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Attempt 5 questions. All carry the same mark.

1. Determine d = gcd(2009, 2317), and find integers m,n such that

2009m+ 2317n = d.

Answer:

(a) Following the Euclidean Algorithm,

2317 = 2009 + 308,

2009 = 308 · 6 + 161,

308 = 161 · 2− 14,

161 = 14 · 11 + 7,

14 = 7 · 2.

It follows that
d = gcd(2009, 2317) = 7.

(b) Wording backwards,

7 = 161− 14 · 11

= 161− (161 · 2− 308) · 11

= 308 · 11− 161 · 21

= 308 · 11− (2009− 308 · 6) · 21

= 308 · 137− 2009 · 21

= (2317− 2009) · 137− 2009 · 21

= 2317 · 137− 2009 · 158.

Thus
2009 · −158 + 2317 · 137 = 7.



2. Find the smallest positive multiple of 2009 ending in the digits 001, or
else show that there is no such multiple.

Answer: We are trying to solve the congruence

2009n ≡ 1 mod 1000,

ie

9n ≡ 1 mod 1000.

Since
9 · 111 = 999 ≡ −1 mod 1000

it follows that
1

9
≡ −111 mod 1000.

Multiplying the congruence by 1/9 mod 1000,

n ≡ −111 mod 1000,

ie

n = −111 + 1000t.

Thus the smallest positive solution is

n = −111 + 1000 = 889.

3. Define Euler’s totient function φ(n), and show that if a is coprime to
n then

aφ(n) ≡ 1 mod n.

Determine the smallest power of 2317 ending in the digits 001.

Answer:

(a) φ(n) is the number of integers a ∈ [0, n) coprime to n.



(b) Let (Z/n)∗ denote the set of residues mod n coprime to n.

Then (Z/n)n forms a group under multiplication mod n, with
neutral element 1 mod n.

For if a, b are coprime to n then so is ab. Moreover, if a is coprime
to n then the map

x 7→ ax : (Z/n)∗ → (Z/n)∗

is injective, since

ax ≡ ay mod n =⇒ a(x− y) ≡ 0 mod n

=⇒ x− y ≡ 0 mod n

=⇒ x ≡ y mod n.

Hence the map is surjective, and so a has an inverse b mod n
with

ab ≡ 1 mod n.

It follows that (Z/n)∗ is a group.

By definition, the group is of order φ(n). It follows by Lagrange’s
Theorem that

gφ(n) = 1

for all g ∈ (Z/n)∗, ie

aφ(n) ≡ 1 mod n

for all a coprime to n.

(c) We are trying to solve the congruence

2317n ≡ 1 mod 1000,

ie

317n ≡ 1 mod 1000.

By the Chinese Remainder Theorem, this is equivalent to

317n ≡ 1 mod 8 and 317n ≡ 1 mod 125.

The first congruence reduces to

5n ≡ 1 mod 8.



Since
52 ≡ 1 mod 8,

the congruence holds if and only if n is even.

The second congruence reduces to

67n ≡ 1 mod 125.

Thus we have to determine the order of 67 in the group (Z/125)∗.
This group has order

φ(125) = 53 − 52 = 100,

since there are just 125/5 = 25 numbers in [0, 125) divisible by 5.

It follows that the order of 67 mod 125 divides 100.

Since
67 ≡ 2 mod 5

and the order of 2 mod 5 is 4, it follows that the order of 67 mod
125 is divisible by 4. Hence it is 4,20 or 100.

A computer can determine an mod m very quickly, even if the
numbers are large. The standard way is to express n to base 2, ie
as a sum

n = 2e1 + 2e2 + 2e3 + · · · ,
and then successively square a mod m.

But we don’t have a computer. I don’t know a better way to answer
the question than to play with modular arithmetic.

Let us first work out the order mod 25, which we know is either
4 or 20.

We have
67 ≡ 17 ≡ −8 mod 25.

