
Chapter 5

The Chinese Remainder Theorem

5.1 Coprime moduli
Theorem 5.1. Suppose m,n ∈ N, and

gcd(m,n) = 1.

Given any remainders r mod m and s mod n we can find N such that

N ≡ r mod m and N ≡ s mod n.

Moreover, this solution is unique mod mn.

Proof. We use the pigeon-hole principle. Consider the mn numbers

0 ≤ N < mn.

For each N consider the remainders

r = N mod m, s = N mod n,

where r, s are chosen so that

0 ≤ r < m, 0 ≤ s < n.

We claim that these pairs r, s are different for different N ∈ [0,mn). For
suppose N < N ′ have the same remainders, ie

N ′ ≡ N mod m and N ′ ≡ N mod n.

Then
m | N ′ −N and n | N ′ −N.

Since gcd(m,n) = 1, it follows that

mn | N ′ −N.

But that is impossible, since

0 < N ′ −N < mn.
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Example: Let us find N such that

N ≡ 3 mod 13, N ≡ 7 mod 23.

One way to find N is to find a, b such that

a ≡ 1 mod m, a ≡ 0 mod n,

b ≡ 0 mod m, b ≡ 1 mod n.

For then we can take
N = 3a+ 7b.

Note that
a = 1 + sm = tn.

We are back to the Euclidean Algorithm for gcd(m,n):

23 = 2 · 13− 3,

13 = 4 · 3 + 1,

giving

1 = 13− 4 · 3
= 13− 4(2 · 13− 23)

= 4 · 23− 7 · 13.

Thus we can take

a = 4 · 23 = 92, b = −7 · 13 = −91.

giving
N = 3 · 92− 7 · 91 = 276− 637 = −361.

Of course we can add a multiple of mn to N; so we could take

N = 13 · 23− 361 = 299− 361 = −62,

if we want the smallest solution (by absolute value); or

N = 299− 62 = 237,

for the smallest positive solution.

5.2 The modular ring
We can express the Chinese Remainder Theorem in more abstract language.

Theorem 5.2. If gcd(m,n) = 1 then the ring Z/(mn) is isomorphic to the
product of the rings Z/(m) and Z/(n):

Z/(mn) = Z/(m)× Z/(n).
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Proof. We have seen that the maps

N 7→ N mod m and N 7→ N mod n

define ring-homomorphisms

Z/(mn)→ Z/(m) and Z/(mn)→ Z/(n).

These combine to give a ring-homomorphism

Z/(mn)→ Z/(m)× Z/(n),

under which
r mod mn 7→ (r mod m, r mod n).

But we have seen that this map is bijective; hence it is a ring-isomorphism.

5.3 The totient function
Proposition 5.1. Suppose gcd(m,n) = 1. Then

gcd(N,mn) = gcd(N,m) · gcd(N, n).

Proof. Let
d = gcd(N,mn).

Suppose
pe ‖ d.

Then
pe ‖ m or pe ‖ n.

Thus the prime-power divisors of d are divided between m and n

Corollary 5.1. If gcd(m,n) = 1 and N ∈ Z then

gcd(N,mn) = 1 ⇐⇒ gcd(N,m) = 1 and gcd(N, n) = 1.

From this we derive

Theorem 5.3. Euler’s totient function is multiplicative, ie

gcd(m,n) = 1 =⇒ φ(mn) = φ(m)φ(n).

This gives a simple way of computing φ(n).

Proposition 5.2. If
n =

∏
1≤i er

peii ,

where the primes p1, . . . , pr are different and each ei/ge1. Then

φ(n) =
∏

pei−1i (pi − 1).
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Proof. Since φ(n) is multiplicative,

φ(n) =
∏
i

φ(peii ).

The result now follows from

Lemma 5.1. φ(pe) = pe−1(p− 1).

Proof. The numbers r ∈ [0, pe) is not coprime to pr if and only if it is divisible
by p, ie

r ∈ {0, p, 2p, . . . , pe − p}.

There are
[pe/p] = pe−1

such numbers. Hence

φ(pe) = pe − pe−1 = pe−1(p− 1).

Example: Suppose n = 1000.

φ(1000) = φ(2353)

= φ(23)φ(53)

= 22(2− 1) 52(5− 1)

= 4 · 1 · 25 · 4
= 400;

there are just 400 numbers coprime to 1000 between 0 and 1000.

5.4 The multiplicative group
Theorem 5.4. If gcd(m,n) = 1 then

(Z/mn)× = (Z/m)× × (Z/n)×.

Proof. We have seen that the map

r mod mn 7→ (r mod m, r mod n) : Z/(mn)→ Z/(m)× Z/(n)

maps r coprime to mn to pairs (r, s) coprime to m,n respectively. Thus the
subset (Z/mn)× maps to the product of the subsets (Z/m)× and (Z/n)×,
from which the result follows.

In effect, this is an algebraic expression of the fact that the totient function
is multiplicative.
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5.5 Multiple moduli
The Chinese Remainder Theorem extends to more than two moduli.

