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Attempt 5 questions. All carry the same mark.
. Determine d = ged(2009,2317), and find integers m,n such that
2009m + 2317n = d.

Answer:
(a) Following the Euclidean Algorithm,

2317 = 2009 + 308,
2009 = 308 - 6 + 161,
308 = 161 -2 — 14,
161 =14-11+7,

14=7-2

It follows that
d = ged(2009,2317) = 7.

(b) Wording backwards,

7=161—14-11
=161 — (161 -2 — 308) - 11
=308 11 — 161 - 21
— 308 - 11 — (2009 — 308 - 6) - 21
— 308 - 137 — 2009 - 21
— (2317 — 2009) - 137 — 2009 - 21
— 2317 - 137 — 2009 - 158.

Thus
2009 - —158 +2317-137 = 1.



2. Find the smallest positive multiple of 2009 ending in the digits 001, or
else show that there is no such multiple.

Answer: We are trying to solve the congruence

2009n = 1 mod 1000,
1€
9n = 1 mod 1000.

Since
9.111 =999 = —1 mod 1000

it follows that
= —111 mod 1000.

O =

Multiplying the congruence by 1/9 mod 1000,
n = —111 mod 1000,
e
n = —111+ 1000¢.

Thus the smallest positive solution is

n = —111 + 1000 = 889.

3. Define Euler’s totient function ¢(n), and show that if a is coprime to
n then
a®™ =1 mod n.

Determine the smallest power of 2317 ending in the digits 001.

Answer:

(a) ¢(n) is the number of integers a € [0,n) coprime to n.



(b) Let (Z/n)* denote the set of residues mod n coprime to n.

Then (Z/n)" forms a group under multiplication mod n, with
neutral element 1 mod n.

Forifa,b are coprime ton then so is ab. Moreover, if a is coprime
to n then the map

xw—ax: (Z/n)" — (Z/n)*
18 1njective, since

ar =ay modn = a(z —y) =0 modn
— r—y=0modn
= r =y mod n.

Hence the map s surjective, and so a has an inverse b mod n
with
ab =1 mod n.

It follows that (Z/n)* is a group.
By definition, the group is of order ¢p(n). It follows by Lagrange’s

Theorem that
o(n) —q

g
for all g € (Z/n)*, ie
a®™ =1 mod n

for all a coprime to n.

(c) We are trying to solve the congruence

2317" = 1 mod 1000,
1€
317" = 1 mod 1000.

By the Chinese Remainder Theorem, this is equivalent to

317" =1 mod 8 and 317" = 1 mod 125.

The first congruence reduces to

5" =1 mod 8.



Since
5?2 =1 mod 8,
the congruence holds if and only if n is even.

The second congruence reduces to

67" = 1 mod 125.

Thus we have to determine the order of 67 in the group (Z/125)*.
This group has order

$(125) = 5° — 52 = 100,

since there are just 125/5 = 25 numbers in [0,125) divisible by 5.
It follows that the order of 67 mod 125 divides 100.

Since
67 =2 mod 5

and the order of 2 mod 5 is 4, it follows that the order of 67 mod
125 is divisible by 4. Hence it is 4,20 or 100.
A computer can determine a™ mod m wvery quickly, even if the
numbers are large. The standard way is to express n to base 2, ie
as a sum

n=2"+2242% 4 ...
and then successively square a mod m.

But we don’t have a computer. I don’t know a better way to answer
the question than to play with modular arithmetic.

Let us first work out the order mod 25, which we know s either
4 or 20.

We have
67 =17 = —8 mod 25.

So
67* = (—8)* = 2'? mod 25.

Now if we play with computers we know that
210 = 1024.

Hence
212 — 4096 = —4 mod 25.

So 67 must have order 20 mod 25. Thus 67 has order 20 or 100
mod 125.



We have
67 =3-5% —23.

By the binomaial theorem
67° = —2'° mod 53,

since the other terms in the binomial expansion will all contain 5
to at least the power 3.

It follows that
67%° = 299 mod 5.
If now 67 has order 20 then the order of 2 divides 60, and so must
be 5 or 20 (since it also divides ¢(125) = 100).
The order of 2 mod 125 is certainly not 5, since 2° = 32.

