
Chapter 10

Quadratic Residues

10.1 Introduction

Definition 10.1. We say that a ∈ Z is a quadratic residue mod n if there
exists b ∈ Z such that

a ≡ b2 mod n.

If there is no such b we say that a is a quadratic non-residue mod n.

Example: Suppose n = 10.
We can determine the quadratic residues mod n by computing b2 mod n

for 0 ≤ b < n. In fact, since

(−b)2 ≡ b2 mod n,

we need only consider 0 ≤ b ≤ [n/2].
Thus the quadratic residues mod 10 are 0, 1, 4, 9, 6, 5; while 3, 7, 8 are

quadratic non-residues mod 10.
The following result is trivial.

Proposition 10.1. If a, b are quadratic residues mod n then so is ab.

10.2 Prime moduli

We are mainly interested in quadratic residues modulo a prime.

Proposition 10.2. Suppose p is an odd prime. Then just (p − 1)/2 of the
numbers 1, 2, . . . , p − 1 are quadratic residues mod p, and the same number
are quadratic non-residues.
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Proof. Consider b2 mod p for b = 1, 2, . . . , (p− 1)/2. We know these give all
the quadratic residues, since

(p− b)2 ≡ b2 mod p.

Moreover these squares are all different mod p. For

b2 ≡ c2 mod p =⇒ (b+ c)(b− c) ≡ 0 mod p

=⇒ b ≡ ±c mod p.

We can express this in group-theoretic terms as follows:
The map

θ : x 7→ x2 : (Z/p)× → (Z/p)×

is a homomorphism, and
ker θ = {±1}.

By the first isomorphism theorem of group theory, if θ : G → H is a
homomorphism then

im θ ∼= G/ ker θ.

In particular, if G is finite then

#(ker θ) ·#(im θ) = #(G).

(This holds for abelian or non-abelian groups.)
In our case, im θ is just the set of non-zero quadratic residues. It follows

that they constitute just half of the non-zero residues mod p; the other half
must be the quadratic non-residues.

Proposition 10.3. Suppose p is an odd prime; and suppose a, b are coprime
to p. Then

1. If both of a, b, or neither, are quadratic residues, then ab is a quadratic
residue;

2. If one of a, b is a quadratic residue and the other is a quadratic non-
residue then ab is a quadratic non-residue.

Proof. Suppose a is a quadratic residue. As b runs over the non-zero residues
mod p, so does ab. We know that ab is a quadratic residue if b is a quadratic
residue, and we know that just half the non-zero residues are quadratic
residues. It follows that ab must be a quadratic non-residue if b is a quadratic
non-residue.
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Now suppose a is a quadratic non-residue. We have just seen that if b
is a quadratic residue then ab is a quadratic non-residues. But we know
that only half the residues are quadratic non-residues. It follows that ab
must be a quadratic residue in the remaining cases, when b is a quadratic
non-residue.

10.3 The Legendre symbol

Definition 10.2. Suppose p is a prime; and suppose a ∈ Z. We set

(
a

p

)
=


0 if p | a
1 if p - a and a is a quadratic residue mod p

−1 if if a is a quadratic non-residue mod p.

Example:

(
2

3

)
= −1,

(
1

4

)
= 1,

(
−1

4

)
= −1,

(
3

5

)
= −1.

Proposition 10.4. 1.

(
0

p

)
= 0,

(
1

p

)
= 1;

2. a ≡ b mod p =⇒
(
a

p

)
=

(
b

p

)
;

3.

(
ab

p

)
=

(
a

p

) (
b

p

)
.

Proof. (1) and (2) follow from the definition, while (3) follows from the pre-
vious Proposition.

10.4 Euler’s criterion

Proposition 10.5. Suppose p is an odd prime. Then(
a

p

)
≡ a(p−1)/2 mod p.

Proof. The result is obvious if p | a.
Suppose p - a. Then(

a(p−1)/2
)2

= ap−1 ≡ 1 mod p,
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by Fermat’s Little Theorem. It follows that(
a

p

)
≡ ±1 mod p.

Consider the map

θ : a 7→ a(p−1)/2 : (Z/p)× → {±1}.
Evidently θ is a homomorphism.

We know that (Z/p)× is cyclic. It follows that θ is surjective. (In fact it
is clear that

a(p−1)/2 = −1

if a is a primitive root mod p; for otherwise a would have order ≤ (p− 1)/2)
It follows that

#(ker θ) = (p− 1)/2.

But since the group (Z/p)× is cyclic, it only has one subgroup of each
possible order. Thus there is only one non-trivial homomorphism

(Z/p)× → {±1}.
It follows that θ must be the same as the homomorphism

a 7→
(
a

p

)
: (Z/p)× → {±1},

which proves the Proposition.

Alternatively, and perhaps more directly, suppose a is a quadratic residue
mod p, say a ≡ b2 mod p. Then

a(p−1)/2 ≡ (b2)(p−1)/2 = bp−1 ≡ 1 mod p,

by Fermat’s Little Theorem.
We have seen that

a(p−1)/2 ≡ ±1 mod p.

