Chapter 15
Q(v/5) and the golden ratio

15.1 The field Q(v/5

Recall that the quadratic field
Q(V5) ={z+yV5:z,y € Q.
Recall too that the conjugate and norm of
z2=x+ y\/g

are
z=1x—yVb, N(2) =2z = 22 — 5%

We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

145
b= +2\/_‘

The Greek letter ¢ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.

Leonardo da Vinci explicitly used ¢ in analysing the human figure.

Evidently

Q(v5) = Q(9),

ie each element of the field can be written

z=z+yd (v,y€Q).

The following results are immediate:
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Proposition 15.1.
3. N(x+y¢) =2 +ay — %

4. &, 0 are the roots of the equation

2—r—1=0.

15.2 The number ring Z|¢)

As we saw in the last Chapter, since 5 = 1 mod 4 the associated number ring

consists of the numbers

m + n\/g

Yy
where m = n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field Q(v/5)
18
Zlgp] ={m+n¢ :m,n € Z}.

15.3 Unique Factorisation

Theorem 15.1. The ring Z[¢] is a Unique Factorisation Domain.

Proof. We prove this in exactly the same way that we proved the correspond-
ing result for the gaussian integers I'.

The only slight difference is that the norm can now be negative, so we
must work with [N(2)].

Lemma 15.1. Given z,w € Z[¢| with w # 0 we can find q,r € Z[p| such
that
Z=qw—+r,
with
N (r)] < N (w)].
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Proof. Let
z
— =T+ y(ba
w

where x,y € Q. Let m,n be the nearest integers to x,y, so that

]x—m]<1 |y—n\<1.
-2’ -2
Set
q=m + no.

Then
z

E—q:(x—m)qt(y—n)(b.

Hence
z

N(==a)=(@=m)’+(z=m)ly—n) = (y—n)"
It follows that

z 1
__<N(E_q)<§7
and so
z
N(=—-q)| <5 <1,
1e

IN(z = qu)| < [N (w)].
O
This allows us to apply the euclidean algorithm in Z[¢|, and establish

Lemma 15.2. Any two numbers z,w € Z[¢] have a greatest common divisor
0 such that
d|zw

and
8| z,w = § 0.

Also, § is uniquely defined up to multiplication by a unit.
Moreover, there ezists u,v € Z[¢| such that

uz + vw = 9.
From this we deduce that irreducibles in Z[¢] are primes.
Lemma 15.3. If 7 € Z|[@] is irreducible and z,w € Z[phi] then
T|zw = 7|z orm|w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way. |
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15.4 The units in Z[¢]

Theorem 15.2. The units in Z[¢] are the numbers
+¢" (neZ).

Proof. We saw in the last Chapter that any real quadratic field contains units
# 41, and that the units form the group

{£€" :n € Z},

where € is the smallest unit > 1.

Thus the theorem will follow if we establish that ¢ is the smallest unit
> 1in Z[g).

Suppose 1 € Z[¢] is a unit with

l<n=m+ne < o.

Then
N(n) =nn = +£1,
and so
n==+n"
Hence B
—p ' <n=m+np <ot
Subtracting,

l—¢p ' <n—ij=n(¢p—¢) <o+,
ie

1—

5—1 1 5 5—1
\/_2 <\/5n< +2\/_—I—\/_2

1e

3_2\/5<\/5n§\/3.

So the only possibility is



Thus

n=m+ o.
But
-14+¢<1.
Hence
m >0,
and so
N > €.

15.5 The primes in Z[¢]

Theorem 15.3. Suppose p € N is a rational prime.
1. If p=+1mod 5 then p splits into conjugate primes in Z[¢|:
p = E7T.
2. If p=£2mod 5 then p remains prime in Z[¢).

Proof. Suppose p splits, say

p=7T

Then
N(p) =p* = N(m)N (')

Hence

N(m)=N(r") = £p
Suppose
™ =m+ ne.
Then

N(7) =m? —mn —n? = £p,

and in either case
m? —mn —n? = 0 mod p.

92



If p = 2 then m and n must both be even. (For if one or both of m,n are
odd then so is m? — mn — n?.) Thus

2| m,

which is impossible.
Now suppose p is odd, Multiplying by 4,

(2m —n)? — 5n* = 0 mod p.

But
n=0modp = m=0modp = p|m,

which is impossible. Hence n # 0 mod p, and so
r? = 5 mod p,

where
r = (2m —n)/n mod p.

-

It follows by Gauss’ Reciprocity Law, since 5 = 1 mod 4, that

o

p = +1 mod 5.

Thus

1e

So if p = £2 mod 5 then p remains prime in Z[d].
Now suppose p = +1 mod 5. Then

-

n? =5 mod p,

and so we can find n such that

pln*—=5=(n—V5)(n+5)

93



If p remains prime in Z[¢| then

pln—vsorp|n+vs,

both of which imply that p | 1, which is absurd.
We conclude that

p=+1lmodb5 = p splits in Z[¢].
Finally we have seen in this case that if 7 | p then

N(m)=+p = p==+77.

