, y such that

¥ =y".
Answer: Suppose
b
T = %,y == with ged(a,b,d) = 1.

We may assume that a > b. (If a = b then x = y.
Raising the equation to the dth power,

(a/d)" = (b/d)".
Multiplying by d°*?,
a’d® = bd".

Hence
a’d* " =b".



Fvidently b > 1 (sinceb=1 = a=1). So ged(a,d) =1
(since otherwise ged(a,b,d) > 1). It follows that b splits
into coprime factors b = biby with

a’ =be, d70 = 1.
Let
ged(a,b) = e, a=-cd,b=el, ged(d,b) = 1.
Note that if gcd(m,n) =1 then
a"=b" = a=c",b="

for some ¢ € N.
Thus

Now

Thus

ua/—b’ Ua/—b/

a=1u b1 =u

Let

/ /

a —b =n.
Then

a=u",b=u"v",d=v",d =u",b =0v".

Thus

But if n > 2 then
n=u"—v">@wW+1"=v">n""!>n.
Hence

n=1;



and so
u—v=1.

Thus
d =v+1,V =v,e=(v+1)"a = (v+1)"", b= (v+1)"v,d = "
It seems that

a v+ 1\ b v+ 1\"

x _ — = _ - =
d v Y=y v ’

does indeed give the general solution to the identity

x¥ =y”.

As an example, if we take v = 2 then

v =(3/2)% y=(3/2)",

and
" =(3/2)° =y,

so that

2 = g
and

b/ — gyl

e

¥ =y”.

[As a particular case, we see that if x,y are integers then
d=1 = v=1u=2,

with just one solution

that 1s,



5. Show that if a, b, ¢ are positive real numbers then

[(a+b)(b+c)(c+a)]'/* > i(ab + be + ca)'/?,

V3

Answer:

. Bob and Alice arrange to meet between 1pm and 2pm.
Each agrees to wait just 15 minutes for the other. What is
the probability that they meet?

It

Answer:
1000 1’s
N =111...1,

what is the 1000th digit after the decimal point of v/ N?

Answer: We have

N 101000 -1
- 9 )
Thus
101000 -1
N AL
3
10500 1 1/2
- 3 <1 - 101000)
10590 1 1 3 1

=73 (1‘§W+zw+-“)-
So

10°0 1 1 1 1
\/N: 3 _610500+1101500+"'

10900 1 1
VN =5~ Gigm €

where 0 < € < 1/10%, Thus

500 0’s
VN =33...33333---—0.00...001666--- + ¢

500 3’s
=33...33.33...331666--- 4 €.

Thus the 1000th digit after the decimal point is 6.



8. Show that a continuous function f : [0,1] — [0, 1] must
leave at least one point fixed: f(z) = .

Answer: We have

0< f(0), f(1) <1

Let
S={xel0,1]:t < f(t) for0 <t <z}

Then S 1is not empty, since 0 € S. Let X be the upper
bound of S. Then
F(X) = X.

For by the continuity of f(x), if f(X) > X then
flz) > X >z

for xin(X — €, X|, contradicting the definition of X; and
similarly if f(X) < X then

flo) < X <z
for xin| X, X +¢€). again contradicting the definition of X.

9. Determine
o0

1
Zn2+1'

n=1

Answer: This question was a bit of a cheat, as it requires
some simple complex analysis, which is probably not allowed
in competition problems.

But the idea is interesting and useful, and often not cov-
ered in courses on complexr analysis, so it is worth looking
at. It really only requires knowledge of Cauchy’s Residue
Theorem.

