Chapter 15

Q(v/5) and the golden ratio

15.1 The field Q(v/5)

Recall that the quadratic field
Q(V5) = { +yv5 2,y € Q).
Recall too that the conjugate and norm of
zZ=x+ y\/g
are
z=x—yV5 N(2) =22 = 2 — 5>,
We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

oo LT V5
-
The Greek letter ¢ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.
Leonardo da Vinci explicitly used ¢ in analysing the human figure.

Evidently

Q(v5) = Q(¢),

ie each element of the field can be written

c=x+yé (2,y€Q).
The following results are immediate:

Proposition 15.1. 1. ¢ = 12/5;

8. N(x+y¢) =2 +ay — v
4. ¢, ¢ are the roots of the equation

2—r—1=0.
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15.2 The number ring Z[¢]

As we saw in the last Chapter, since 5 = 1 mod 4 the associated number ring

consists of the numbers
m + nvb
2 )

where m = n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field @(\/5)
18
Zlp] = {m+n¢:m,n € Z}.

15.3 Unique Factorisation

Theorem 15.1. The ring Z[¢] is a Unique Factorisation Domain.

Proof. We prove this in exactly the same way that we proved the correspond-
ing result for the gaussian integers I'.

The only slight difference is that the norm can now be negative, so we
must work with |[A(2)].

Lemma 15.1. Given z,w € Z[¢] with w # 0 we can find q,r € Z[p| such

that
Z=qw -+,
with
V()] < [N (w)].
Proof. Let
z
— =+ y¢7
w
where x,y € Q. Let m,n be the nearest integers to x,y, so that
o—ml <5, ly—nl < 3
z-—m| <5, ly—nf <3
Set
q=m-+no.
Then .
——q=(r—m)+(y—n)o.
w
Hence

N =)= (@ —m)+ (= m)(y —n) — (y —n)"

It follows that 1
z
—5 < N(=—-q) <

w

)

N |
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and so

N (z = qu)| < [N (w)].

]

This allows us to apply the euclidean algorithm in Z[¢], and establish

Lemma 15.2. Any two numbers z,w € Z[¢] have a greatest common divisor
0 such that
d]z,w

and
8| z,w = &0

Also, 6 is uniquely defined up to multiplication by a unit.
Moreover, there exists u,v € Z[$] such that

uz +vw = 9.

From this we deduce that irreducibles in Z[¢] are primes.

Lemma 15.3. If © € Z[¢] is irreducible and z,w € Z[phi] then
T|zw = 7|z orm|w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way. O]

15.4 The units in Z[¢]
Theorem 15.2. The units in Z[¢] are the numbers
+¢" (n€Z).

Proof. We saw in the last Chapter that any real quadratic field contains units
# 41, and that the units form the group

{xe" :n e Z},

where € is the smallest unit > 1.

Thus the theorem will follow if we establish that ¢ is the smallest unit
> 1in Z[¢].

Suppose 1 € Z[¢] is a unit with

l<n=m+ng < ¢.
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Then

and so
h=4n""
Hence B
—¢t<np=m+np< ¢t
Subtracting,

l—¢ ' <n—ij=n(¢—9¢)<o+o¢ ",

1e

5—1 1 5 5—1
\/_ <\/5n< +2\/_—I—\/_2

1e

3
2\/_ <V5n < V5.
So the only possibility is
n=1
Thus
n=m-+ ¢.
But
-14+¢ <1
Hence
m >0,
and so
n > €.

15.5 The primes in Z|¢)

Theorem 15.3. Suppose p € N is a rational prime.

1. If p=+1mod 5 then p splits into conjugate primes in Z[¢|:

p = 7T,
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2. If p=+2mod 5 then p remains prime in Z[@).

Proof. Suppose p splits, say

p=7T
Then

N(p) = p* = N(m)N(x')
Hence

N(m)=N(r") =+p
Suppose
™ =m + ne.

Then

N(m) =m? —mn —n® = 4+p,

and in either case

m? —mn —n? = 0 mod p.

If p = 2 then m and n must both be even. (For if one or both of m,n are
odd then so is m? — mn — n?.) Thus

2| m,

which is impossible.
Now suppose p is odd, Multiplying by 4,

(2m —n)? — 5n* = 0 mod p.

But
n=0modp = m=0modp = p|m,

which is impossible. Hence n Z 0 mod p, and so
r? = 5 mod p,

where
r = (2m —n)/n mod p.

(-

It follows by Gauss’ Reciprocity Law, since 5 = 1 mod 4, that

o

p = %1 mod 5.

Thus

1e

So if p = £2 mod 5 then p remains prime in Z[¢].
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Now suppose p = +1 mod 5. Then
5
p

n? =5 mod p,

and so we can find n such that

ie
p|n*=5=(n—V5)(n+v5)
If p remains prime in Z[¢| then

p|n—\/50rp|n+\/5,

both of which imply that p | 1, which is absurd.
We conclude that

p=xlmodb5 = p splits in Z[¢].
Finally we have seen in this case that if 7 | p then

N(m)=+p = p=+77.

