Chapter 10

Quadratic Residues

10.1 Introduction

Definition 10.1. We say that a € Z is a quadratic residue mod n if there
exists b € Z such that
a = b? mod n.

If there is no such b we say that a is a quadratic non-residue mod n.

Ezxample: Suppose n = 10.
We can determine the quadratic residues mod n by computing *> mod n
for 0 < b < n. In fact, since

(—b)? = b* mod n,

we need only consider 0 < b < [n/2].

Thus the quadratic residues mod 10 are 0,1,4,9,6,5; while 3,7,8 are
quadratic non-residues mod 10.

The following result is trivial.

Proposition 10.1. If a,b are quadratic residues mod n then so is ab.

10.2 Prime moduli

We are mainly interested in quadratic residues modulo a prime.

Proposition 10.2. Suppose p is an odd prime. Then just (p — 1)/2 of the
numbers 1,2,...,p — 1 are quadratic residues mod p, and the same number
are quadratic non-residues.
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Proof. Consider b* mod p for b=1,2,...,(p —1)/2. We know these give all
the quadratic residues, since

(p — b)* = b* mod p.
Moreover these squares are all different mod p. For

V¥=cmodp = (b+¢)(b—c)=0modp
= b= fcmod p.

We can express this in group-theoretic terms as follows:
The map
0 a®: (Z/p)* — (Z/p)*

is a homomorphism, and
ker = {£1}.

By the first isomorphism theorem of group theory, if § : G — H is a
homomorphism then
iméf = G/ ker#.

In particular, if G is finite then
#(ker ) - #(im 0) = #(G).

(This holds for abelian or non-abelian groups.)

In our case, im € is just the set of non-zero quadratic residues. It follows
that they constitute just half of the non-zero residues mod p; the other half
must be the quadratic non-residues.

Proposition 10.3. Suppose p is an odd prime; and suppose a,b are coprime
top. Then

1. If both of a,b, or neither, are quadratic residues, then ab is a quadratic
resitdue;

2. If one of a,b is a quadratic residue and the other is a quadratic non-
residue then ab is a quadratic non-residue.

Proof. Suppose a is a quadratic residue. As b runs over the non-zero residues
mod p, so does ab. We know that ab is a quadratic residue if b is a quadratic
residue, and we know that just half the non-zero residues are quadratic
residues. It follows that ab must be a quadratic non-residue if b is a quadratic
non-residue.
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Now suppose a is a quadratic non-residue. We have just seen that if b
is a quadratic residue then ab is a quadratic non-residues. But we know
that only half the residues are quadratic non-residues. It follows that ab
must be a quadratic residue in the remaining cases, when b is a quadratic
non-residue. O

10.3 The Legendre symbol

Definition 10.2. Suppose p is a prime; and suppose a € Z.. We set

0ifpla
a
(—) =1 1lifptaand a is a quadratic residue mod p

—1 if if a is a quadratic non-residue mod p.

2 1 -1 3

geamgie: () =1, (1) =1 () =1 () =

.y 0 1

Proposition 10.4. 1. (—) =0, (—) =1,
p p
2. a=bmodp = (ﬁ) = (9),
p p

()G 6)

p p p

Proof. (1) and (2) follow from the definition, while (3) follows from the pre-
vious Proposition. O

10.4 FEuler’s criterion

Proposition 10.5. Suppose p is an odd prime. Then

(2> = ¢P~V/2 mod p.
p

Proof. The result is obvious if p | a.
Suppose p{a. Then

(a(p—l)/?)2 —aP ' =1 mod D,
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by Fermat’s Little Theorem. It follows that

(ﬁ) = +1 mod p.
p
Consider the map

0:a— a® V2 (Z/p) — {1}

Evidently 0 is a homomorphism.
We know that (Z/p)* is cyclic. It follows that € is surjective. (In fact it

is clear that
ar-0/2 — 4

if a is a primitive root mod p; for otherwise a would have order < (p—1)/2)
It follows that

(ker0) = (p— 1)/2
But since the group (Z/p)* is cyclic, it only has one subgroup of each
possible order. Thus there is only one non-trivial homomorphism

(Z/p)" — {*1}.

It follows that 6 must be the same as the homomorphism

o () @~ )
p
which proves the Proposition. O

Alternatively, and perhaps more directly, suppose a is a quadratic residue
mod p, say a = b?> mod p. Then
aPV/2 = (p?)P=1/2 — pp=1 = 1 mod p,
by Fermat’s Little Theorem.