I shall prove the more general result: Suppose

p(2)
flz) =22
) q(2)
is a rational function (where p(z),q(z) are polynomials),
with

degq(z) > degp(z) + 2;



and suppose f(z) has poles at zy, . . ., z,, with residues i, ...,y
Then

i f(n) = 2ir? i cot(mzy)ry.
—00 k=1

Before proving the theorem, let us apply it to our problem.
The function

1 i1 1
f@)_1+z2_§(z—i_z+¢)

has poles at z = +i with residues +i/2. Since

COS 2 e?? + 1
t = = 1—
cot(2) sinz et 1
we have 2
e +
t(+mi) = Fi :
cot(£mi) Figr
Hence
ié 1 w41
Lap2+1 21
Thus
= 1 1 1
= — —1
_Lfemal 1
2 \e?m -1 e -1
Turning to the theorem, the importance of
cot(mz) = C,OS(WZ)
sin(7z)

18 that it 1s periodic with period 1, and has a stmple pole with
residue 1/m at z = 0, and therefore at each point z =n € Z.
These are the only poles of cot(nz), since

ITZ —ITZ
— €

2

e

sin(mz) = =0 <= "™ =1 z=ncZ

It follows that
F(z) = cot(nz) f(z)



has a simple pole with residue f(n)/m at each integer point
z=mn. (It also has poles of course at the poles of f(z).)

Thus if we draw a large circle ' = T'(N) with radius N+1/2
about the origin (we add the 1/2 to make sure we miss a
pole) then

](N):/F(N)cothf(z)dz: Z T+E,

where
n

¥ = 2mi Z rif(2;) cot(mz;),
j=1
summed over the residues of f(z).
It is not difficult to see that cot(nz) is bounded away from

the poles, let us say apart from a disk radius 1/4 around
each integer point. For

1 + 6—2772'2 e?ﬂ'iz + 1

cot(mz) = 1 _ o—2miz  g2miz _ |’
S0
}em'z‘ >9 ‘e—mz‘ < ! —> |cot(mz)| < /4 <6
= = 9 3/4 ’
and similarly
| 1 4
}e—mz} >92 = ‘emz| < 5 — |COt(7TZ)‘ < 3//4 < 6.

But if z = x + 1y then

ﬂ'iZ’ — e ™

e

S0
’emz‘ < 2 and |emz} <2 = |yl < 1.

Thus by the periodicity of cot(mz) we need only consider the
compact region

1
{(z,y) : |2] <1/2, |y| < 1;2° +y* > i



where cot(mz) is evidently bounded; so
lcot(mz)| < C

provided |z —n| > 1/4 for all n € Z (and in particular on
the circles T'(N)).

On the other hand, since degq(z) > degp(z) + 2 it follows
that

for sufficiently large z. Hence

II(N)| < 2r(N +1/2)CC" /(N +1/2)%;

and so
I(N) — 0 as N — oc.
Thus
N
Z f(n) ¥
T

n=—N

e

> f(n) =7
As an addendum, let us see how to compute
>
2
n=1 n

by this method.

In this case we have to modify the argument slightly, since
f(z) = 1/2% has a pole at z = 0. We must compute the
residue of

f(2) cot(mz)
at z = 0.



10.

Since

t(r2) cos(mz 1—m222/20 4 -
cot(mz) = -
sin(7z) mz— 33 /3l + -
11—/
Comzl —m222/30 4 -
1
= —(1—722*/2)(1 + 7%2%/3!) + O(zY)
Tz
1
= —(1—722%/3)+ O(z*
L1 3) + 0,

it follows that

1 78

f(z)cot(nz) = — — — + O(2).

w23 3z

Thus f(z)cot(mwz) has residue —m/3 at z = 0. Our argu-
ment gives

2 e 1
=N — —7x/3=0
ngm /3 =0,

1€
> -
: n B
Determine det A, where A is the n X n matrix with entries
1
aij = .
Ti +Yj

Answer: Let us multiply row i by [[;(zi +y + j), to give
the matrix B where

bij = pj(xi),
with
pi(z) = [[(= +w).
ki
and
det A = L det B.

D). j(zi +y))



11.

Each polynomial p;(t) is of degree n — 1 in the variables n*
variables x;,y;; so det B is a polynomial of degree n(n—1).

But if x; = xy or (y; = y;y then det B = 0. It follows that
each of the n(n—1) terms (z; —xy) and (y; —y;) is a factor
of det B. Hence

det B = CH(CL‘Z — xy) H(yj —Yjr),

i<i! j<y’
for some constant c.

