Chapter 14

Pell’s Equation

14.1 Kronecker’s Theorem

Diophantine approzimation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose 0 € R; and suppose N € N, N # 0. Then there
exists m,n € Z with 0 <n < N such that

|nf —m| < N
Proof. If x € R we write {x} for the fractional part of z, so that
r = [z] + {z}.
Consider then N + 1 fractional parts
0,{0},{20},...{N6};
and consider the partition of [0,1) into N equal parts;
[0,1/N),[1/N,2/N),...,[(N —1)/N,1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{6}, {j0} € [t/N, (t +1)/N],
where 0 < i < j < N. Setting
(6] = r, [50] = s,
we can write this as
i0 —r, j0 —s € [t/N,(t+1)/N).
Hence

(760 = 5) = (16 — )] < 1/N,
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ie
|nf —m| < 1/N,
wheren =37 —1, m=r—swith0 <n < N. O]

Corollary 14.1. If 0 € R is irrational then there are an infinity of rational
numbers m/n such that

m 1
00— —| < —.
| n | n?
Proof. By the Theorem,
m 1
0— —| < —
| n | nN
1
—_— n .

14.2 Pell’s Equation

We use Kronecker’s Theorem to solve a classic Diophantine equation.

Theorem 14.2. Suppose the number d € N is not a perfect square. Then
the equation
2 —dy? =1

has an infinity of solutions with x,y € Z.

Remark: Before we prove the theorem, it may help to bring out the
connection with quadratic number fields.
Note first that although d may not be square-free, we can write

d=a’d,
where d’ is square-free (and d’ # 1). Pell’s equation can then be written
2? — d'(ay)? =1,

which in turn gives

where

2:$+ay\/g.

Thus z is a unit in the quadratic number field Q(v/d'.

Let us denote the group of units in this number field by U. Every unit
¢ € U is not necessarily of this form. Firstly the coefficient of v/d must be
divisible by a; and secondly, if d = 1 mod 4 then we are omitting the units
of the form (m + nvd')/2.

But it is not difficult to see that these units form a subgroup U’ C U of
finite index in U. It follows that U’ is infinite if and only if U is infinite.
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However, we shall not pursue this line of enquiry, since it is just as easy
to work with these numbers in the form

z :x+y\/2l.
In particular, if
z:m—i-n\/a, w= M+ NVd

then
2w = (mM + dnN) + (mN + nM)Vd;

and on taking norms (ie multiplying each side by its conjugate),

(m? — dn®)(M? — dN?) = (mM + dnN)? — d(mN +nM)?

Similarly,
z _ (m +nVd)(M — NVd)
w o M? — dN?
(mM + dnN) — (mN — nM)\/d
B M? — dN? '
On taking norms,
m? — dn? 9 )
M —ane T

where
B mM +dnN mN —nM

M? —dN?’ M?—dN?’

u

Now to the proof.

Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n € 7 such that

m 1
V- —| < =.
n n
Since

V4= =2V (V- =)

it follows that m

Hence
m2 m m
d— 5| = Vd - —| wﬁy
2/d+1
<—2 .
n
Thus

Im? — dn?| < 2vVd + 1.

It follows that there must be an infinity of m,n satisfying

m? —dn® =t
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for some integer ¢ with |t| < 2v/d + 1.
Let (m,n), (M, N) be two such solutions (with (m,n) # £(M, N).
Note that since
m? —dn®> =t = M? — dN?

we have
u? — dv? = 1.

Of course u, v will not in general be integers, so this does not solve the
problem. However, we shall see that by a suitable choice of m,n, M, N we
can ensure that u,v € Z.

Let T = |t|; and consider (m,n) mod T" = (m mod T,n mod T). There
are just T2 choices for the residues (m,n) mod T. Since there are an infin-
ity of solutions m,n there must be some residue pair (r,s) mod 7" with the
property that there are an infinity of solutions (m,n) with m = r mod T, n =
smod T

Actually, all we need is two such solutions (m,n), (M, N), so that

m=MmodT, n=N modT.
For then

mM —dnN =m? —dn®> =t mod T
0 mod T

(since t = £7'); and similarly

mN —nM =mn —nmmod T

=0modT.

Thus
T | mM —dnN, mN —nM

and so
u,v € 2.

14.3 Units 1I: Real quadratic fields

Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit € > 1 in Q(v/d) such that the units in this field are

+e"
forn € Z.
Proof. We know that the equation
2 —dy? =1

has an infinity of solutions. In particular it has a solution (z,y) # (£1,0).
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Let
Then

so 7 is a unit # +£1.
We may suppose that n > 1; for of the 4 units &n, n~! just one appears
in each of the intervals (—oo, —1), (—1,0), (0,1), (1,00).

Lemma 14.1. There are only a finite number of units in (1,C), for any
C>1.

Proof. Suppose

d
€= %— € (1,0)
is a unit. Then
e= 11T VE nvd =
2
Thus
emonVd
< 5 <
Hence
0<m<C+1.
Since
m? — dn? = +4

it follows that
n*<m?+4<(C+1)>+4.

]

We have seen that there is a unit n > 1. Since there are only a finite
number of units in (1, 7] there is a least such unit e.
Now suppose 1 > 1 is a unit. Since € > 1,

€' — 00 as n — 00.
Hence we can find n > 0 such that

Then
1<e™<e

Since € "7 is a unit, it follows from the minimality of € that

1e
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