We have seen that
a?™ Y2 = +1 mod p.

Since (Z/p)* is cyclic, not all a satisfy
a?™ Y2 = 1 mod p.

Say
P~D/2 = 1 mod p.

Evidently ¢ must be a quadratic non-residue mod p. If a is a quadratic
residue mod p then

But as a runs over the quadratic residues mod p, ca must run over the

quadratic non-residues, whence the result.
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) a
10.5 Computing | —

p

Suppose p is an odd prime. We usually take 0, 1,2, ..., p—1 as representatives
of the residue-classes mod p
Let S denote the first half of the residue-set mod p:

S=1[1,2....(p—1)/2.

Then each residue x mod p can be written as

r = +smod p
for a unique s € S. (In other words, instead of taking 0,1,...,p—1 as repre-
sentatives of the residue-classes we could take —(p—1)/2,...,—1,0,1,..., (p—

1)/2}.)

Now suppose a € (Z/p)*. Consider the residues

-1
aS:{a,Qa,...,p2 a}.

Each of these can be written as +s for some s € S, say
as = €(s)m(s),

where €(s) = +1.
The map
m:85— S5

is injective, ie if s, s’ € S then

s#s = m(s) #n(s).
For

7(s) =7n(s) = as = +as mod p
= s= 45 modp

(since p 1 a)
= s=—s modp
(since s # ')

= s+ s =0mod p,
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which is impossible.

Thus 7 is a permutation of S (by the pigeon-hole principle, if you like).
It follows that as s runs over the elements of S so does 7(s).

Thus if we multiply together the congruences

as = €(s)m(s) mod p

we get
aPD/21.9... (p—1)/2

on the left, and
€(1)e(2)---e((p—1)/2)1-2---(p—1)/2
on the right. Hence

"V = e(1)e(2) - e((p — 1)/2) mod p.

p

by Euler’s criterion. Thus we have established

Theorem 10.1. Suppose p is an odd prime; and suppose a € Z. Consider
a,2a,...,a(p—1)/2 mod p,

choosing residues in [—(p —1)/2,(p — 1)/2]. If n of these residues are < 0

then
G-

Note that we could equally well choose the residues in [1,p — 1], and
define t to be the number of times the residue appears in the second half

(p+1)/2,(p—1).

10.6 a= -1

Proposition 10.6. If p is an odd prime then
(—1) 1 if p=1mod 4,
p) |-1ifp=—1modH4.
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Proof. We have to consider the residues
—1,-2,...,—(p—1)/2 mod p.

All these are in the required range | — (p — 1)/2, (p — 1)/2]. It follows that
t = (p —1)/2; all the remainders are negative.

Hence
<__1) _ (—1)Dr2
P

_ J1lif p=1mod4,
] -1ifp=—1mod4.

Example: According to this,
2 -1
§-6)--
3 3
(since 3 = —1 mod 4), ie 2 is a quadratic non-residue mod 3.

Again
12 -1
—_— = —_— = 17
(13> (13>

since 13 = 1 mod 4. Thus 12 is a quadratic residue mod 13. In fact it is easy

to see that
12 =25 = 52 mod 13.

10.7 a=2

Proposition 10.7. If p is an odd prime then

(2)_ 1 if p = £1 mod 8,
p) | —1ifp=+3modSs.

Proof. We have to consider the residues
2,4,6,...,(p—1) mod p.

Let
p=8n+r,
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where r € {1,3,5,7}. We have to determine in each case how many of the
residues lie in the first half of [1,p — 1], and how many in the second.

We can describe these two ranges as (0, p/2) and (p/2,p), or [1, [p/2]] and
[[p/2] + 1,p — 1], where we write [z] for the largest integer < z.

