
Chapter 3

The Prime Number Theorem

This chapter gives without proof the two basic results of analytic number
theory.

3.1 The Theorem

Recall that if f(x), g(x) are two real-valued functions, we write

f(x) ∼ g(x)

to mean

lim
x→∞

f(x)

g(x)
= 1.

Recall too that π(x) denotes the number of primes ≤ x.

Theorem 3.1. As x→∞,

π(x) ∼ x

lnx

This tells us that if we are looking at numbers around 106 then we may
expect roughly 1 number in

ln 106 = 6 ln 10 ≈ 14

to be prime. (Recall that lnx denotes the logarithm to base e.)
Note that this includes even numbers, which of course we know are not

prime. So approximately 1 odd number in 7 around 1 million is prime.
When we get to 1012 the density is halved; about 1 number in 28 is prime.
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3.2 A little history

The history of the prime number theorem is very interesting.
Although the result had been conjectured earlier by Lagrange and others,

Gauss seems to have been the first to make a serious statistical study, starting
when he was a teenager, and eventually examining a million primes or more.

He actually expressed the conjecture slightly differently, as

π(x) ∼ Li(x),

where Li(x) is the ‘logarithmic integral’

Li(x) =

∫ x

2

dt

ln t
.

It is reasonably easy to see, on integrating by parts, that

Li(x) ∼ x

lnx
,

so this is equivalent to the form we gave. In fact Li(x) gives a slightly better
estimate.

But the great break-through came in 1859 — so this is the 150th anniver-
sary — when an 8-page paper by Riemann, “On the number of primes less
than a given number”, was published. 1

Riemann’s technique must have seemed almost like magic at the time. It
was based on Euler’s Product Formula,

1 +
1

2s
+

1

3s
+ · · · =

∏(
1− 1

ps

)−1

which we considered earlier, but Riemann now considered s as a complex
variable. This was the start of analytic number theory — the use of complex
functions in number theory.

The function

ζ(s) = 1 +
1

2s
+

1

3s
+ · · ·

on the left is now known as the Riemann zeta function, or just the zeta
function if there is no ambiguity. (There are many different zeta functions
in use today.) By convention, the letter s is used rather than z in analytic
number theory, because that is what Riemann used.

Note that there is no difficulty in defining the terms in the series:

1

ns
= e−(lnn)s.

1Thanks to David Wilkins, you can find this paper in both German and English at
http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta/
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The series for ζ(s) only converges for <(s) > 1. But Riemann showed
that ζ(s) can be extended to a meromorphic function (a function with only
isolated poles) in the whole complex plane.

The function can be extended easily to the half-plane <(s) > 0 by noting
that (

1− 2

2s

)
ζ(s) =

(
1− 2

2s

)(
1 +

1

2s
+

1

3s
+ · · ·

)
= 1− 1

2s
+

1

3s
− · · · .

Also it is not difficult to see that ζ(s) has a pole with residue 1 at s = 1,
and that this is the only pole in the half-plane <(s) > 0:

ζ(s) =
1

s− 1
+ f(s),

where f(s) is homomorphic in the half-plane.
Riemann established — this is much more difficult — a ‘functional equa-

tion’ relating ζ(s) and ζ(1−s) by applying a variant of the Fourier transform.
Note that the map s 7→ 1 − s is reflection in the point 1/2, and sends the
line <(s) = 1/2 into itself.

Riemann was led by his study of this relation to the conclusion that the
zeros of ζ(s) in the ‘critical strip’ 0 ≤ <(s) ≤ 1 all lie on the ‘critical line’
<(s) = 1/2. This is the Riemann Hypothesis, perhaps the most famous
unsolved problem in mathematics.

Riemann showed that the Prime Number Theorem would follow from his
Conjecture.

Riemann didn’t prove the Theorem, but it was proved 40 years later
using Riemann’s method by two French mathematicians, Hadamard and de
la Vallée Poussin. They showed that it was in fact sufficient to establish that
ζ(s) had no zeros on the line <(s) = 1, which is relatively easy.

The reason why the zeros of ζ(s) are so important in that in studying the
distribution of the primes we take the logarithmic derivative ζ ′(s)/ζ(s) (as
in the proof that

∑
1/p diverges in the last Chapter), and the zeros of ζ(s)

give poles of this function. In general, the behaviour of a complex function
is largely determined by its poles.

It has been shown that the first 1013 zeros all lie on the critical line.
The technique is relatively simple. If s = σ + it is a zero then so is its
complex conjugate s̄ = σ− it, and it follows from the functional relation that
1 − s̄ = (1 − σ) + it is also a zero. Thus if s is not on the critical line then
there is a pair of zeros with the same imaginary part t. It is (relatively) easy
to compute the number of zeros with 0 ≤ t ≤ T , say, and show that there is
no sudden increase by 2.
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3.3 Alternative version

Recall that pn denotes the nth prime.

Proposition 3.1. As n→∞,

pn ∼ n lnn.

Thus the millionth prime is around

1000000 · 6 · ln10 ≈ 14000000.

We will show that this result is equivalent to the Prime Number Theorem,
ie either result can be derived from the other.

