
Chapter 13

Quadratic fields and quadratic
number rings

13.1 Quadratic number fields

Definition 13.1. A quadratic number field is a number field of degree 2.

The integer d ∈ Z is said to be square-free if it has no square factor, ie

a2 | d =⇒ a = ±1.

Thus the square-free integers are

±1,±2,±3,±5, . . . .

Proposition 13.1. Suppose d 6= 1 is square-free. Then the numbers

x+ y
√
d (x, y ∈ Q)

form a quadratic number field Q(
√
d.

Moreover, every quadratic number field is of this form; and different
square-free integers d, d′ 6= 1 give rise to different quadratic number fields.

Proof. Recall the classic proof that
√
d is irrational;

√
d =

m

n
=⇒ n2d = m2,

and if any prime factor p | d divides the left hand side to an odd power, and
the right to an even power.
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It is trivial to see that the numbers x + y
√
d form a commutative ring,

while

1

x+ y
√
d

=
x− y

√
d

(x− y
√
d)(x+ y

√
d)

=
x− y

√
d

x2 − dy2
,

where x2 − dy2 6= 0 since
√
d /∈ Q.

It follows that these numbers form a field; and the degree of the field is 2
since 1,

√
d form a basis for the vector space.

Conversely, suppose F is a quadratic number field. Let 1, θ be a basis
for the vector space. Then 1, θ, θ2 are linearly independent, ie θ satisfies a
quadratic equation

aθ2 + bθ + c = 0 (a, b, c ∈ Q).

Since F is of degree 2, a 6= 0, and we can take a = 1. Thus

θ =
−b±

√
D

2
,

with D = b2 − 4c.
Now

D = a2d,

where d is a square-free integer (with a ∈ Q). It follows easily that

F = Q(
√
d).

Finally if d 6= d′ then Q(
√
d) 6= Q(

√
d′). For otherwise

√
d′ = x+ y

√
d

for some x, y ∈ Q; and so, on squaring,

d′2 = x2 + dy2 + 2xy
√
d.

But this implies that
√
d ∈ Q if xy 6= 0; while y = 0 =⇒

√
d = x ∈ Q, and

x = 0 =⇒ d′ = dy2,

which is easily seen to be incompatible with d, d′ being square-free.
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13.2 Conjugacy

We suppose in the rest of the Chapter that we are working in a specific
quadratic number field Q(

√
d).

Definition 13.2. We define the conjugate of

z = x+ y
√
d

to be
z̄ = x− y

√
d

If d < 0 then this coincides with the complex conjugate; but if d > 0 then
both z and z̄ are real; and

z = z̄ ⇐⇒ z ∈ Q.

Proposition 13.2. The map

z 7→ z̄ : Q(
√
d)→ Q(

√
d)

is an automorphism of Q(
√
d). In fact it is the only such automorphism

apart from the trivial map z 7→ z.

The proof is identical to that we gave for gaussian numbers.

Definition 13.3. The norm of z = x+ y
√
d ∈ Q(

√
d) is

N (z) = zz̄ = x2 − dy2.

Proposition 13.3. 1. N (z) ∈ Q;

2. N (z) = 0 ⇐⇒ z = 0;

3. N (zw) = N (z)N (w);

4. If a ∈ Q then N (a) = a2;

Again, the proof is identical to that we gave for the corresponding result
for gaussian numbers.
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13.3 Quadratic number rings

We want to determine the number ring

A = Q(
√
d) ∩ Z̄

associated to the number field Q(
√
d), ie we want to find which numbers

x+ y
√
d are algebraic integers.

Theorem 13.1. Suppose

z = x+ y
√
d ∈ Q(

√
d).

Then

1. If d 6≡ 1 mod 4
z ∈ Z̄ ⇐⇒ z = m+ n

√
d,

where m,n ∈ Z.

2. If d ≡ 1 mod 4 then

z ∈ Z̄ ⇐⇒ z =
m+ n

√
d

2
,

where m,n ∈ Z and m ≡ n mod 2.