So
674 ≡ (−8)4 ≡ 212 mod 25.

Now if we play with computers we know that

210 = 1024.

Hence
212 = 4096 ≡ −4 mod 25.

So 67 must have order 20 mod 25. Thus 67 has order 20 or 100
mod 125.



We have
67 = 3 · 52 − 23.

By the binomial theorem

675 ≡ −215 mod 53,

since the other terms in the binomial expansion will all contain 5
to at least the power 3.

It follows that
6720 ≡ 260 mod 53.

If now 67 has order 20 then the order of 2 divides 60, and so must
be 5 or 20 (since it also divides φ(125) = 100).

The order of 2 mod 125 is certainly not 5, since 25 = 32.

So if the order of 67 is 20 then so is the order of 2. Conversely,
if the order of 2 is 20 then so is the order of 67.

Thus the problem is reduced to determining the order of 2 mod
125.

We have
210 = 1024 ≡ 24 mod 125.

Thus
220 ≡ 242 = 4 · 144 ≡ 4 · 19 = 76 mod 125.

We conclude that 20 has order 100, and so too has 67.

Thus the smallest power of 2317 ending in 001 is 100.

[Nb There are many ways of completing the last part of the ques-
tion; I’ve just given the first that occurs to me, to show how one
can play modular arithmetic.]

4. Explain what is meant by a primitive root modulo an odd prime p. and
find all primitive roots mod 19.

Answer:

(a) The multiplicative group (Z/p)∗ is cyclic. A primitive root modp
is a generator of this group, ie a number coprime to p of order
(p− 1) mod p.

(b) Since (Z/19)∗ has order 18, the order of any number coprime to
19 divides 18, ie the order is 1,2,3,6,9 or 18.

Consider 2. Evidently 2e 6≡ 1 mod 19 for e = 1, 2, 3. We have

26 = 64 ≡ 7 mod 19,



and so
29 = 23 · 26 ≡ 8 mod 7 = 56 ≡ −1 mod 19.

It follows that the order of 2 mod 19 is 18, ie 2 is a primitive root.

Lemma. If G = 〈g〉 is a finite group of order n generated by g
then ge is a generator of G if and only if gcd(e, n) = 1.

It follows that there are

φ(18) = φ(2)φ(32) = 6

primitive roots mod19, namely

2e (e = 1, 5, 7, 11, 13, 17).

Since
218 ≡ 1 mod 19,

we can write these as
2±1, 2±5, 2±7.

Now

25 = 32 ≡ −4 mod 19,

27 = 4 · 25 ≡ −16 ≡ 3 mod 19.

Since

2−1 ≡ 10 mod 19,

4−1 ≡ 5 mod 19,

3−1 ≡ −6 mod 19

we see that the primitive roots mod19 are

2, 3, 5, 10, 13, 14.

5. Show that if d > 0 is not a perfect square then Pell’s equation

x2 − dy2 = 1

has an infinity of integer solutions.

Does the equation
x2 − 5y2 = −1

have an integer solution?

Answer:



(a) Lemma. Given α ∈ R there are an infinity of approximants
such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

Applying this with α =
√
d we see that there are an infinity of

p, q ∈ Z such that ∣∣∣q√d− p∣∣∣ < 1

q
.

But then ∣∣∣q√d+ p
∣∣∣ < 2q

√
d+

1

q
.

Multiplying these two inequalities,∣∣∣(q√d+ p)(q
√
d+ p)

∣∣∣ =
∣∣p2 − dq2∣∣ < 2

√
d+

1

q2
.

It follows that are an infinity of p, q such that

p2 − dq2 = ±N,

for some N < 2
√
d + 1. (We mean either an infinity such that

p2 − dq2 = N , or else an infinity such that p2 − dq2 = −N .)

Also, among this infinity of solutions there must be an infinite
number such that

p ≡ r mod N, q ≡ s mod N

for some r, s ∈ [0, N).