So if the order of 67 is 20 then so is the order of 2. Conversely,
if the order of 2 is 20 then so is the order of 67.

Thus the problem s reduced to determining the order of 2 mod
125.

We have
210 — 1024 = 24 mod 125.

Thus

220 =24 =4-144 =4 -19 = 76 mod 125.
We conclude that 20 has order 100, and so too has 67.
Thus the smallest power of 2317 ending in 001 is 100.

[Nb There are many ways of completing the last part of the ques-
tion; I've just given the first that occurs to me, to show how one
can play modular arithmetic.]

4. Explain what is meant by a primitive root modulo an odd prime p. and
find all primitive roots mod 19.

Answer:

(a) The multiplicative group (Z/p)* is cyclic. A primitive root modp
1s a generator of this group, ie a number coprime to p of order
(p— 1) mod p.

(b) Since (Z/19)* has order 18, the order of any number coprime to
19 dwvides 18, ie the order is 1,2,3,6,9 or 18.

Consider 2. Fvidently 2° # 1 mod 19 for e =1,2,3. We have

26 = 64 = 7 mod 19,



and so
29 =923.925 =8 mod 7= 56= —1 mod 19.

It follows that the order of 2 mod 19 is 18, ie 2 is a primitive root.

Lemma. If G = (g) is a finite group of order n generated by ¢
then ¢° is a generator of GG if and only if ged(e,n) = 1.

It follows that there are
$(18) = ¢(2)6(3%) = 6
primaitive roots mod19, namely
2¢° (e=1,5,7,11,13,17).

Since
2! = 1 mod 19,

we can write these as
41 oE5 ok7
2=, 272 27",

Now

2° =32 = —4 mod 19,

2" =4.2° = —16 = 3 mod 19.
Since

271 = 10 mod 19,
471 = 5 mod 19,
371 = —6mod 19

we see that the primitive roots mod19 are
2,3,5,10,13,14.
5. Show that if d > 0 is not a perfect square then Pell’s equation
2 —dy? =1

has an infinity of integer solutions.

Does the equation
22— 5yt =—1

have an integer solution?

Answer:



(a) Lemma. Given o € R there are an infinity of approximants
such that

Applying this with & = \/d we see that there are an infinity of
p,q € Z such that

1

But then 1
‘qx/aan) < 2q\/a+ 5

Multiplying these two inequalities,
1
’(q\/Eer)(Q\/Eer)‘ = |p? — d¢?| < 2Vd + 7

It follows that are an infinity of p,q such that
p* —dg* = £N,

for some N < 2v/d + 1. (We mean either an infinity such that
p? —dq* = N, or else an infinity such that p* —dq®> = —N.)
Also, among this infinity of solutions there must be an infinite
number such that

p=rmod N, ¢ =smod N

for some r,s € [0, N).
Suppose (p,q), (P, Q) are two such solutions. Let

p+qVd
- PTavVe _ d
z P—i—Q\/E x+y\/_,
with z,y € Q. Then
 Np+aeVd
NE = NP v ova
N
- N

—_

Y



1e
22— dy* = 1.

We shall show that in fact

x,y € L.
We have
~ (p+qVd)(P—QVd)
B P2 —dQ?
L V(P -QVa)
N
_ (PP = qQd) + (—pQ + qP)Vd
N ?
m —+ n\/c_l
N
say.
Now

p=P q¢g=0Q = n=—-pQ+qP =0mod N.

Also
m+nVd = (p+qVd)(P — QVd),
and so
N(m+nVd) = N(p + qVd) N (P — QVd)

e

m? — dn* = N?
Hence

N|in = N|m
Thus

x:NEZ, y_NEZ,

giving an integral solution of

22— dy* = 1.



(b)

The equation
x? — 5yt = —1

has the obvious solution

22 _5.12 = —1.

6. Express each of the following numbers as a sum of two squares, or else
show that the number cannot be expressed in this way:

23, 101, 2009, 2010, 2317.

Answer: Lemma. The integer n > 0 is expressible as a sum of 2
squares if and only if each prime p = 3 mod 4 divides n to an even
power.

