
Chapter 5

Modular arithmetic

5.1 The modular ring

Definition 5.1. Suppose n ∈ N and x, y ∈ Z. Then we say that x, y are
equivalent modulo n, and we write

x ≡ y mod n

if
n | x− y.

It is evident that equivalence modulo n is an equivalence relation, dividing
Z into equivalence or residue classes.

Definition 5.2. We denote the set of residue classes modn by Z/(n).

Evidently there are just n classes modulo n if n ≥ 1;

#(Z/(n)) = n.

We denote the class containing a ∈ Z by ā, or just by a if this causes no
ambiguity.

Proposition 5.1. If
x ≡ x′, y ≡ y′

then
x+ y ≡ x′ + y′, xy ≡ x′y′.

Thus we can add and multiply the residue classes modd.

Corollary 5.1. If n > 0, Z/(n) is a finite commutative ring (with 1).
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Example: Suppose n = 6. Then addition in Z/(6) is given by

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

while multiplication is given by

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

.

5.2 The prime fields

Theorem 5.1. The ring Z/(n) is a field if and only if n is prime.

Proof. Recall that an integral domain is a commutative ring A with 1 having
no zero divisors, ie

xy = 0 =⇒ x = 0 or y = 0.

In particular, a field is an integral domain in which every non-zero element
has a multiplicative inverse.

The result follows from the following two lemmas.

Lemma 5.1. Z/(n) is an integral domain if and only if n is prime.

Proof. Suppose n is not prime, say

n = rs,

where 1 < r, s < n. Then
r̄ s̄ = n̄ = 0.

So Z/(n) is not an integral domain.
Conversely, suppose n is prime; and suppose

r̄ s̄ = rs = 0.

Then
n | rs =⇒ n | r or n | s =⇒ r̄ = 0 or s̄ = 0.
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Lemma 5.2. A finite integral domain A is a field.

Proof. Suppose a ∈ A, a 6= 0. Consider the map

x 7→ ax : A→ A.

This map is injective; for

ax = ay =⇒ a(x− y) = 0 =⇒ x− y = 0 =⇒ x = y.

But an injective map
f : X → X

from a finite set X to itself is necessarily surjective.
In particular there is an element x ∈ A such that

ax = 1,

ie a has an inverse. Thus A is a field.

5.3 The additive group

If we ‘forget’ multiplication in a ring A we obtain an additive group, which we
normally denote by the same symbol A. (In the language of category theory
we have a ‘forgetful functor’ from the category of rings to the category of
abelian groups.)

Proposition 5.2. The additive group Z/(n) is a cyclic group of order n.

This is obvious; the group is generated by the element 1 mod n.

Proposition 5.3. The element a mod n is a generator of Z/(n) if and only
if

gcd(a, n) = 1.

Proof. Let
d = gcd(a, n).

If d > 1 then 1 is not a multiple of a mod n, since

1 ≡ ra mod n =⇒ 1 = ra+ sn =⇒ d | 1.

Conversely, if d = 1 then we can find r, s ∈ Z such that

ra+ sn = 1;

so
ra ≡ 1 mod n,

Thus 1 is a multiple of a mod n, and so therefore is every element of Z/(n).
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Note that there is only one cyclic group of order n, up to isomorphism.
So any statement about the additive groups Z/(n) is a statement about finite
cyclic groups, and vice versa. In particular, the result above is equivalent to
the statement that if G is a cyclic group of order n generated by g then gr is
also a generator of G if and only if gcd(r, n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each
order m | n allowed by Lagrange’s Theorem, and this subgroup is cyclic. In
the language of modular arithmetic this becomes:

Proposition 5.4. The additive group Z/(n) had just one subgroup of each
order m | n. If n = mr this is the subgroup

〈r〉 = {0, r, 2r, . . . , (m− 1)r}.

5.4 The multiplicative group

If A is a ring (with 1, but not necessarily commutative) then the invertible
elements form a group; for if a, b are invertible, say

ar = ra = 1, bs = sb = 1,

then
(ab)(rs) = (rs)(ab) = 1,

and so ab is invertible.
We denote this group by A×.

Proposition 5.5. The element a ∈ Z/(n) is invertible if and only if

gcd(a, n) = 1.

Proof. If a is invertible modn, say

ab ≡ 1 mod n,

then
ab = 1 + tn,

and it follows that
gcd(a, n) = 1.

Conversely, if this is so then

ax+ ny = 1,

and it follows that x is the inverse of a mod n.
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We see that the invertible elements in Z/(n) are precisely those elements
that generate the additive group Z/(n).

Definition 5.3. We denote the group of invertible elements in Z/(n) by
(Z/n)×. We call this group the multiplicative group mod n.

