Chapter 12

Algebraic numbers and algebraic
integers

12.1 Algebraic numbers

Definition 12.1. A number a € C is said to be algebraic if it satisfies a
polynomial equation

fxy=2"+aa" '+ +a,=0
with rational coefficients a; € Q.

For example, v/2 and i /2 are algebraic.

A complex number is said to be transcendental if it is not algebraic. Both
e and 7 are transcendental. It is in general extremely difficult to prove a
number transcendental, and there are many open problems in this area, eg
it is not known if 7€ is transcendental.

Theorem 12.1. The algebraic numbers form a field Q C C.

Proof. If a satisfies the equation f(x) = 0 then —« satisfies f(—z) = 0, while
1/« satisfies 2" f(1/x) = 0 (where n is the degree of f(x)). It follows that
—a and 1/« are both algebraic. Thus it is sufficient to show that if «, 3 are
algebraic then so are a + (3, af5.

Lemma 12.1. Suppose V' C C is a finite-dimensional vector space over Q,
with V- # 0; and suppose x € C. If

2V CV

then z € Q.

Proof. Let ey, ..., e, be a basis for V. Suppose

rep = ajlér + - A1n€n

Teo = A91€1 + e AonCn
Ty = Ap1€1 + ** * Apnln-
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Then

det(xl — A) =0,
where
ainn @iz -0 Qin
A a?l 0?2 SRR €570)
An1 Qp2 " Qnn
This is a polynomial equation with coefficients in Q. Hence = € Q. ]

Consider the vector space
V=0 :0<i<m, 0<j<n)
over Q spanned by the mn elements o//3’. Evidently
aVcV, pvVcV.

Thus
(a+p)V CV, (af)V C V.

Hence o + 8 and «af3 are algebraic. ]

12.2 Algebraic integers

Definition 12.2. A number o € C s said to be an algebraic integer if it
satisfies a monic polynomial equation

fx)=2"+a2" ' 4+ +a,=0

with integral coefficients a; € Z. We denote the set of algebraic integers by
Z.

Theorem 12.2. The algebraic integers form a ring 7. with
7Z CZcCQ.
Proof. Evidently
7 C Z,

since n € Z satisfies the equation
x—n=0.
We have to show that
a,BE€EL = a+p,aB €.

Lemma 12.2. Suppose S C C is a finitely-generated abelian group, with
S #0; and suppose x € C. If
xS CS

then = € 7.
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Proof. Let s1,...,s, generate S. Suppose

TS = 1151 + - A1 Sn

XS = 9181 + - A2,5n

TSy = Ap1S1 + " ApnSn.

Then
det(zl — A) = 0.

This is a monic equation with coefficients in Z. Hence z € Z. O
Consider the abelian group
S={a'f:0<i<m,0<j<n)

generated by the mn elements o'3’. Evidently

aS CS, gSCS.
Thus
(a+pB)SCS, (af)S CS.
Hence o + 8 and af3 are algebraic integers. O

Proposition 12.1. A rational number ¢ € Q is an algebraic integer if and
only if it is a rational integer:

7ZNnQ="7.

Proof. Suppose ¢ = m/n, where ged(m,n) = 1; and suppose c satisfies the
equation
' fax™ o tag=0 (a; €7Z).

Then
m?+ amtn4 -+ adnd =0.

Since n divides every term after the first, it follows that n | m?. But that is
incompatible with ged(m,n) = 1, unless n = 1, ie ¢ € Z. a

12.3 Number fields and number rings
Suppose F' C C is a field. Then 1 € F', by definition, and so
QcFccC.

We can consider F' as a vector space over Q.

Definition 12.3. An algebraic number field (or simply number field is a
subfield F C C which is a finite-dimensional vector space over Q. The degree
of F' is the dimension of this vector space:

deg F' = dimg F.
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Proposition 12.2. The elements of a number field F' are algebraic numbers:

Qc FcQ.

Proof. Suppose deg F' = d; and suppose « € F. Then the d 4+ 1 numbers

are linearly dependent over Q, say
a0+a1a—|—a2a2+--~+adad:0.

Thus

where f(x) is the polynomial
f(x) = ap + a17 + apx® + - - + agz® € Q[z].
O

Definition 12.4. The algebraic integers in a number field F' are said to form
an algebraic number ring (or simply number ring).

Thus the number ring associated to the number field F' is
FNZ.

Proposition 12.3. The number ring associated to the field of gaussian num-
bers is the ring I' of gaussian integers.

Proof. Suppose
z=x+iy (r,y€ Q)

is a gaussian number. We have to show that z is an algebraic integer if and
only if x,y € Z.
If m,n € Z then m + in € Z, since m,n,i € Z and Z is a ring.
Conversely, suppose

Then

since z and Z satisfy the same polynomials over Q. Hence

2+z2=20€ZNQ="72Z.

Similarly )
—iz=y—1x €L = 2y €.
Thus ,
m+n
z =
2 )

with m,n € Z.
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But now

1e

1e
m? +n? =0 mod 4.
But m?,n? =0 or 1 mod 4. So

m?>+n*=0mod 4 = 2|m,n
== zel.

Ezample: /2 is an algebraic integer, since it satisfies the equation
22 —2=0.
But v/2/2 is not an algebraic integer. For if it were,
(V2/2)? =1/2

would be an algbraic integer (since Z is a ring), which we have just seen is
not so.

Algebraic number theory is the study of number rings. The first question
one might ask is whether a given number ring is a Unique Factorisation
Domain.

We have seen that the number rings Z and I" are. But in general number
rings are not UFDs.

The foundation of algebraic number theory was Dedekind’s amazing dis-
covery that unique factorisation could be recovered if one added what Dedekind
called ‘ideal numbers’, and what are today called ‘ideals’.

However, we are not going into that theory. We shall only be looking at
a small number of quadratic number rings which are UFDs.

12.4 Integral closure

Recall that any integral domain A can be extended to its field of fractions,
which we shall denote by Q(A), since we follows exactly the same process as
in creating the field of rational numbers QQ from the ring of integers Z. We
define Q(A) to be the quotient set X/FE, where X is the set of pairs (n,d),
with n,d € A and d # 0, and F is the equivalence relation

(n,d) ~ (n',d) <= nd =n'd.
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We write n/d for the the element of Q(A) represented by the the pair (n,d).

We define addition, multiplication and inversion in Q(A) in the obvious
way, and it is a trivial matter to verify that these satisfy the axioms for a
field. Identifying a € A with a/1 € Q(A) allows us to identify A with a
subset of Q(A), so we can regard Q(A) as an extension of A.

As an example of the construction we have k[x] — k(z), where k(z) is
the field of rational functions f(z)/g(z), with f(x), g(z) € k[x].

If A is already a subring of a field F' then we can identify QQ(A) with the
subfield of F' formed by the elements a/d with a,d € A. So for example
the field of algebraic numbers is the quotient-field of the ring of algebraic

integers: Q = Q(Z).
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