15.6 Fibonacci numbers
Recall that the Fibonacci sequence consists of the numbers
0,1,1,2,3,5,8,13,...
defined by the linear recurrence relation
Foi1=Fy+ Fha,

with initial values
=0, F; =1.

There is a standard way of solving a general linear recurrence relation
Tp = Q1 Tp_1 + 2Tp_9o + +++ + AgTp_q-
Let the roots of the associated polynomial
p(t) =t — it — et ey

be )\1,...,)\d.
If these roots are distinct then the general solution of the recurrence
relation is
Ty = C1AT + CoAy + -+ - + CyA].
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The coefficients C1,...,Cy are determined by d ‘initial conditions’, eg by
specifying g, ..., xq_1.

If there are multiple roots, eg if A occurs e times then the term C'\"™ must
be replaced by A\"p()\), where p is a polynomial of degree e.

But these details need not concern us, since we are only interested in the
Fibonacci sequence, with associated polynomial

t?—t—1.
This has roots ¢, ¢. Accordingly,
F, = A¢™ + Bo".
Substituting for Fy =0, F} =1, we get

A+B=0, Ap+ Bo = 1.

Thus B
B=-A Alp—9¢) = 1.
Since 5 VB
-1 5 1—+/5
p—6=—" = V5,
2 2
this gives

A=1/V5, B=—-1V5.

Our conclusion is summarised in

Proposition 15.3. The Fibonacci numbers are given by

(1+V5" - (1-V5)
2n/5 '

F, =

15.7 The weak Lucas-Lehmer test for Mersenne
primality
Recall that the Mersenne number
M,=2"—1,

where p is a prime.

We give a version of the Lucas-Lehmer test for primality which only works
when p = 3 mod 4. In the next Chapter we shall give a stronger version which
works for all primes.

Proposition 15.4. Suppose the prime p = 3 mod 4. Then
pP=2r—1

1s prime if and only if
»*" = —1 mod P.
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Proof. Suppose first that P is a prime.
Since p = 3 mod 4 and 2* = 1 mod 5,

2P = 23 mod 5
= 3 mod 5.
Hence
P=2P—-1=2mod 5.
Now

P
1+V5
=)
Elp—;ﬂmodlj,

since P divides all the binomial coefficients except the first and last. Thus

14 5(P—1)/2\/§

of 5 mod P,

since 2 = 2 mod P by Fermat’s Little Theorem.

But .
5(P-1/2 — [ =
P 9

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,

since P = 2 mod 5. Thus
5(P=1/2 = _1 mod P,

and so

But

It follows that

¢t = —1mod P,
ie

»* = —1 mod P.
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Conversely, suppose
»* = —1 mod P.

We must show that P is prime.
The order of ¢ is exactly 2P*1. For

gbZPH = (QSQP)Q =1 mod P,
so the order divides 2P*!. On the other hand,
#»* # 1 mod P,

so the order does not divide 2P.
Suppose now P is not prime. Since

P =2mod 5,
it must have a prime factor
@ = +£2 mod 5.

(If all the prime factors of P were = +1 mod 5 then so would their product
be.) Hence @) does not split in Z[¢].
Since @ | P, it follows that

¢*" # 1 mod Q;

and so, by the argument above, the order of ¢ mod Q is 2P**.
We want to apply Fermat’s Little Theorem, but we need to be careful
since we are working in Z[¢] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[¢| then

291 = 1 mod Q
for all z € Z[¢] with z # 0 mod Q.

Proof. The quotient-ring A = Z[¢] mod @ is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z € A, z # 0 then
the map

wzw:A— A

is injective, and so surjective (since A is finite). Hence there is an element 2’
such that zz’ = 1, ie z is invertible in A.
Also, A contains just Q? elements, represented by

m+nvs (0<m,n<Q).

Thus the group
A*=A\0

has order Q2 — 1, and the result follows from Lagrange’s Theorem. O]
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In particular, it follows from this Lemma that
¢Q2_1 =1 mod Q,

ie the order of ¢ mod @ divides @ — 1. But we know that the order of
¢ mod @ is 2P!. Hence

QP -1=(Q-1)(Q+1).

But
ged(Q —1,Q+1) = 2.
It follows that either

20Q—1,2|Q+1or2||Q+1,2°|Q—1.

Since () < P = 2P — 1, the only possibility is

7 Q+1,
ie Q@ = P, and so P is prime. O
This result can be expressed in a different form, more suitable for com-
putation.
Note that

»* = —1mod P

can be re-written as

o+ 02" = 0mod P.

Let _ _
ti=¢> +¢*
Then
t2 _ ¢27L+1 + 2 _I_ ¢27(i+1)
=tiy1 + 2,
1e
tig1 =12 — 2.
Since
t(] - 2

it follows that ¢; € N for all 7.
Now we can re-state our result.

Corollary 15.1. Let the integer sequence t; be defined recursively by
th'Jrl - t? - 2, to - 2

Then
P =2 —1 isprime <= P|t, .
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