Exercise 11

In exercises 1-5, find the value of the given Legendre symbol

** 1.
$$\left(\frac{13}{23}\right)$$

** 2.
$$\left(\frac{23}{13}\right)$$

** 3.
$$\left(\frac{40}{53}\right)$$

** 4.
$$\left(\frac{36}{61}\right)$$

** 5.
$$\left(\frac{2009}{2011}\right)$$

In exercises 6-15, determine if the given congruence has a solution, and if it does find the smallest solution $x \ge 0$.

** 6.
$$x^2 \equiv 10 \mod 36$$

** 7.
$$x^2 + 12 \equiv 0 \mod 75$$

*** 8.
$$x^2 \equiv 8 \mod 2009$$

*** 9.
$$x^2 \equiv 56 \mod 2317$$

*** 10.
$$x^2 + 2x + 17 \equiv 0 \mod 35$$

*** 11.
$$x^2 + 3x + 1 \equiv 0 \mod 13$$

** 12.
$$x^3 \equiv -1 \mod 105$$

*** 13.
$$x^7 \equiv 3 \mod 17$$

*** 14.
$$x^3 + 2 \equiv 0 \mod 27$$

*** 15.
$$x^5 + 3x + 1 \equiv 0 \mod 25$$

**** 16. If n > 0 is an odd number, and $n = p_1 \dots p_r$, we define the Jacobi symbol $\left(\frac{a}{n}\right)$ by

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \dots \left(\frac{a}{p_r}\right).$$

Show that if m, n > 0 are both odd then

$$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = \begin{cases} -1 & \text{if } m \equiv n \equiv -1 \mod 4, \\ 1 & \text{otherwise} \end{cases}$$

In exercises 21-25, find the value of the given Jacobi symbol

- ** 17. $\left(\frac{9}{15}\right)$
- ** 18. $\left(\frac{15}{9}\right)$
- ** 19. $\left(\frac{40}{49}\right)$
- ** 20. $\left(\frac{2317}{2009}\right)$
- ** 21. $\left(\frac{2009}{2317}\right)$
- **** 22. Is there a power 7^n which ends with the digits 000011? If so, what is the smallest such n?
- **** 23. Is there a power of 2009 which ends with the digits 2317?
- **** 24. Is there a power of 2319 which ends with the digits 2009?
- *** 25. Determine $\left(\frac{3}{p}\right)$ for an odd prime p without using Quadratic Reciprocity.