Chapter 5

The Chinese Remainder Theorem

5.1 Coprime moduli

Theorem 5.1. Suppose $m, n \in \mathbb{N}$, and

gcd(m,n) = 1.

Given any remainders $r \mod m$ and $s \mod n$ we can find N such that

 $N \equiv r \mod m \text{ and } N \equiv s \mod n.$

Moreover, this solution is unique mod mn.

Proof. We use the pigeon-hole principle. Consider the mn numbers

 $0 \leq N < mn.$

For each N consider the remainders

 $r = N \mod m, \ s = N \mod n,$

where r, s are chosen so that

$$0 \le r < m, \ 0 \le s < n.$$

We claim that these pairs r, s are different for different $N \in [0, mn)$. For suppose N < N' have the same remainders, ie

 $N' \equiv N \mod m$ and $N' \equiv N \mod n$.

Then

 $m \mid N' - N$ and $n \mid N' - N$.

Since gcd(m, n) = 1, it follows that

$$mn \mid N' - N.$$

But that is impossible, since

$$0 < N' - N < mn.$$

Example: Let us find N such that

$$N \equiv 3 \mod 13, N \equiv 7 \mod 23.$$

One way to find N is to find a, b such that

$$a \equiv 1 \mod m, \ a \equiv 0 \mod n,$$

$$b \equiv 0 \mod m, \ b \equiv 1 \mod n.$$

For then we can take

$$N = 3a + 7b.$$

Note that

$$a = 1 + sm = tn$$

We are back to the Euclidean Algorithm for gcd(m, n):

$$23 = 2 \cdot 13 - 3, \\ 13 = 4 \cdot 3 + 1,$$

giving

$$1 = 13 - 4 \cdot 3$$

= 13 - 4(2 \cdot 13 - 23)
= 4 \cdot 23 - 7 \cdot 13.

Thus we can take

$$a = 4 \cdot 23 = 92, \ b = -7 \cdot 13 = -91.$$

giving

$$N = 3 \cdot 92 - 7 \cdot 91 = 276 - 637 = -361.$$

Of course we can add a multiple of mn to N; so we could take

$$N = 13 \cdot 23 - 361 = 299 - 361 = -62,$$

if we want the smallest solution (by absolute value); or

$$N = 299 - 62 = 237,$$

for the smallest positive solution.

5.2 The modular ring

We can express the Chinese Remainder Theorem in more abstract language.

Theorem 5.2. If gcd(m,n) = 1 then the ring $\mathbb{Z}/(mn)$ is isomorphic to the product of the rings $\mathbb{Z}/(m)$ and $\mathbb{Z}/(n)$:

$$\mathbb{Z}/(mn) = \mathbb{Z}/(m) \times \mathbb{Z}/(n).$$

Proof. We have seen that the maps

 $N\mapsto N \bmod m$ and $N\mapsto N \bmod n$

define ring-homomorphisms

 $\mathbb{Z}/(mn) \to \mathbb{Z}/(m)$ and $\mathbb{Z}/(mn) \to \mathbb{Z}/(n)$.

These combine to give a ring-homomorphism

 $\mathbb{Z}/(mn) \to \mathbb{Z}/(m) \times \mathbb{Z}/(n),$

under which

 $r \mod mn \mapsto (r \mod m, r \mod n).$

But we have seen that this map is bijective; hence it is a ring-isomorphism.

5.3 The totient function

Proposition 5.1. Suppose gcd(m, n) = 1. Then

 $gcd(N,mn) = gcd(N,m) \cdot gcd(N,n).$

Proof. Let

$$d = \gcd(N, mn)$$

Suppose

 $p^e \parallel d.$

Then

$$p^e \parallel m \text{ or } p^e \parallel n.$$

Thus the prime-power divisors of d are divided between m and n

Corollary 5.1. If gcd(m, n) = 1 and $N \in \mathbb{Z}$ then

$$gcd(N,mn) = 1 \iff gcd(N,m) = 1 and gcd(N,n) = 1$$

From this we derive

Theorem 5.3. Euler's totient function is multiplicative, ie

 $gcd(m,n) = 1 \implies \phi(mn) = \phi(m)\phi(n).$

This gives a simple way of computing $\phi(n)$.