Since (Z/p)× is cyclic, not all a satisfy

a(p−1)/2 ≡ 1 mod p.

Say
c(p−1)/2 ≡ −1 mod p.

Evidently c must be a quadratic non-residue mod p. If a is a quadratic
residue mod p then

(ca)(p−1)/2 = c(p−1)/2a(p−1)/2 ≡ −1 mod p.

But as a runs over the quadratic residues mod p, ca must run over the
quadratic non-residues, whence the result.
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10.5 Computing

(
a

p

)
Suppose p is an odd prime. We usually take 0, 1, 2, . . . , p−1 as representatives
of the residue-classes mod p

Let S denote the first half of the residue-set mod p:

S = [1, 2, . . . , (p− 1)/2].

Then each residue x mod p can be written as

x ≡ ±s mod p

for a unique s ∈ S. (In other words, instead of taking 0, 1, . . . , p−1 as repre-
sentatives of the residue-classes we could take−(p−1)/2, . . . ,−1, 0, 1, . . . , (p−
1)/2}.)

Now suppose a ∈ (Z/p)×. Consider the residues

aS = {a, 2a, . . . , p− 1

2
a}.

Each of these can be written as ±s for some s ∈ S, say

as = ε(s)π(s),

where ε(s) = ±1.
The map

π : S → S

is injective, ie if s, s′ ∈ S then

s 6= s′ =⇒ π(s) 6= π(s′).

For

π(s) = π(s′) =⇒ as ≡ ±as′ mod p

=⇒ s ≡ ±s′ mod p

(since p - a)

=⇒ s ≡ −s′ mod p

(since s 6= s′)

=⇒ s+ s′ ≡ 0 mod p,
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which is impossible.
Thus π is a permutation of S (by the pigeon-hole principle, if you like).

It follows that as s runs over the elements of S so does π(s).
Thus if we multiply together the congruences

as ≡ ε(s)π(s) mod p

we get
a(p−1)/21 · 2 · · · (p− 1)/2

on the left, and

ε(1)ε(2) · · · ε((p− 1)/2)1 · 2 · · · (p− 1)/2

on the right. Hence

a(p−1)/2 ≡ ε(1)ε(2) · · · ε((p− 1)/2) mod p.

But

a(p−1)/2 ≡
(
a

p

)
mod p,

by Euler’s criterion. Thus we have established

Theorem 10.1. Suppose p is an odd prime; and suppose a ∈ Z. Consider

a, 2a, . . . , a(p− 1)/2 mod p,

choosing residues in [−(p − 1)/2, (p − 1)/2]. If n of these residues are < 0
then (

a

p

)
= (−1)t.

Note that we could equally well choose the residues in [1, p − 1], and
define t to be the number of times the residue appears in the second half
(p+ 1)/2, (p− 1).

10.6 a = −1

Proposition 10.6. If p is an odd prime then(
−1

p

)
=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.
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Proof. We have to consider the residues

−1,−2, . . . ,−(p− 1)/2 mod p.

All these are in the required range ] − (p − 1)/2, (p − 1)/2]. It follows that
t = (p− 1)/2; all the remainders are negative.

Hence (
−1

p

)
= (−1)(p−1)/2

=

{
1 if p ≡ 1 mod 4,

−1 if p ≡ −1 mod 4.

Example: According to this,(
2

3

)
=

(
−1

3

)
= −1

(since 3 ≡ −1 mod 4), ie 2 is a quadratic non-residue mod 3.
Again (

12

13

)
=

(
−1

13

)
= 1,

since 13 ≡ 1 mod 4. Thus 12 is a quadratic residue mod13. In fact it is easy
to see that

12 ≡ 25 = 52 mod 13.

10.7 a = 2

Proposition 10.7. If p is an odd prime then(
2

p

)
=

{
1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof. We have to consider the residues

2, 4, 6, . . . , (p− 1) mod p.

Let
p = 8n+ r,
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where r ∈ {1, 3, 5, 7}. We have to determine in each case how many of the
residues lie in the first half of [1, p− 1], and how many in the second.

We can describe these two ranges as (0, p/2) and (p/2, p), or [1, [p/2]] and
[[p/2] + 1, p− 1], where we write [x] for the largest integer ≤ x.

If r = 1 then
[p/2] = 4n,

and the 2n residues
2, 4, 6, . . . , 4n mod p

are in the first half, while the remaining

(p− 1)/2− 2n = 2n

are in the second half.
Thus the number t = 2n in the second half of the range is even, and so(

2

p

)
= 1,

If r = 3 then
[p/2] = 4n+ 1,

so the 2n residues
2, 4, 6, . . . 4n mod p

are in the first half, as before, and the number in the second half is

(p− 1)/2− 2n = (4n+ 1)− 2n = 2n+ 1,

which is odd. Hence (
2

p

)
= −1

in this case.
If r = 5 then

[p/2] = 4n+ 2,

so the 2n+ 1 residues

2, 4, 6, . . . 4n, 4n+ 2 mod p

are in the first half, and the number in the second half is

(p− 1)/2− (2n+ 1) = (4n+ 2)− (2n+ 1) = 2n+ 1,
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which is odd. Hence (
2

p

)
= −1

in this case.
Finally, if r = 7 then

[p/2] = 4n+ 3,

so the 2n+ 1 residues

2, 4, 6, . . . 4n, 4n+ 2 mod p

are in the first half, and the number in the second half is

(p− 1)/2− (2n+ 1) = (4n+ 3)− (2n+ 1) = 2n+ 2,

which is even. Hence (
2

p

)
= 1.