(a)
(b)

23 1s prime, and 23 = 3 mod 4. Hence it is not expressible as a
sum of 2 squares.

101 1is prime, and 101 = 1 mod 4. Hence it is expressible as a sum
of 2 squares; and trivially

101 = 10° + 12,
We see that

2009 = 7- 287 = 7% - 41.

Since each prime = 3 mod 4 divides 2009 to an even power, it
must be expressible as the sum of two squares:

2009 = a® + b*.
Moreover

71 a,b;

for if 7 divides one it must divide other, and if 7 divides neither
then

a®,b*=1,2 or 4 mod 7,
and these cannot add to 0 mod 7.

[This also follows from the fact that ring I' of gaussian integers is
a unique factorisation domain, in which 7 is a prime, so that

7] a®+b* = (a+ib)(a—ib) = 7| (a+ib) or 7| (a—ib)
= 7]a,b.



In fact this argument shows that if p = 3 mod 4 and p*® exactly
divides n, ie p* | n but p***1 {n, then

n=a+b = p°|a,b.]

Thus
a="Tc, b="Td,
with
A+ d* = 41.
Evidently
41 = 5% 4 47,
and so

2009 = 352 + 282,

(d) Since the digits of 2010 add up to 3, it is divisible by 3 but not
by 9. Hence 3 divides 2010 to an odd power, and so 2010 is not
expressible as a sum of two squares.

(e) Since
2317 =7- 331,

and

74331,

7 occurs to the first power, and so 2317 is not expressible as a sum
of two squares.

7. Show that if the prime p satisfies p = 3 mod 4 then
M=2r—-1
is prime if and only if
»* = —1 mod M,

where ¢ = (/5 +1)/2.
Answer: Suppose M is prime. Then

o - (T,



Ezxpanding by the binomial theorem, and moting that all the binomial
coefficients except the first and last are divisible by M,

(V5 +1)M

M _
o=
IRV
=——mod M
oM
5(M-1)/2
= V5t mod M
oM
By Fermat’s Little Theorem,
oM =2 mod M.

Also, by Eisenstein’s criterion,

5(M-1)/2 — (%) mod M.

By Gauss’ Quadratic Reciprocity Law,

SY o (M
M) \5)
But since p = 3 mod 4, and 2* = 1 mod 5,

2P = 23 = 3 mod 5,

and so

M =27 —1=2mod 5.
Hence

5M-1)/2 = _1 mod M.
Thus

— 1
oM = % mod M
=—¢ L.
It follows that

¥ = M = (-1 = —1 mod M.



Conversely, suppose that this is the case, and suppose M is composite.
Since
M = 2 mod 5,

M has a prime factor
P = +2 mod 5;

and
»* = —1 mod P.

Now P does not split in the ring Z|¢] (the ring of integers in the field
Q(V5)). Forif it did, say

(a+b9) | P,
where a,b € Z. Then
N(a+bp) = (a+bo)(a+ bp) = a* + ab — b
divides N'(P) = P2, and in particular
a®+ab—b*> =0 mod P.

Multiplying by 4,
(2a — b)* — 5b = 0 mod P.

It follows that 5 is a quadratic residue mod P. But
5 P
o — —_ — —]_
3)-()-—

Hence P remains prime in the ring Z[¢|, and so

F =Z[¢]/(P)

is a field, containing P* elements (represented by a + b, where a,b €
[0, P)).

Thus

since P = 42 mod 5.

F* = (Z[¢]/P)
is a group of order P2 —1.

It follows by Lagrange’s Theorem that the order of ¢ mod P divides
P2 —1.



On the other hand, it follows from
»* = —1 mod P

that the order of ¢ mod P is 2PT1,

(For
¢2p+1 — (¢2p)2 =1 mod P,

so the order divides 2P™', but does not divide 2P.)

Hence
2Pt p? — 1,

But that is impossible, since

P2 -1 < M? < ort!,

We conclude that M s prime.

. Show that the ring Z[v/2] formed by the numbers m 4 nv/2 (m,n € Z)
is a Unique Factorisation Domain, and determine the units and primes
in this domain.

Answer:

(a) Lemma. The norm
N +yv2) =2 -2 (1,y€Q)
is multiplicative, ie if z,w € Q[v/2] then

N(wz) = N(w) N(z).

