Exercise 11 In exercises 1-5, find the value of the given Legendre symbol ** 1. $$\left(\frac{13}{23}\right)$$ ** 2. $$\left(\frac{23}{13}\right)$$ ** 3. $$\left(\frac{40}{53}\right)$$ ** 4. $$\left(\frac{36}{61}\right)$$ ** 5. $$\left(\frac{2009}{2011}\right)$$ In exercises 6-15, determine if the given congruence has a solution, and if it does find the smallest solution $x \ge 0$. ** 6. $$x^2 \equiv 10 \mod 36$$ ** 7. $$x^2 + 12 \equiv 0 \mod 75$$ *** 8. $$x^2 \equiv 8 \mod 2009$$ *** 9. $$x^2 \equiv 56 \mod 2317$$ *** 10. $$x^2 + 2x + 17 \equiv 0 \mod 35$$ *** 11. $$x^2 + 3x + 1 \equiv 0 \mod 13$$ ** 12. $$x^3 \equiv -1 \mod 105$$ *** 13. $$x^7 \equiv 3 \mod 17$$ *** 14. $$x^3 + 2 \equiv 0 \mod 27$$ *** 15. $$x^5 + 3x + 1 \equiv 0 \mod 25$$ **** 16. If n > 0 is an odd number, and $n = p_1 \dots p_r$, we define the Jacobi symbol $\left(\frac{a}{n}\right)$ by $$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \dots \left(\frac{a}{p_r}\right).$$ Show that if m, n > 0 are both odd then $$\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) = \begin{cases} -1 & \text{if } m \equiv n \equiv -1 \mod 4, \\ 1 & \text{otherwise} \end{cases}$$ In exercises 21-25, find the value of the given Jacobi symbol - ** 17. $\left(\frac{9}{15}\right)$ - ** 18. $\left(\frac{15}{9}\right)$ - ** 19. $\left(\frac{40}{49}\right)$ - ** 20. $\left(\frac{2317}{2009}\right)$ - ** 21. $\left(\frac{2009}{2317}\right)$ - **** 22. Is there a power 7^n which ends with the digits 000011? If so, what is the smallest such n? - **** 23. Is there a power of 2009 which ends with the digits 2317? - **** 24. Is there a power of 2319 which ends with the digits 2009? - *** 25. Determine $\left(\frac{3}{p}\right)$ for an odd prime p without using Quadratic Reciprocity.