Chapter 16

7[v/3] and the Lucas-Lehmer
test

16.1 The field Q(+/3)

We have
Q(W3)={z+yV3:z,ycQ}.

The conjugate and norm of
z=x4+yV3

are

Z=1x—yV3, N(2) =2z = 22 — 3%

16.2 The ring Z[V/3]
Since 3 # 1 mod 4,

Z(Q(V3) =Q(V3)NZ = {m+nV3:m,ncZ} = Z[V3].

16.3 The units in Z[v/3]

Evidently

€:2+\/§

is a unit, since

N =2-3-12=1,
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Theorem 16.1. The units in Z[¢] are the numbers
+" (n€Z),

where

6:2+\/§.

Proof. We have to show that e is the smallest unit > 1.
Suppose 17 = m + ny/3 is a unit satisfying

l1<n<e
Since N'(n) = nij = £1,

=m—nV3=4n"'e(-1,1).

Hence
n—7=2nV3ec(0,1+e),
ie
0<n<(3+V3)/2V3 <2
Thus
n=1
But now

Nmn)=+1 = m?> -3 =41
= m = £2.

Since —2 + v/3 < 0, we conclude that m =2, n =1, ie

N = €.

16.4 Unique Factorisation

Theorem 16.2. Z[\/3] is a Unique Factorisation Domain.
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Proof. We hurry through the argument, which we have already given 3 times,
for Z,T" and Z[¢).
Given z,w € Z[V/3] we write

§=w+y\/§ (r,y € Q),

and choose the nearest integers m,n to x,y, so that

jx— ml, |y — ] < =
x—ml, |y m_2.
Then we set
g =m+nv3,
so that .
2= (r—m)+ (-3,
and s~ qu
NE=T) = (o= m)? = 3(y — n)?
Now 5 1
Z — qu
_2< <.
4_N< w )_4
In particular,
Z— qw
IN( ) <1,

N (z = qu)| < IN(w)].

This allows the Euclidean Algorithm to be used in Z[v/3], and as a con-
sequence Eulid’s Lemma holds, and unique factorisation follows. n

16.5 The primes in Z[v/3]

Theorem 16.3. Suppose p € N is a rational prime. Then
1. If p =2 or 3 then p ramifies in Z[\/3];
2. If p = £1 mod 12 then p splits into conjugate primes in Z[\/3],

p = +nT;
3. If p = £5 mod 12 then p remains prime in Z[\/3].
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Proof. To see that 2 ramifies, note that
(14 V3)% = 2,

where epsilon = 2 + V/3 is a unit. It is evident that 3 = \/32 ramifies.

Suppose p # 2, 3.
If p splits, say

then
Hence

Thus if 7 = m + nv/3 then
m? — 3n? = +p.
In particular,
m? — 3n? = 0 mod p.

Now
n=0modp = m=0modp = p|m,

which is impossible, Hence

1

a=mn " modp

satisfies
a® = 3 mod p.

(-

Now suppose p = 5 mod 12, ie p = 1 mod 4, p = 2 mod 3. By Gauss’
Quadratic Reciprocity Law,

0-0)-0)-

Similarly, if p = —5 mod 12, ie p = 3 mod 4, p = 1 mod 3, then by Gauss’
Quadratic Reciprocity Law,

Q60

So we see that p does not split in Z[v/3] if p = 5 mod 12.

It follows that
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On the other hand, it follows in the same way that

3
p==+lmod 12 — (—) =1,
p

in which case we can find a such that
a’* = 3 mod p,
ie
pl(a®=3)=(a—V3)(a+V3).
If now p does not split then this implies that

pla=v3orplat V3.

But both these imply that p | 1, which is absurd. O

16.6 The Lucas-Lehmer test for Mersenne pri-
mality
Theorem 16.4. If p is prime then
P=2—1

is prime if and only if
' = —1mod P,

where

e:2—|—\/§.

Proof. Suppose P is prime. Then
e = 2P + (V3T

()

2 =92 mod P

since

for r # 0, P.
But

by Fermat’s Little Theorem, while



by Euler’s criterion. Thus

=2+ (%)x/ﬁ

Now
2?=(-1=-1mod3 = P =1mod 3,

while
4|2 = P =—1mod 4.

So by Gauss’ Reciprocity,

= —1.
Thus
F=2-V3=e=¢"

Hence

™' =1 mod P,
ie

¢’ = 1 mod P.
Consequently,

2" = 41 mod P.

We need a little trick to determine which of these holds; it is based on
the observation that

(1+3)2=4+2V3 =2
As before,

(14+V3) =1+3PY/2/3mod P
=1—+3mod P.

But now

(1-V3)(1+V3) = -2
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and so

1—vV3==2(1+3)"
Thus

(1+V3)*' = -2 mod P,
ie
(1+v3)* = —2mod P,
ie
(2¢)* = —2 mod P.

To deal with the powers of 2, note that by Euler’s criterion

oP—1)/2 — (%) mod P.

2\ J1if P=41modS§,
P) ] -1if P=41modSs.

P=2"—-1=—1mod8.

Recall that

In this case,

Thus

2(P=1)/2 =1 mod P,
and so

2(P+1)/2 = 9 mod P,
ie

22" = 2 mod P.
So our previous result simplifies to
&= 1 mod P.

This was on the assumption that P is prime. Suppose now that P is not
prime, but that the above result holds.
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Then P has a prime factor ) < VP. Also
' = —1mod Q.

It follows that the order of € mod @ is 2P.
But consider the quotient-ring

A=Z[V3]/(Q).
This ring contains just Q2 elements, represented by
m+nv5 (0 <m,n< Q).

It follows that the group A* of invertible elements contains < Q? ele-
ments. Hence any invertible element of A has order < Q?, by Lagrange’s
Theorem. In particular the order or ¢ mod P is < Q%. Accordingly

2P < Q%
which is impossible, since
Q*<P=2"—1.
We conclude that P is prime. O

As with the weaker result in the last Chapter, there is a more computer-
friendly version of the Theorem, using the fact that
"= _1mod P

can be re-written as
p—2 _op—2
e 4+ e =0mod P.

Let , ,
S; = e +e?
Then
57 = 24
= Siy1 + 2,
ie
Sit1 = sf — 2.
Since

sop=€e+e =4
it follows that s; € N for all ¢, with the sequence starting 4, 14,194, . ...
Now we can re-state our result.

Corollary 16.1. Let the integer sequence s; be defined recursively by
Si+1 = S? — 2, So — 4.

Then
P =27 —1 isprime <= P|s,_s.
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