Suppose (p, q), (P,Q) are two such solutions. Let

z =
p+ q

√
d

P +Q
√
d

= x+ y
√
d,

with x, y ∈ Q. Then

N (z) =
N (p+ q

√
d

N (P +Q
√
d

=
N

N
= 1,



ie
x2 − dy2 = 1.

We shall show that in fact

x, y ∈ Z.

We have

z =
(p+ q

√
d)(P −Q

√
d)

P 2 − dQ2

= ±(p+ q
√
d)(P −Q

√
d)

N

= ±(pP − qQd) + (−pQ+ qP )
√
d

N
,

= ±m+ n
√
d

N
,

say.

Now

p ≡ P, q ≡ Q =⇒ n = −pQ+ qP ≡ 0 mod N.

Also
m+ n

√
d = (p+ q

√
d)(P −Q

√
d),

and so

N (m+ n
√
d) = N (p+ q

√
d)N (P −Q

√
d)

ie

m2 − dn2 = N2.

Hence
N | n =⇒ N | m.

Thus
x =

m

N
∈ Z, y =

n

N
∈ Z,

giving an integral solution of

x2 − dy2 = 1.



(b) The equation
x2 − 5y2 = −1

has the obvious solution

22 − 5 · 12 = −1.

6. Express each of the following numbers as a sum of two squares, or else
show that the number cannot be expressed in this way:

23, 101, 2009, 2010, 2317.

Answer: Lemma. The integer n > 0 is expressible as a sum of 2
squares if and only if each prime p ≡ 3 mod 4 divides n to an even
power.

(a) 23 is prime, and 23 ≡ 3 mod 4. Hence it is not expressible as a
sum of 2 squares.

(b) 101 is prime, and 101 ≡ 1 mod 4. Hence it is expressible as a sum
of 2 squares; and trivially

101 = 102 + 12.

(c) We see that
2009 = 7 · 287 = 72 · 41.

Since each prime ≡ 3 mod 4 divides 2009 to an even power, it
must be expressible as the sum of two squares:

2009 = a2 + b2.

Moreover
7 | a, b;

for if 7 divides one it must divide other, and if 7 divides neither
then

a2, b2 ≡ 1, 2 or 4 mod 7,

and these cannot add to 0 mod 7.

[This also follows from the fact that ring Γ of gaussian integers is
a unique factorisation domain, in which 7 is a prime, so that

7 | a2 + b2 = (a+ ib)(a− ib) =⇒ 7 | (a+ ib) or 7 | (a− ib)
=⇒ 7 | a, b.



In fact this argument shows that if p ≡ 3 mod 4 and p2e exactly
divides n, ie p2e | n but p2e+1 - n, then

n = a2 + b2 =⇒ pe | a, b. ]

Thus
a = 7c, b = 7d,

with
c2 + d2 = 41.

Evidently
41 = 52 + 42,

and so
2009 = 352 + 282.

(d) Since the digits of 2010 add up to 3, it is divisible by 3 but not
by 9. Hence 3 divides 2010 to an odd power, and so 2010 is not
expressible as a sum of two squares.

(e) Since
2317 = 7 · 331,

and
7 - 331,

7 occurs to the first power, and so 2317 is not expressible as a sum
of two squares.

7. Show that if the prime p satisfies p ≡ 3 mod 4 then

M = 2p − 1

is prime if and only if

φ2p ≡ −1 mod M,

where φ = (
√

5 + 1)/2.

Answer: Suppose M is prime. Then

φM =
(
√

5 + 1)M

2M
.



Expanding by the binomial theorem, and noting that all the binomial
coefficients except the first and last are divisible by M ,

φM =
(
√

5 + 1)M

2M

≡
√

5
M

+ 1

2M
mod M

≡ 5(M−1)/2
√

5 + 1

2M
mod M

By Fermat’s Little Theorem,

2M ≡ 2 mod M.