To compute c, note that if we subtract column 1 from each
of the other columns we get

pj(zi) = pi(xi) = pj(w:) = (y1 — y;)

What is the maximal area of a quadrilateral with sides
1,2,3,47

Answer: Suppose
AB=1,BC=2,CD =3, DA =4.

Suppose A A
DAB =60,BCD = ¢,

The areas of the triangles DAB, BC'D are
% |DA||AB|sinf = 2sin 6, % |BC||C'D|sin ¢ = 3sin ¢.
Thus the area of the quadrilateral is
Y, =2sinf + 3sin ¢
By the cosine rules for these 2 triangles,
BD? = 4?4+ 1% —8cosf = 2> + 3% — 12cos ¢,

1€

8cost) —12cosp = 17 — 13,
e

2cosf — 3cosp = 1.



12.

Squaring and adding,
Y2 417 =22 + 3% 4 12(sin § sin ¢ — cos 6 cos @),
ie
3% = 12(1 + cos(0 + ¢)).
Thus > is mazimized when
cos(f + ¢) =1,
e
0+ ¢=m,

that is, when the quadrilateral is cyclic.
In this case,
Y2 =24,

1e the mazimal area 18
3 = 2v/6.

Can you find an equilateral triangle all of whose vertices
have integer coordinates?

Answer: Identifying the plane with the field of complex
numbers, let the vertices A, B,C of the triangle be repre-
sented by the complex numbers

a,b,cel’,

the ring of gaussian integers.

Then
b—a=w(c—a),
where w = e*27/3
Thus
b—a
w = =x + Yy,
c—a

where x,y € Q.



13.

14.

Given any two polynomials f(t), g(t), show that there exists
a non-zero polynomial F(x,y) such that F(f(t),g(t)) =0
identically.

Answer: Suppose the degrees of f(t),g(t) are m,n. Take
the polynomials

fO(0<i<rn), gty (0<j<rm),

where r 1s an integer yet to be chosen; and consider the
products

f(£)'g(t)y.

mn products, each of degree < 2rmn. The poly-
nomaials of degree < 2rmn form a vector space of dimension
2rmn. So if

There are r2

r’mn > 2rmn,

1€
r> 2,

then the products f(t)'g(t)’ must be linearly dependent over
the base field, say

Z Clz‘,jf(t)ig(t)j =0,

1€

where
F(z,y) = Z a;z'y’.
Y]
Show that the equation
oy’ =2’ 44
has no integer solutions.

Answer: Ifpis an odd prime then (Z/p)* is a cyclic group
Cp_1. It follows that if 5 | p — 1 then there are just (p —



1)/5 ‘quintic residues’ modp. For example, there are just
2 such residues modl1l, and evidently these must be +1.

Accordingly, if there is a solution then
2= -3 or —5mod 11,
e
2* =8 or 6 mod 11.

The quadratic residues mod11 are
12=1,22=4,3=9,4*=5,5>=3.

So 6 and 8 are both quadratic non-residues, and the equa-
tion has no solution.

[The next modulus we could have chosen would be 31, with
6 quintic residues. It is unlikely that none of these is 4 plus
one of the 15 quadratic residues.]

15. Show that there exists a real number a such that the frac-
tional part of a” lies between 1/3 and 2/3 for all positive
integers n.

Challenge Problem

Let h and k be positive integers. Prove that for every e¢ > 0,
there are positive integers m and n such that

e < |hv/m — kv/n| < 2e.

Answer: Although this was a Putnam question, it doesn’t
seem that difficult. The essential point is that if n is large then

Vvn+ 1 is close to \/n.

More precisely, since

f2) = vz = flz) = %

it follows by the Mean Value Theorem that

Vi1 = i = s



where 0 < 6 < 1.

Thus if m > M then
1
VM+1—-—VM< ——.
2v/ M

So if set

>

M1/2 Z v

€
then

m>M = hvm+1—hym <e.

Now let us choose N so that
WM — kvVN < 0:;

and let us successively set m = M, M +1, M +2,....
Then
f(m) = hy/m — kvV/N

starts negative, and increases by < € at each step, but tending
ultimately to oco. It follows that

f(m) € (e, 2e)

for some m.