Proof. If
z = x+ y

√
d ∈ Z̄

then
z̄ = x ∈ y

√
d ∈ Z̄

since z and z̄ satisfy the same polynomials over Q. Hence

z + z̄ = 2x ∈ Z̄ ∩Q = Z.

Also
N (z) = zz̄ = x2 − dy2 ∈ Z.

It follows that
4dy2 = d(2y)2 ∈ Z =⇒ 2y ∈ Z

since d is square-free. (For suppose 2y = m/n, where gcd(m,n) = 1. Then
dm2/n2 ∈ Z. If the prime p | n then

p2 | dm2 =⇒ p2 | d,
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which is impossible since d is square-free.)
Thus

z =
m+ n

√
d

2
,

where m,n ∈ Z. Now

N (z) =
m2 − dn2

4
∈ Z,

ie

m2 ≡ dn2 mod 4.

If n is even then so is m; and if m is even then so is n, since 4 - d. On
the other hand if m,n are both odd then

m2 ≡ n2 ≡ 1 mod 4.

It follows that
d ≡ 1 mod 4.

In other words, if d 6≡ 1 mod 4 then m,n are even, and so

z = a+ b
√
d,

with a, b ∈ Z.
On the other hand, if d ≡ 1 mod 4 then m,n are both even or both odd.
It only remains to show that if d ≡ 1 mod 4 and m,n are both odd then

z =
m+ n

√
d

2
∈ Z̄,

It is sufficient to show that

θ =
1 +
√
d

2
∈ Z̄,

since
z = (a+ b

√
d) + θ,

where
a = (m− 1)/2, b = (n− 1)/2 ∈ Z.

But

(θ − 1/2)2 = d/4,
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ie

θ2 − θ + (1− d)/4.

But (1− d)/4 ∈ Z if d ≡ 1 mod 4. Hence

θ ∈ Z̄.

13.4 Units I: Imaginary quadratic fields

Suppose F is a number field, with associated number ring A (the algebraic
integers in F ). By ‘abuse of language’, as the French say, we shall speak of
the units of F when we are really referring to the units in A.

Proposition 13.4. Suppose z ∈ Q(
√
d) is an algebraic integer. Then

z is a unit ⇐⇒ N (z) = ±1.

Proof. Suppose z is a unit, say

zw = 1,

where w is also an integer. Then

N (zw) = N (z)N (w) = N (1) = 12 = 1.

Since N (z),N (w) ∈ Z it follows that

N (z) = N (w) = ±1.

On the other hand, if
N (z) = zz̄ = ±1

then
z−1 = ±z̄ ∈ Z̄.

Theorem 13.2. Suppose d is square-free and d < 0. Then the group of units
is finite. More precisely,

1. If d = −1 there are 4 units: ±1,±i;
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2. if d = −3 there are 6 units: ±1,±ω,±ω2, where ω = (1 +
√
−3)/2;

3. in all other cases, there are just 2 units: ±1.

Proof. Suppose ε is a unit.
If d 6≡ 1 mod 4 then

ε = m+ n
√
d (m,n ∈ Z).

Thus
N (ε) = m2 + dn2 = 1,

If d < −1 then it follows that m = ±1, n = 0. If d = −1 then there are the
additional solutions m = 0, n = ±1, as we know.

If d ≡ 1 mod 4 then

ε =
m+ n

√
d

2
,

where m,n ∈ Z with m ≡ n mod 2. In this case,

N (ε) =
m2 − dn2

4
= 1,

ie

m2 − dn2 = 4.

If d ≤ −7 then this implies that m = ±1, n = 0. This only leaves the case
d = −3, where

m2 + 3n2 = 4.

This has 6 solutions: m = ±2, n = 0, giving ε = ±1; and m = ±1, n = ±1,
giving ε = ±ω,±ω2.

Units in real quadratic fields (where d > 0) have a very different character,
requiring a completely new idea from the theory of diophantine approxima-
tion; we leave this to another Chapter.
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