Now suppose u,v € Z[/2]. Let
u
— =+ y\/§7
v

with x,y € Q. Choose m,n so that

1
— — < —,

Let
q= m+nv2.



Then

Hence

u

N (5 - q> = (z—m)?—2(y —n)* € [~1/2,1/4].

In particular

u

V(G )<L

and so
IV (u—qu)| < |N(v)],
1€
u=qu+r,

with

V()| < [N (V)]

This allows us to compute ged(u,v) for any 2 elements u,v €
Z[\/2], using the Euclidean Algorithm:

u=qv+nry,
V= @oT1 + T2,

r1 = q3ro + 73,

"m—1 = dm+1Tm,

with
IN ()| > [N (r2)] > [N (rs)] > - .

The process must end, since the |N(r)| are decreasing positive
integers; and we have

ged(u, v) = .
Also, working backwards, we can find x,y € Z[\/2] such that
ux + vy = ged(u, v).

From this, we deduce the analogue of FEuclid’s Lemma: If m €
Z[\/2] is irreducible then

T|luw = 7w|uorm|uv,



(b)

for u,v € Z[\/2].
Lemma. The element € € Z[1/2] is a unit, ie is invertible in this
ring, if and only if

N(e) = £1.

Any non-unit u € Z[\/2] is expressible as a product of irreducibles.
For

u=wvw = [N(u)| = N ()] |N(w)]
with
V@), N (w)] <IN ()],
so the factorisation must end after a finite number of divisions.

Finally, it follows easily from FEuclid’s Lemma that the factorisa-
tion is unique, up to order and multiplication by units.

From the Lemma above, w = m + n/2 is a unit if and only if
m® —2n® = +1.
One solution to this is

12-2.12=-1

Y

giving the unit

n=1+ V2.
In fact the units consist of the numbers
+n",
where n € Z.. For suppose € is a unit # +1. Then the 4 units
+e, +e !

lie in the 4 regions (—oo, —1),(—1,0),(0,1), (1, c0).
We may suppose therefore that ¢ > 1. Since n > 1, we can find
n > 0 such that

n"<e<n"t

Let

Then



Suppose
0 =m+nv2.

Then
N(0) = (m +nV2)(m — nV2) = £1.
It follows that
m—nv2 € [-1,1].

Hence, by addition,
0<2m<n+1=2++2<4,
1€
m =0 or 1.

It follows that
0=1,

and so the primes are just the numbers

0" (n € Z).
Suppose

T=m+nV2
is a prime in Z[\/2], ie a non-unit irreducible.
Let

N(m)==%p1---pr.

Then since there is unique factorisation,

™| p
for some rational prime p = p;.
Suppose
p =70
Then

Thus either



In the second case,
N(m) =m? —2n? = 0 mod p,

and so 2 1s a quadratic residue mod p. But we know that if p s
an odd prime then

<2> _J1 difp=+1mod8
p) |-1 ifp=+3mods8
Thus p remains a prime if p = £3 mod 8.

If p= 41 mod 8 then 2 is a quadratic residue, so
2 = o mod p,
for some a, ie
pla® —2=(a —V2)(a + V?2).
If p remains a prime Z[\/2] then (since there is unique factorisa-

tion)
pla-v3orp|atva,

either of which implies that p | 1, which is absurd.
Hence p splits in Z[\/2] if p= £1 mod 8. Also

T|p = N(m)==p,

so p splits into two prime factors, m and ® (or the associated
prime, —T.
Could m and 7 be associated, ie

T =e€n?
In that case
p| 7%= (m+nv2)? = (m?+ 2n?) + 2mnv/2.

It follows that
p|m*+2n2 p|2mn.

Since p is odd, this implies that

p|lmmn = p|m,



which 1s absurd.
Finally,
2= <\/§)27
ie 2 splits into two equal primes (or ramifies).

In summary: 2 splits into two equal primes in Z[\/2], while the
rational primes p = 4+3 mod 8 remain prime, and the rational
primes p = +1 mod 8 split into 2 distinct primes. Moreover these
give all the primes in Z[v/2].