10.8 Hensel’s Lemma

Suppose f(x) ∈ Z[x]; and suppose

n = pe1
1 . . . per

r .

We know from the Chinese Remainder Theorem that the congruence

f(x) ≡ 0 mod n

reduces to the simultaneous congruences

f(n) ≡ 0 mod pei
i

for 1 ≤ i ≤ r.
So we are reduced to solving congruences of the form

f(n) ≡ 0 mod pe.

We can divide this into two parts: First we must solve

f(n) ≡ 0 mod p,

which is tantamount to solving the equation

f(x) = 0

in the field Fp = Z/(p). Secondly, we must see if a solution mod p can be
extended to a solution mod pe.

Hensel’s Lemma is a useful tool for tackling this second part.
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Proposition 10.8. Suppose p is a prime; and suppose f(x) ∈ Z[x]. If

f(a) ≡ 0 mod pe but f ′(a) 6≡ 0 mod p

(where e ≥ 1 and f ′(x) = df/dx is the derivative of f(x)) then there is a
unique extension of a to a solution b mod pe+1 ie

f(b) ≡ 0 mod pe+1 and b ≡ a mod pe;

and b is unique mod pe+1.

Proof. Let
b = a+ tpe.

Suppose f(x) = xn. By the binomial theorem,

f(a+ tpe) = an + ntpe +

(
2

n

)
t2p2e + · · ·

≡ an + nan−1tpe mod pe+1

≡ f(a) + f ′(a)tpe mod pe+1.

By addition,

f(a+ tpe) ≡ f(a) + f ′(a)tpe mod pe+1

for any f(x) ∈ Z[x].
By hypothesis, f(a) ≡ 0 mod pe, say

f(a) = cpe.

Thus we have to solve

cpe + f ′(a)tpe ≡ 0 mod pe+1,

ie

c+ f ′(a)t ≡ 0 mod p.

Since p - f ′(a) this has a unique solution t mod p.

Corollary 10.1. Suppose f [x] ∈ Z[x]; and suppose

f(a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p.

Then the solution a mod p has a unique extension to a solution mod pe for
any e ≥ 1, ie there is a unique b mod pe such that

f(b) ≡ 0 mod pe and b ≡ a mod p.
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Example: Consider the congruence

x3 ≡ 3 mod 25.

The homomorphism

θ : x 7→ x3 : (Z/5)× → (Z/5)×

is injective since the group (Z/5)× has order 4, and so contains no element
of order 3. Hence θ is bijective; and so there is a unique x mod 5 such that

x3 ≡ 3 mod 5.

It is easy to see that this unique solution is x ≡ 2 mod 5:

23 ≡ 3 mod 5.

Now let f(x) = x3 − 3. Then

f ′(x) = 3x2;

and so
f ′(2) 6≡ 0 mod 5.

It follows that the solution 2 mod 5 extends to a unique solution mod 52.
To find this solution, note that

(2 + 5t)3 − 3 ≡ 5 + 60t mod 52.

Thus

1 + 12t ≡ 0 mod 5,

ie

t ≡ 2 mod 5.

Hence the solution to the congruence mod 52 is

2 + 5 · 2 = 12 mod 25.

Unfortunately, Hensel’s Lemma as we have stated it does not apply to a
congruence like

x2 ≡ 3 mod 8;
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for if
f(x) = x2 − 3

then
f ′(x) = 2x ≡ 0 mod 2

for all x. We need a slight variant of the Lemma, which can be proved in
exactly the same way.

Proposition 10.9. Suppose p is a prime, and f(x) ∈ Z[x]; and suppose

f(a) ≡ 0 mod pe and pf ‖ f(a),

where e > 2f . Then there is a unique extension of a to a solution b mod pe+1

ie
f(b) ≡ 0 mod pe+1 and b ≡ a mod pe;

and b is unique mod pe+1.

Example: If p = 2 and f(x) = x2−c then we have to start with a solution
mod 8.

Consider the congruence

x2 ≡ 9 mod 24.

This reduces to the congruences

x2 ≡ 9 ≡ 1 mod 8, x2 ≡ 9 ≡ 0 mod 3.

The first congruence has the solutions

x ≡ 1, 3, 5, 7 mod 8.

The second has the solution

x ≡ 0 mod 3.

Putting these together, the congruence mod 24 has 4 solutions:

x ≡ 9, 3, 21, 15 mod 24.
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