If r =1 then

[p/2] = 4n,

and the 2n residues
2,4,6,...,4n mod p

are in the first half, while the remaining
(p—1)/2—-2n=2n

are in the second half.
Thus the number ¢ = 2n in the second half of the range is even, and so

9

[p/2] =4n +1,

If » =3 then
so the 2n residues

2,4,6,...4n mod p

are in the first half, as before, and the number in the second half is

p—1)/2—-2n=(4n+1) —2n=2n+1,

{--

[p/2] = 4n + 2,

which is odd. Hence

in this case.
If » =5 then

so the 2n + 1 residues
2,4,6,...4n,4n + 2 mod p
are in the first half, and the number in the second half is

p—1/2—2n+1)=4n+2)—(2n+1)=2n+1,
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which is odd. Hence

in this case.
Finally, if » = 7 then
[p/2] = 4n + 3,

so the 2n + 1 residues
2,4,6,...4n,4n + 2 mod p
are in the first half, and the number in the second half is
p—1)/2—(2n+1)=(4n+3)— 2n+1) =2n+2,

which is even. Hence )
o
p

10.8 Hensel’s Lemma

Suppose f(z) € Z[z|; and suppose
n=np{...pr.
We know from the Chinese Remainder Theorem that the congruence
f(z) =0mod n
reduces to the simultaneous congruences
f(n) = 0mod pf’

for 1 <q¢<r.
So we are reduced to solving congruences of the form

f(n) =0 mod p°.
We can divide this into two parts: First we must solve
f(n) =0 mod p,
which is tantamount to solving the equation
flz) =0

in the field F, = Z/(p). Secondly, we must see if a solution mod p can be
extended to a solution mod p°.
Hensel’s Lemma is a useful tool for tackling this second part.
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Proposition 10.8. Suppose p is a prime; and suppose f(x) € Z[z]. If
f(a) = 0mod p°® but f'(a) #Z 0 mod p
(where e > 1 and f'(x) = df /dx is the derivative of f(x)) then there is a

unique extension of a to a solution b mod p°*! ie
f(b) =0 mod p°*! and b = a mod p*;
and b is unique mod p¢tt.

Proof. Let
b=a-+tp°.

Suppose f(x) = z™. By the binomial theorem,

fla+1tp°) = a™ + ntp® + (i>t2p26 +---
= a" + na" 'tp® mod p¢t!
= f(a) + f'(a)tp® mod p*.
By addition,
fla+1tp) = f(a) + f'(a)tp® mod p=**

for any f(z) € Z|x].
By hypothesis, f(a) =0 mod p®, say

fla) = ep”.

Thus we have to solve

cp® + f'(a)tp® = 0 mod p=*,
ie

¢+ f'(a)t =0 mod p.
Since p 1 f'(a) this has a unique solution ¢ mod p. O
Corollary 10.1. Suppose f[z] € Z[z]; and suppose
f(a) =0 mod p and f'(a) # 0 mod p.

Then the solution a mod p has a unique extension to a solution mod p® for
any e > 1, ie there is a unique b mod p° such that

f(b) =0 mod p° and b = a mod p.
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Example: Consider the congruence
23 = 3 mod 25.
The homomorphism
0:x— 2°:(Z)5)* — (Z/5)*

is injective since the group (Z/5)* has order 4, and so contains no element
of order 3. Hence 6 is bijective; and so there is a unique  mod 5 such that

23 = 3 mod 5.
It is easy to see that this unique solution is x = 2 mod 5:
23 = 3 mod 5.
Now let f(z) = x* — 3. Then
() = 32

and so

1/(2) # 0 mod 5.

It follows that the solution 2 mod 5 extends to a unique solution mod 52.
To find this solution, note that

(2 +5t)* — 3 =5+ 60t mod 5°.
Thus
1+ 12t = 0 mod 5,
ie
t =2 mod 5.

Hence the solution to the congruence mod 52 is

2+45-2=12mod 25.

Unfortunately, Hensel’s Lemma as we have stated it does not apply to a
congruence like
z? = 3 mod 8;
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for if
flz)=a?~3

then
f'(z) =22 =0 mod 2

for all x. We need a slight variant of the Lemma, which can be proved in
exactly the same way.

Proposition 10.9. Suppose p is a prime, and f(x) € Z[zx]; and suppose
f(a) =0 mod p* and p’ || f(a),

where e > 2f. Then there is a unique extension of a to a solution b mod p+!
1€
f(b) = 0 mod p**! and b = a mod p*;

and b is unique mod pt!.

Example: If p =2 and f(x) = 2* — ¢ then we have to start with a solution
mod 8.
Consider the congruence

2? = 9 mod 24.
This reduces to the congruences
?=9=1mod8, 2*=9=0mod3.
The first congruence has the solutions
r=1,3,5,7mod 8.
The second has the solution
x =0 mod 3.
Putting these together, the congruence mod 24 has 4 solutions:

r=29,3,21,15 mod 24.
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