Also, by Eisenstein’s criterion,

5(M−1)/2 ≡
(

5

M

)
mod M.

By Gauss’ Quadratic Reciprocity Law,(
5

M

)
=

(
M

5

)
.

But since p ≡ 3 mod 4, and 24 ≡ 1 mod 5,

2p ≡ 23 ≡ 3 mod 5,

and so
M = 2p − 1 ≡ 2 mod 5.

Hence
5(M−1)/2 ≡ −1 mod M.

Thus

φM ≡ −
√

5 + 1

2
mod M

= −φ−1.

It follows that

φ2p = φM+1 ≡ (−φ−1)φ = −1 mod M.



Conversely, suppose that this is the case, and suppose M is composite.
Since

M ≡ 2 mod 5,

M has a prime factor
P ≡ ±2 mod 5;

and
φ2p ≡ −1 mod P.

Now P does not split in the ring Z[φ] (the ring of integers in the field
Q(
√

5)). For if it did, say

(a+ bφ) | P,

where a, b ∈ Z. Then

N (a+ bφ) = (a+ bφ)(a+ bφ̄) = a2 + ab− b2

divides N (P ) = P 2, and in particular

a2 + ab− b2 ≡ 0 mod P.

Multiplying by 4,
(2a− b)2 − 5b2 ≡ 0 mod P.

It follows that 5 is a quadratic residue mod P . But(
5

P

)
=

(
P

5

)
= −1,

since P ≡ ±2 mod 5.

Hence P remains prime in the ring Z[φ], and so

F = Z[φ]/(P )

is a field, containing P 2 elements (represented by a + bφ, where a, b ∈
[0, P )).

Thus
F ∗ = (Z[φ]/P )∗

is a group of order P 2 − 1.

It follows by Lagrange’s Theorem that the order of φ mod P divides
P 2 − 1.



On the other hand, it follows from

φ2p ≡ −1 mod P

that the order of φ mod P is 2p+1.

(For

φ2p+1

= (φ2p)2 ≡ 1 mod P,

so the order divides 2p+1, but does not divide 2p.)

Hence
2p+1|P 2 − 1.

But that is impossible, since

P 2 − 1 < M2 < 2p+1.

We conclude that M is prime.

8. Show that the ring Z[
√

2] formed by the numbers m+ n
√

2 (m,n ∈ Z)
is a Unique Factorisation Domain, and determine the units and primes
in this domain.

Answer:

(a) Lemma. The norm

N (x+ y
√

2) = x2 − 2y2 (x, y ∈ Q)

is multiplicative, ie if z, w ∈ Q[
√

2] then

N (wz) = N (w)N (z).

Now suppose u, v ∈ Z[
√

2]. Let

u

v
= x+ y

√
2,

with x, y ∈ Q. Choose m,n so that

|x−m| , |y − n| ≤ 1

2
.

Let
q = m+ n

√
2.



Then
u

v
− q = (x−m) + (y − n)

√
2.

Hence

N
(u
v
− q
)

= (x−m)2 − 2(y − n)2 ∈ [−1/2, 1/4].

In particular ∣∣∣N (u
v
− q
)∣∣∣ < 1,

and so
|N (u− qv)| < |N (v)| ,

ie
u = qv + r,

with
|N (r)| < |N (v)| .

This allows us to compute gcd(u, v) for any 2 elements u, v ∈
Z[
√

2], using the Euclidean Algorithm:

u = q1v + r1,

v = q2r1 + r2,

r1 = q3r2 + r3,

· · ·
rm−1 = qm+1rm,

with
|N (r1)| > |N (r2)| > |N (r3)| > · · · .

The process must end, since the |N (r)| are decreasing positive
integers; and we have

gcd(u, v) = rm.

Also, working backwards, we can find x, y ∈ Z[
√

2] such that

ux+ vy = gcd(u, v).