Proposition 5.2. If

$$n = \prod_{1 \le i \ er} p_i^{e_i},$$

where the primes p_1, \ldots, p_r are different and each $e_i/ge1$. Then

$$\phi(n) = \prod p_i^{e_i - 1} (p_i - 1).$$

Proof. Since $\phi(n)$ is multiplicative,

$$\phi(n) = \prod_i \phi(p_i^{e_i}).$$

The result now follows from

Lemma 5.1. $\phi(p^e) = p^{e-1}(p-1)$.

Proof. The numbers $r \in [0, p^e)$ is *not* coprime to p^r if and only if it is divisible by p, ie

$$r \in \{0, p, 2p, \dots, p^e - p\}.$$

There are

$$[p^e/p] = p^{e-1}$$

such numbers. Hence

$$\phi(p^e) = p^e - p^{e-1} = p^{e-1}(p-1).$$

Example: Suppose n = 1000.

$$\phi(1000) = \phi(2^3 5^3)$$

= $\phi(2^3)\phi(5^3)$
= $2^2(2-1) 5^2(5-1)$
= $4 \cdot 1 \cdot 25 \cdot 4$
= 400;

there are just 400 numbers coprime to 1000 between 0 and 1000.

5.4 The multiplicative group

Theorem 5.4. If gcd(m, n) = 1 then

$$(\mathbb{Z}/mn)^{\times} = (\mathbb{Z}/m)^{\times} \times (\mathbb{Z}/n)^{\times}.$$

Proof. We have seen that the map

$$r \mod mn \mapsto (r \mod m, r \mod n) : \mathbb{Z}/(mn) \to \mathbb{Z}/(m) \times \mathbb{Z}/(n)$$

maps r coprime to mn to pairs (r, s) coprime to m, n respectively. Thus the subset $(\mathbb{Z}/mn)^{\times}$ maps to the product of the subsets $(\mathbb{Z}/m)^{\times}$ and $(\mathbb{Z}/n)^{\times}$, from which the result follows.

In effect, this is an algebraic expression of the fact that the totient function is multiplicative.

5.5 Multiple moduli

The Chinese Remainder Theorem extends to more than two moduli.

Proposition 5.3. Suppose n_1, n_2, \ldots, n_r are pairwise coprime, ie

$$i \neq j \implies \gcd(n_i, n_j) = 1;$$

and suppose we are given remainders a_1, a_2, \ldots, a_r moduli n_1, n_2, \ldots, n_r , respectively. Then there exists a unique $N \mod n_1 n_2 \cdots n_r$ such that

 $N \equiv a_1 \mod n_1, \ N \equiv a_2 \mod n_2, \dots, N \equiv a_r \mod n_r.$

Proof. This follows from the same pigeon-hole argument that we used to establish the Chinese Remainder Theorem.

Or we can prove it by induction on r; for since

$$gcd(n_1n_2\cdots n_i, n_{i+1}) = 1,$$

we can add one modulus at a time,

Thus if we have found N_i such that

$$N_i \equiv a_1 \mod n_1, \ N_i \equiv a_2 \mod n_2, \dots, N_i \equiv a_i \mod n_i$$

then by the Chinese Remainder Theorem we can find N_{i+1} such that

$$N_{i+1} \equiv N_i \mod n_1 n_2 \cdots n_i$$
 and $N_{i+1} \equiv a_{i+1} \mod n_{i+1}$

and so

$$N_{i+1} \equiv a_1 \mod n_1, \ N_{i+1} \equiv a_2 \mod n_2, \dots, N_{i+1} \equiv a_{i+1} \mod n_{i+1},$$

establishing the induction.

Example: Suppose we want to solve the simultaneous congruences

 $n \equiv 4 \mod 5, n \equiv 2 \mod 7, n \equiv 1 \mod 8.$

There are two slightly different approaches to the task.

Firstly, we can start by solving the first 2 congruences. As is easily seen, the solution is

$$n \equiv 9 \mod 35$$

The problem is reduced to two simultaneous congruences:

$$n \equiv 9 \mod 35, \ n \equiv 1 \mod 8,$$

which we can solve with the help of the Euclidean Algorithm, as before.

