Appendix C

Quadratic Reciprocity: an alternative proof

Hundreds of different proofs of this theorem have been published. Gauss, who first proved the result in 1801, gave eight different proofs. We gave a group-theoretic proof in chapter [10]. Here is a shorter combinatorial proof.

Theorem C.1. (The Law of Quadratic Reciprocity) Suppose $p, q \in \mathbb{N}$ are odd primes. Then

$$\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} \frac{q-1}{2}} = \begin{cases} -1 & \text{if } p \equiv q \equiv 3 \mod 4 \\ 1 & \text{otherwise.} \end{cases}$$

Proof. Let

$$S = \{1, 2, \ldots, \frac{p-1}{2}\}, \quad T = \{1, 2, \ldots, \frac{q-1}{2}\}.$$

We shall choose remainders mod p from the set

$$\{-\frac{p}{2} < i < \frac{p}{2}\} = -S \cup \{0\} \cup S,$$

and remainders mod q from the set

$$\{-\frac{q}{2} < i < \frac{q}{2}\} = -T \cup \{0\} \cup T.$$

By Gauss’ Lemma,

$$\left(\frac{q}{p} \right) = (-1)^\mu, \quad \left(\frac{p}{q} \right) = (-1)^\nu.$$

Writing #X for the number of elements in the set X,

$$\mu = \# \{i \in S : qi \mod p \in -S\}, \quad \nu = \# \{i \in T : pi \mod q \in -T\}.$$

By ‘$qi \mod p \in -S$’ we mean that there exists a j (necessarily unique) such that

$$qi - pj \in -S.$$

But now we observe that, in this last formula,

$$0 < i < \frac{p}{2} \implies 0 < j < \frac{q}{2}.$$

3–1
Figure C.1: \(p = 11, q = 7 \)

The basic idea of the proof is to associate to each such contribution to \(\mu \) the ‘point’ \((i, j) \in S \times T\). Thus

\[
\mu = \#\{(i, j) \in S \times T : -\frac{p}{2} < qi - pj < 0\};
\]

and similarly

\[
\nu = \#\{(i, j) \in S \times T : 0 < qi - pj < \frac{q}{2}\},
\]

where we have reversed the order of the inequality on the right so that both formulae are expressed in terms of \((qi - pj) \).

Let us write \([R]\) for the number of integer points in the region \(R \subset \mathbb{R}^2\). Then

\[
\mu = [R_1], \quad \nu = [R_2],
\]

where

\[
R_1 = \{(x, y) \in R : -\frac{p}{2} < qx - py < 0\}, \quad R_2 = \{(x, y) \in R : 0 < qx - py < \frac{q}{2}\},
\]

and \(R \) denotes the rectangle

\[
R = \{(x, y) : 0 < x < \frac{p}{2}, \ 0 < y < \frac{p}{2}\}.
\]

The line

\[
qx - py = 0
\]

is a diagonal of the rectangle \(R \), and \(R_1, R_2 \) are strips above and below the diagonal (Fig C).

This leaves two triangular regions in \(R \),

\[
R_3 = \{(x, y) \in R : qx - py < -\frac{p}{2}\}, \quad R_4 = \{(x, y) \in R : qx - py > \frac{q}{2}\}.
\]
We shall show that, surprisingly perhaps, reflection in a central point sends the integer points in these two regions into each other, so that

\[[R_3] = [R_4]. \]

Since

\[R = R_1 \cup R_2 \cup R_3 \cup R_4, \]

it will follow that

\[[R_1] + [R_2] + [R_3] + [R_4] = [R] = \frac{p-1}{2}, \]

ie

\[\mu + \nu + [R_3] + [R_4] = \frac{p-1}{2}. \]

But if now \([R_3] = [R_4]\) then it will follow that

\[\mu + \nu \equiv \frac{p-1}{2} \mod 2, \]

which is exactly what we have to prove.

It remains to define our central reflection. Note that reflection in the centre \((\frac{p}{4}, \frac{q}{4})\) of the rectangle \(R\) will not serve, since this does not send integer points into integer points. For that, we must reflect in a point whose coordinates are integers or half-integers.

We choose this point by “shrinking” the rectangle \(R\) to a rectangle bounded by integer points, ie the rectangle

\[R' = \{ 1 \leq x \leq \frac{p-1}{2}, 1 \leq y \leq \frac{q-1}{2} \}. \]

Now we take \(P\) to be the centre of this rectangle, ie

\[P = (\frac{p+1}{2}, \frac{q+1}{2}). \]

The reflection is then given by

\[(x, y) \mapsto (X, Y) = (p + 1 - x, q + 1 - y). \]

It is clear that reflection in \(P\) will send the integer points of \(R\) into themselves. But it is not clear that it will send the integer points in \(R_3\) into those in \(R_4\), and vice versa. To see that, let us shrink these triangles as we shrunk the rectangle. If \(x, y \in \mathbb{Z}\) then

\[qx - py < -\frac{p}{2} \implies qx - py \leq -\frac{p+1}{2}; \]

and similarly

\[qx - py > \frac{q}{2} \implies qx - py \geq \frac{q+1}{2}. \]
Now reflection in P does send the two lines
\[qx - py = -\frac{p+1}{2}, \quad qx - py = \frac{q+1}{2} \]
into each other; for
\[qX - pY = q(p+1-x) - p(q+1-y) = (q-p) - (qx - py), \]
and so
\[qx - py = -\frac{p+1}{2} \iff qX - pY = (q-p) + \frac{p+1}{2} = \frac{q+1}{2}. \]

We conclude that $[R_3] = [R_4]$.

Hence $[R] = [R_1] + [R_2] + [R_3] + [R_4] \equiv \mu + \nu \mod 2$, and so
\[\mu + \nu \equiv [R] = \frac{p-1}{2} q - \frac{1}{2}. \]

\[\square \]

Example: Take $p = 37$, $q = 47$. Then
\[
\begin{align*}
\left(\frac{37}{47}\right) &= \left(\frac{47}{37}\right) \text{ since } 37 \equiv 1 \mod 4 \\
&= \left(\frac{10}{37}\right) \\
&= \left(\frac{2}{37}\right) \left(\frac{5}{37}\right) \\
&= -\left(\frac{5}{37}\right) \text{ since } 37 \equiv -3 \mod 8 \\
&= -\left(\frac{37}{5}\right) \text{ since } 5 \equiv 1 \mod 4 \\
&= -\left(\frac{2}{5}\right) \\
&= -(-1) = 1.
\end{align*}
\]
Thus 37 is a quadratic residue mod 47.

We could have avoided using the result for $\left(\frac{2}{p}\right)$:
\[
\begin{align*}
\left(\frac{10}{37}\right) &= \left(\frac{-27}{37}\right) \\
&= \left(\frac{-1}{37}\right) \left(\frac{3}{37}\right)^3 \\
&= (-1)^3 \left(\frac{37}{3}\right) \\
&= \left(\frac{1}{3}\right) = 1.
\end{align*}
\]