From this, we deduce the analogue of Euclid’s Lemma: If π ∈
Z[
√

2] is irreducible then

π | uv =⇒ π | u or π | v,



for u, v ∈ Z[
√

2].

Lemma. The element ε ∈ Z[
√

2] is a unit, ie is invertible in this
ring, if and only if

N (ε) = ±1.

Any non-unit u ∈ Z[
√

2] is expressible as a product of irreducibles.
For

u = vw =⇒ |N (u)| = |N (v)| |N (w)|

with
|N (v)| , |N (w)| < |N (u)| ,

so the factorisation must end after a finite number of divisions.

Finally, it follows easily from Euclid’s Lemma that the factorisa-
tion is unique, up to order and multiplication by units.

(b) From the Lemma above, u = m+ n
√

2 is a unit if and only if

m2 − 2n2 = ±1.

One solution to this is

12 − 2 · 12 = −1,

giving the unit
η = 1 +

√
2.

In fact the units consist of the numbers

±ηn,

where n ∈ Z. For suppose ε is a unit 6= ±1. Then the 4 units

±ε,±ε−1

lie in the 4 regions (−∞,−1), (−1, 0), (0, 1), (1,∞).

We may suppose therefore that ε > 1. Since η > 1, we can find
n ≥ 0 such that

ηn ≤ ε < ηn+1.

Let
θ = η−nε.

Then
1 ≤ θ < η.



Suppose
θ = m+ n

√
2.

Then

N (θ) = (m+ n
√

2)(m− n
√

2) = ±1.

It follows that
m− n

√
2 ∈ [−1, 1].

Hence, by addition,

0 ≤ 2m < η + 1 = 2 +
√

2 < 4,

ie

m = 0 or 1.

It follows that
θ = 1,

and so the primes are just the numbers

±ηn (n ∈ Z).

(c) Suppose
π = m+ n

√
2

is a prime in Z[
√

2], ie a non-unit irreducible.

Let

N (π) = ±p1 · · · pr.
Then since there is unique factorisation,

π | p

for some rational prime p = pi.

Suppose
p = πσ.

Then

N (π)N (σ) = N (p) = p2.

Thus either
N(σ) = ±1,

in which case σ is a unit, and p remains a prime in Z[
√

2], or else

N (π) = N (σ) = ±p.



In the second case,

N (π) = m2 − 2n2 ≡ 0 mod p,

and so 2 is a quadratic residue mod p. But we know that if p is
an odd prime then(

2

p

)
=

{
1 if p ≡ ±1 mod 8

−1 if p ≡ ±3 mod 8

Thus p remains a prime if p ≡ ±3 mod 8.

If p ≡ ±1 mod 8 then 2 is a quadratic residue, so

2 ≡ a2 mod p,

for some a, ie

p|a2 − 2 = (a−
√

2)(a+
√

2).

If p remains a prime Z[
√

2] then (since there is unique factorisa-
tion)

p | a−
√

2 or p | a+
√

2,

either of which implies that p | 1, which is absurd.

Hence p splits in Z[
√

2] if p ≡ ±1 mod 8. Also

π | p =⇒ N (π) = ±p,

so p splits into two prime factors, π and π̄ (or the associated
prime, −π̄.

Could π and π̄ be associated, ie

π̄ = επ?

In that case

p | π2 = (m+ n
√

2)2 = (m2 + 2n2) + 2mn
√

2.

It follows that
p | m2 + 2n2, p | 2mn.

Since p is odd, this implies that

p | m,n =⇒ p | π,



which is absurd.

Finally,
2 = (

√
2)2,

ie 2 splits into two equal primes (or ramifies).

In summary: 2 splits into two equal primes in Z[
√

2], while the
rational primes p ≡ ±3 mod 8 remain prime, and the rational
primes p ≡ ±1 mod 8 split into 2 distinct primes. Moreover these
give all the primes in Z[

√
2].