Proposition 5.3. Suppose n1, n2, . . . , nr are pairwise coprime, ie

i 6= j =⇒ gcd(ni, nj) = 1;

and suppose we are given remainders a1, a2, . . . , ar moduli n1, n2, . . . , nr, re-
spectively. Then there exists a unique N mod n1n2 · · ·nr such that

N ≡ a1 mod n1, N ≡ a2 mod n2, . . . , N ≡ ar mod nr.

Proof. This follows from the same pigeon-hole argument that we used to
establish the Chinese Remainder Theorem.

Or we can prove it by induction on r; for since

gcd(n1n2 · · ·ni, ni+1) = 1,

we can add one modulus at a time,
Thus if we have found Ni such that

Ni ≡ a1 mod n1, Ni ≡ a2 mod n2, . . . , Ni ≡ ai mod ni

then by the Chinese Remainder Theorem we can find Ni+1 such that

Ni+1 ≡ Ni mod n1n2 · · ·ni and Ni+1 ≡ ai+1 mod ni+1

and so

Ni+1 ≡ a1 mod n1, Ni+1 ≡ a2 mod n2, . . . , Ni+1 ≡ ai+1 mod ni+1,

establishing the induction.

Example: Suppose we want to solve the simultaneous congruences

n ≡ 4 mod 5, n ≡ 2 mod 7, n ≡ 1 mod 8.

There are two slightly different approaches to the task.
Firstly, we can start by solving the first 2 congruences. As is easily seen,

the solution is
n ≡ 9 mod 35.

The problem is reduced to two simultaneous congruences:

n ≡ 9 mod 35, n ≡ 1 mod 8,

which we can solve with the help of the Euclidean Algorithm, as before.
Alternatively, we can find solutions of the three sets of simultaneous con-

gruences

n1 ≡ 1 mod 5, n1 ≡ 0 mod 7, n1 ≡ 0 mod 8,

n2 ≡ 0 mod 5, n2 ≡ 1 mod 7, n2 ≡ 0 mod 8,

n3 ≡ 0 mod 5, n3 ≡ 0 mod 7, n3 ≡ 1 mod 8,

5–5



ie

n1 ≡ 1 mod 5, n1 ≡ 0 mod 56,

n2 ≡ 1 mod 7, n2 ≡ 0 mod 40,

n3 ≡ 1 mod 8, n3 ≡ 0 mod 35,

which we can solve by our previous method. The required solution is then

n = 4n1 + 2n2 + n3,

where the coefficients 4,2,1 are the required residues.

5.6 Multiplicative functions
We have seen that φ(n) is multiplicative. There are several other multiplica-
tive functions that play an important role in number theory, for example:

1. The number d(n) of divisors of n, eg

d(2) = 1, d(12) = 3, d(32) = 5.

2. The sum σ(n) of the divisors of n, eg

σ(2) = 3, σ(12) = 28, σ(32) = 63.

3. The Möbius function

µ(n) =

{
(−1)e if n is square-free and has e prime factors,
0 if n has a square factor n = p2m.

4. The function (−1)n.

5. The function

θ(n) =


1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4,

0 if n is even.

5.7 Perfect numbers
Definition 5.1. We say that n ∈ N is perfect if it is the sum of all its
divisors, except for n itself.

In other words,
n is perfect ⇐⇒ σ(n) = 2n.

Theorem 5.5. If M(p) = 2p − 1 is prime then

n = 2p−1M(p)

is perfect. Moreover, every even perfect number is of this form
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Remark: Euclid showed that every number of this form is perfect; Euler
showed that every even perfect number is of this form.

Proof. Note that
σ(n) = n+ 1 ⇐⇒ n is prime.

For if n = ab (where a, b > 1) then σ(n) ≥ n+ 1 + a.
Also

σ(2e) = 1 + 2 + 22 + · · ·+ 2e = 2e+1 − 1.

Thus if n = 2p−1M(p), where P = M(p) is prime, then (since 2e and
M(p) are coprime)

σ(n) = σ(2p−1)σ(M(p)

= (2p − 1)(M(p) + 1)

= (2p − 1)(2p)

= 2n.

Conversely, suppose n is an even perfect number. Let n = 2em, where m
is odd. Then

σ(n) = σ(2e)σ(m) = 2n,

ie

(2e+1 − 1)σ(m) = 2e+1m.

Thus 2e+1 − 1 | m, say
m = (2e+1 − 1)x.

Then
σ(m) = 2e+1x = m+ x.

But x is a factor of m. So if x is not 1 or m then

σ(m) ≥ m+ x+ 1.

Hence x = 1 or m If x = m then 2e+1 − 1 = 1 =⇒ e = 0, which is not
possible since n is even.

It follows that x = 1, so that

m = 2e+1 − 1 =M(e+ 1).

Also
σ(m) = m+ 1.

Thus m =M(e+ 1) is prime (and therefore e+ 1 = p is prime), and

n = 2p−1M(p),

as stated.

But what if n is odd? It is not known if there are any odd perfect numbers.
This is one of the great unsolved problems of mathematics.
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