15.6 Fibonacci numbers
Recall that the Fibonacci sequence consists of the numbers
0,1,1,2,3,5,8,13, ...
defined by the linear recurrence relation
Fopn=Fo+ Foa,

with initial values
FO = O, F1 = 1

There is a standard way of solving a general linear recurrence relation
Ty = A1 Tp_1 + A2Tp_o + -+ + AgTp_g-
Let the roots of the associated polynomial
p(t) =t — it — et ey

be A1, ..., A\g.

If these roots are distinct then the general solution of the recurrence
relation is
The coefficients C',...,Cy are determined by d ‘initial conditions’, eg by
specifying g, ..., xq_ 1.

If there are multiple roots, eg if A occurs e times then the term C'A™ must
be replaced by A"p(A), where p is a polynomial of degree e.
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But these details need not concern us, since we are only interested in the
Fibonacci sequence, with associated polynomial

t?—t—1.
This has roots ¢, ¢. Accordingly,
F, = A¢" + Bo".
Substituting for Fy =0, F; = 1, we get
A+B=0, Ap+ B¢ = 1.

Thus B
B=-A Alp-¢) =1
Since 5 5
-1 5 1—+/5
qb - ¢ = T - = \/67
2 2
this gives

A=1/V5, B=—-1V5.
Our conclusion is summarised in
Proposition 15.3. The Fibonacci numbers are given by
1+ V5"~ (1-+5)

F, =
/5

15.7 The weak Lucas-Lehmer test for Mersenne
primality
Recall that the Mersenne number
M, =2"—1,

where p is a prime.

We give a version of the Lucas-Lehmer test for primality which only works
when p = 3 mod 4. In the next Chapter we shall give a stronger version which
works for all primes.

Proposition 15.4. Suppose the prime p = 3 mod 4. Then
P=2r—1
s prime if and only if

»* = —1 mod P.
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Proof. Suppose first that P is a prime.
Since p = 3 mod 4 and 2* = 1 mod 5,

2P = 23 mod 5
= 3 mod 5.
Hence
P=2P —1=2mod 5.
Now

()
_ 1P+ (\/5>P

5P mod P,

since P divides all the binomial coefficients except the first and last. Thus

1+5F- D25

P
¢ 2

mod P,

since 2 = 2 mod P by Fermat’s Little Theorem.

But -
sP-n/2 — (2
P )

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,

since P = 2 mod 5. Thus

and so

But




It follows that

¢ = —1mod P,
ie

»* = —1 mod P.

Conversely, suppose
»* = —1 mod P.

We must show that P is prime.
The order of ¢ is exactly 2P*!. For

p* " = (¢2p)2 = 1 mod P,
so the order divides 2°™!. On the other hand,
#»* # 1 mod P,

so the order does not divide 27.
Suppose now P is not prime. Since

P =2 mod 5,
it must have a prime factor
@ = +2 mod 5.

(If all the prime factors of P were = +1 mod 5 then so would their product
be.) Hence @) does not split in Z|[¢).
Since @ | P, it follows that

¢”" # 1 mod Q;

and so, by the argument above, the order of ¢ mod Q is 2P,
We want to apply Fermat’s Little Theorem, but we need to be careful
since we are working in Z[¢] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[¢| then

2971 =1 mod Q

for all z € Z[¢] with z #Z 0 mod Q.
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Proof. The quotient-ring A = Z[¢] mod @ is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z € A, z # 0 then
the map

w—zw:A— A

is injective, and so surjective (since A is finite). Hence there is an element 2’
such that zz’ = 1, ie z is invertible in A.
Also, A contains just % elements, represented by

m+nvV5 (0<m,n<Q).

Thus the group
A*=A\O

has order Q? — 1, and the result follows from Lagrange’s Theorem. m
In particular, it follows from this Lemma that
¢Q2_1 =1 mod Q,

ie the order of ¢ mod @ divides Q2 — 1. But we know that the order of
¢ mod @ is 2°*!. Hence

Q1= (Q-1)(Q+1).

But
ged(Q —1,Q+1) = 2.
It follows that either

20Q—1,2°|Q+1or2||Q+1,2°|Q—1.

Since () < P = 2P — 1, the only possibility is

2" Q+1,
ie @ = P, and so P is prime. O
This result can be expressed in a different form, more suitable for com-
putation.
Note that

»* = —1 mod P

can be re-written as

¢2P71 + (;527(?71) = (0 mod P.
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Let

ti=¢" + ¢

Then
t2 _ ¢2i+1 + 2 + ¢27(i+1)
=tiy1 +2,

ie

ti+1 - t? - 2
Since

to =2

it follows that t; € N for all <.
Now we can re-state our result.

Corollary 15.1. Let the integer sequence t; be defined recursively by
ti—i—l = t? - 2, to - 2

Then
P =2 —1isprime <= P|t, .
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