Alternatively, we can find solutions of the three sets of simultaneous congruences

> $n_1 \equiv 1 \mod 5, \ n_1 \equiv 0 \mod 7, \ n_1 \equiv 0 \mod 8,$ $n_2 \equiv 0 \mod 5, \ n_2 \equiv 1 \mod 7, \ n_2 \equiv 0 \mod 8,$ $n_3 \equiv 0 \mod 5, \ n_3 \equiv 0 \mod 7, \ n_3 \equiv 1 \mod 8,$

 $\mathbf{i}\mathbf{e}$

$$n_1 \equiv 1 \mod 5, \ n_1 \equiv 0 \mod 56,$$

 $n_2 \equiv 1 \mod 7, \ n_2 \equiv 0 \mod 40,$
 $n_3 \equiv 1 \mod 8, \ n_3 \equiv 0 \mod 35,$

which we can solve by our previous method. The required solution is then

$$n = 4n_1 + 2n_2 + n_3$$

where the coefficients 4,2,1 are the required residues.

5.6 Multiplicative functions

We have seen that $\phi(n)$ is multiplicative. There are several other multiplicative functions that play an important role in number theory, for example:

1. The number d(n) of divisors of n, eg

$$d(2) = 1, d(12) = 3, d(32) = 5.$$

2. The sum $\sigma(n)$ of the divisors of n, eg

$$\sigma(2) = 3, \ \sigma(12) = 28, \ \sigma(32) = 63.$$

3. The Möbius function

$$\mu(n) = \begin{cases} (-1)^e & \text{if } n \text{ is square-free and has } e \text{ prime factors,} \\ 0 & \text{if } n \text{ has a square factor } n = p^2 m. \end{cases}$$

- 4. The function $(-1)^n$.
- 5. The function

$$\theta(n) = \begin{cases} 1 & \text{if } n \equiv 1 \mod 4, \\ -1 & \text{if } n \equiv 3 \mod 4, \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

5.7 Perfect numbers

Definition 5.1. We say that $n \in \mathbb{N}$ is perfect if it is the sum of all its divisors, except for n itself.

In other words,

 $n \text{ is perfect } \iff \sigma(n) = 2n.$

Theorem 5.5. If $M(p) = 2^p - 1$ is prime then

$$n = 2^{p-1}M(p)$$

is perfect. Moreover, every even perfect number is of this form

Remark: Euclid showed that every number of this form is perfect; Euler showed that every even perfect number is of this form.

Proof. Note that

 $\sigma(n) = n + 1 \iff n$ is prime.

For if n = ab (where a, b > 1) then $\sigma(n) \ge n + 1 + a$.

Also

$$\sigma(2^e) = 1 + 2 + 2^2 + \dots + 2^e = 2^{e+1} - 1.$$

Thus if $n = 2^{p-1}M(p)$, where P = M(p) is prime, then (since 2^e and M(p) are coprime)

$$\sigma(n) = \sigma(2^{p-1})\sigma(M(p))$$

= $(2^p - 1)(M(p) + 1)$
= $(2^p - 1)(2^p)$
= $2n$.

Conversely, suppose n is an even perfect number. Let $n = 2^e m$, where m is odd. Then

$$\sigma(n) = \sigma(2^e)\sigma(m) = 2n,$$

ie

$$(2^{e+1} - 1)\sigma(m) = 2^{e+1}m.$$

Thus $2^{e+1} - 1 \mid m$, say

$$m = (2^{e+1} - 1)x.$$

Then

$$\sigma(m) = 2^{e+1}x = m + x.$$

But x is a factor of m. So if x is not 1 or m then

$$\sigma(m) \ge m + x + 1.$$

Hence x = 1 or m If x = m then $2^{e+1} - 1 = 1 \implies e = 0$, which is not possible since n is even.

It follows that x = 1, so that

$$m = 2^{e+1} - 1 = M(e+1).$$

Also

$$\sigma(m) = m + 1.$$

Thus m = M(e+1) is prime (and therefore e+1 = p is prime), and

$$n = 2^{p-1}M(p),$$

as stated.

But what if n is odd? It is not known if there are any odd perfect numbers. This is one of the great unsolved problems of mathematics.