
Chapter 4

Fermat and Mersenne Primes

4.1 Fermat primes

Theorem 4.1. Suppose a, n > 1. If

an + 1

is prime then a is even and
n = 2e

for some e.

Proof. If a is odd then an + 1 is even; and since it is ≥ 5 it is composite.
Suppose n has an odd factor r, say

n = rs.

We have
xr + 1 = (x+ 1)(xr−1 − xr−2 + xr−3 − · · ·+ 1).

On substituting x = as,
as + 1 | an + 1,

and so an + 1 is composite.
Thus n has no odd factor, and so

a = 2e.

Definition 4.1. The number

F (n) = 22n

+ 1

is called a Fermat number; and if it is prime it is called a Fermat prime.
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Thus

F (0) = 3, F (1) = 5, F (2) = 17, F (3) = 257, F (4) = 65537, F (5) = 4, 294, 967, 297, . . .

Fermat conjectured that the Fermat numbers are all prime. Sadly this
has proved untrue.

F (0) to F (4) are indeed prime, but F (5) is composite.
How do I know? There is a standard Unix program factor for factorizing

numbers. Here is what I get:

tim@boole:~> /usr/games/factor 65537

65537: 65537

tim@boole:~> /usr/games/factor 4294967297

4294967297: 641 6700417

There is a sister program primes which will print all the primes in a given
range:

tim@boole:~> /usr/games/primes 1000 1020

1009

1013

1019

No further Fermat primes have been found, and a heuristic argumnent
suggests there probably are no more. (A heuristic argument is one that
suggests a result is true, but does not prove it.)

The probability that
F (n) = 22n

is prime is
1

ln(F (n)
≈ 1

2n ln 2
.

Thus the expected number of Fermat primes F (n with n ≥ 5 is

1

ln 2

∑
n≥5

1

2n
=

1

ln 2

1

16
≈

So one could wager that there are no more Fermat primes after F (4).

4.2 Mersenne primes

Theorem 4.2. Suppose a, n > 1. If

an − 1

is prime then a = 2 and n is prime.

Proof. We have

xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ 1).
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Thus
a− 1 | an − 1,

and so an − 1 is composite if a > 2.
Now suppose n is composite, say

n = rs,

with r, s > 1. We have

xr + 1 = (x+ 1)(xn−1 − xn−2 + xn−3 − · · ·+ 1).

Substituting x = as,
as − 1 | an − 1,

and so an − 1 is composite.
Hence n is prime.

Definition 4.2. For each prime p the number

M(p) = 2p − 1

is called a Mersenne number; and if it is prime it is called a Mersenne prime.

We have

M(2) = 3, M(3) = 8, M(5) = 31, M(7) = 63, M(11) = 2047, . . .

The following heuristic argument suggests that there are an infinity of
Mersenne primes.

The probability that M(p) is prime is

1

ln(2p − 1)
≈ 1

p ln 2
.

Thus the expected number of Mersenne primes is

1

ln 2

∑ 1

p
,

where the sum runs over all primes.
But we have seen that ∑ 1

p

is divergent. So this suggests (strongly) that the number of Mersenne primes
is infinite.

We shall see later that there is a subtle test — the Lucas-Lehmer test —
for the primality of the Mersenne number M(p). This allows the primality
of very large Mersenne numbers to be tested on the computer much more
quickly than other numbers of the same size.

For this reason, the largest known prime is invariably a Mersenne prime;
and the search for the next Mersenne prime is a popular pastime.

The Great Internet Mersenne Prime Search, or GIMPS (http://www.
mersenne.org/), is a communal effort — which anyone can join — to find
the next Mersenne prime. The record to date, the 47th known Mersenne
prime, is

243,112,609 − 1.

This was discovered in 2008, and has over 10 million digits.
We shall join the search, and possibly win a large prize!
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4.3 Perfect numbers

Definition 4.3. We denote the sum of the divisors of n > 0 by σ(n)

Note that we include 1 and n in the factors of n. Thus

σ(1) = 1, σ(2) = 3, σ(3) = 4, σ(4) = 7, σ(5) = 6, σ(6) = 12, . . .

Definition 4.4. The integer n > 0 is said to be perfect if it is the sum of its
proper divisors, ie if

σ(n) = 2n.

Thus 6 is the first perfect number.

Theorem 4.3. If M(p) = 2p − 1 is a Mersenne prime then

n = 2p−1(2p − 1)

is perfect; and every even perfect number is of this form.

Proof. The number n above has factors

2r and 2rM(p)

for r = 0, 1, . . . , p− 1, with sum

σ(n) =
(
1 + 2 + 22 + · · ·+ 2p−1

)
(1 +M(p)) = (2p − 1)2p = 2n.

Lemma 4.1. The function σ(n) is multiplicative in the number-theoretic
sense, ie

gcd(m,n) = 1 =⇒ σ(mn) = σ(m)σ(n).

Proof. If gcd(m,n) = 1 then the factors of mn are the numbers rs, where
r is a factor of m, and s is a factor of n. The result follows at once from
this.

Now suppose n is an even perfect number. Let

n = 2em,

where m is odd. Then

σ(n) = (2e+1 − 1)σ(m).

But σ(n) = 2n. Thus

2e+1m = (2e+1 − 1)σ(m).

It follows that
2e+1 − 1 | m,

say
m = (2e+1 − 1)q.

Then
σ(m) = 2e+1q = m+ q.

But m and q are both factors of m. It follows that they are the only
factors of m. Hence q = 1 and

m = 2e+1 − 1

is prime.

It is not known if there are any odd perfect numbers. If there are, then
the first one is > 10500.
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