Thus (Z/n)× consists of the residue classes mod n coprime to n, ie all of
whose elements are coprime to n.

Definition 5.4. If n ∈ N, we denote by φ(n) the number of integers r such
that

0 ≤ r < n and gcd(r, n) = 1.

This function is often called Euler’s totient function. As we shall see, it
plays a very important role in elementary number theory.

Example:

φ(0) = 0,

φ(1) = 1,

φ(2) = 1,

φ(3) = 2,

φ(4) = 2,

φ(5) = 4,

φ(6) = 2.

It is evident that if p is prime then

φ(p) = p− 1,

since every number in [0, p) except 0 is coprime to p.

Proposition 5.6. The order of the multiplicative group (Z/n)× is φ(n)

This follows from the fact that each class can be represented by a remain-
der r ∈ [0, n).

Example: Suppose n = 10. Then the multiplication table for the group
(Z/10)× is

1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

.
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We see that this is a cyclic group of order 4, generated by 3:

(Z/10)× = C4.

Suppose gcd(a, n) = 1. To find the inverse x of a mod n we have in effect
to solve the equation

ax+ ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean
Algorithm, in effect to determine gcd(a, n).

Example: Let us determine the inverse of 17 mod 23. Applying the Eu-
clidean Algorithm,

23 = 17 + 6,

17 = 3 · 6− 1.

Thus

1 = 3 · 6− 17

= 3(23− 17)− 17

= 3 · 23− 4 · 17.

Hence
17−1 = −4 = 19 mod 23.

Note that having found the inverse of a we can easily solve the congruence

ax = b mod n

In effect
x = a−1b.

For example, the solution of

17x = 9 mod 23

is
x = 17−19 = −4 · 9 = −36 ≡ −13 ≡ 10 mod 23.
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5.5 Homomorphisms

Suppose m | n. Then each remainder mod n defines a remainder mod m.
For example, if m = 3, n = 6 then

0 mod 6 7→ 0 mod 3,

1 mod 6 7→ 1 mod 3,

2 mod 6 7→ 2 mod 3,

3 mod 6 7→ 0 mod 3,

4 mod 6 7→ 1 mod 3,

5 mod 6 7→ 2 mod 3.

Proposition 5.7. If m | n the map

r mod n 7→ r mod n

is a ring-homomorphism
Z/(n)→ Z/(m).

5.6 Finite fields

We have seen that Z/(p) is a field if p is prime.
Finite fields are important because linear algebra extends to vector spaces

over any field; and vector spaces over finite fields are central to coding theory
and cryptography, as well as other branches of pure mathematics.

Definition 5.5. The characteristic of a ring A is the least positive integer
n such that

n 1’s︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive
group A.

Evidently Z, Q, R, C are all of characteristic 0.

Proposition 5.8. The ring Z/(n) is of characteristic n.

Proposition 5.9. The characteristic of a finite field is a prime.

Proof. Let us write

n · 1 for

n 1’s︷ ︸︸ ︷
1 + 1 + · · ·+ 1 .
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Suppose the order n is composite, say n = rs. By the distributive law,

n · 1 = (r · 1)(s · 1).

There are no divisors of zero in a field; hence

r · 1 = 0 of s · 1 = 0,

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a
prime or 0.

Proposition 5.10. Suppose F is a finite field of characteristic p. Then F
contains a subfield isomorphic to Z/(p).

Proof. Consider the additive subgroup generated by 1:

〈1〉 = {0, 1, 2 · 1, . . . , (p− 1) · 1}.

It is readily verified that this set is closed under addition and multiplication;
and the map

r mod p 7→ r · 1 : Z/(p)→ 〈1〉
is an isomorphism.

This field is called the prime subfield of F .

Corollary 5.2. There is just one field containing p elements, up to isomor-
phism, namely Z/(p).

Theorem 5.2. A finite field F of characteristic p contains pn elements for
some n ≥ 1

Proof. We can consider F as a vector space over its prime subfield P . Sup-
pose this vector space is of dimension n. Let e1, . . . , en be a basis for the
space. Then each element of F is uniquely expressible in the form

a1e1 + · · ·+ anen,

where a1, . . . , an ∈ P . There are just p choices for each ai. Hence the total
number of choices, ie the number of elements in F , is pn.

Theorem 5.3. There is just one field F containing q = pn elements for each
n ≥ 1, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but not field con-
taining 6 elements.

We are not going to prove this theorem until later.

Definition 5.6. We denote the field containing q = pn elements by Fq.

The finite fields are often called Galois fields, after Evariste Galois who
discovered them.
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