Proof. This is a little exercise in the use of the asymptotic operator ∼.
Let

f(x) =
x

lnx
, g(x) = x lnx.

These functions are “asymptotically inverse” in the sense that

f(g(x)) ∼ x, g(f(x)) ∼ x.

For

f(g(x)) =
x lnx

lnx+ ln lnx

= x
lnx

lnx+ ln lnx

∼ x,

since
lnx+ ln lnx

lnx
= 1 +

lnx

ln lnx
∼ 1.

Similarly

g(f(x)) =
x(lnx− ln lnx)

lnx

= x

(
1− lnx

ln lnx

)
∼ x.

Now suppose the Prime Number Theorem holds: By definition,

π(pn) = n.
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It follows that
g(π(pm)) = g(n).

By hypothesis,
π(pn) ∼ f(pn).

Hence
g(π(pm)) ∼ g(f(pn)) ∼ pn,

from above. Thus
pn ∼ g(n) = n lnn.

Now suppose
pn ∼ g(n).

Given x, let
pn ≤ x < pn+1.

By definition,
π(x) = n.

Hence
f(pn) ≤ f(x) < f(pn+1).

By hypothesis,
pn ∼ g(n).

Hence
f(pn) ∼ f(g(n)) ∼ n,

and similarly
f(pn+1) ∼ n+ 1 ∼ n.

It follows that
π(x) = n ∼ f(x) =

x

lnx
,

as required.

3.4 Dirichlet’s Theorem

Theorem 3.2. There are an infinity of primes in each arithmetic sequence

an+ b (gcd(a, b) > 1).
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(If a, b are not coprime, then there is at most one prime in the sequence,
namely gcd(a, b).)

We are not going to give a proof of this result, but will give some indication
of Dirichlet’s argument.

His proof followed Riemann’s method, with the addition of a technique
for singling out primes in an arithmetic sequence, using Dirichlet characters.

If m ∈ N, a Dirichlet character χ mod m is a map

χ : Z→ C

such that

1. s ≡ t mod m =⇒ χ(s) = χ(t);

2. gcd(s,m) > 1 =⇒ χ(s) = 0;

3. χ(st) = χ(s)χ(t);

4. χ(1) = 1.

(From (3),
χ(1)2 = χ(1) =⇒ χ(1) = 0 or 1.

If χ(1) = 0 then χ(r) = 0 for all r. So condition (4) is added to exclude this
trivial case.)

For those familiar with group representations, a Dirichlet character χ mod
m can be identified with a character of the finite abelian group (Z/m)∗ formed
by the residue classes mod m coprime to m.

The principal character mod m is that given by

χ(r) =

{
1 if gcd(r,m) = 1,

0 if gcd(r,m) > 1.

To the Dirichlet character χ we associate the L-series

Lχ(s) =
∑
n≥1

χ(n)

ns
.

Because of the multiplicative property of the Dirichlet character, the Euler
Product Formula extends to the L-series:

Lχ(s) = 1 +
χ(2)

2s
+
χ(3)

3s
+ · · · =

∏(
1− χ(p)

ps

)−1

.

This allows Riemann’s technique to be applied.
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As with ζ(s), it is (relatively) easy to show that the principal L-function
has a pole at s = 1, and no other pole in <(s) > 0, while the other L-functions
have no poles at all in this region.

It is also relatively easy to show that if gcd(r,m) = 1 then we can find a
linear combination of Dirichlet characters mod m taking value 1 at r and 0
elsewhere:

c1χ1(t) + c2χ2(t) + · · · cdχd(t) =

{
1 if t ≡ r mod m,

0 otherwise.

It follows that the corresponding linear combination

c1Lχ1(s) + c2Lχ2(s) + · · · cdLχd
(s) =

∑
n≡r mod m

1

ns
.

This only gives a taste of the proof of Dirichlet’s Theorem. If you would
like to learn more there is a highly-regarded (and not too difficult) book on
the subject of zeta- and L-functions: “Riemann’s Zeta Function” by Harold
M. Edwards (available for under ¿10 from Amazon).

Like ζ(s), each L-function satsifies a ‘functional equation’ relating L(s)
and L(1− s). This allows Lχ(s) to be extended to the whole complex plane.

The Generalised Riemann Hypothesis (often abbreviated to GRH) says
that the zeros of each L-functions in the critical strip 0 < <(s) < 1 lie on
the critical line <(s) = 1/2.

The argument used to prove the Prime Number Theorem allows Dirich-
let’s Theorem to be greatly strengthened: the primes are distributed evenly
among the arithmetic sequences modulo m. More precisely, let π(m, r, x)
denote the number of primes

p ≡ r mod m, p ≤ x.

Then if gcd(r,m) = 1,

π(m, r, x) ∼ 1

φ(m)

x

lnx
,

where φ(m) is the number of remainders r ∈ (0,m) coprime to m. (This is
Euler’s totient function, which we shall meet later.)

As an example, it follows that

Number of primes p ≤ x, p ≡ 1 mod 4

Number of primes p ≤ x, p ≡ −1 mod 4
→ 1 as x→∞.

Or as we can say crudely, primes ≡ 1 mod 4 appear roughly as often as
primes ≡ −1 mod 4.
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