Chapter 2

Euclid's Theorem

Theorem 2.1. There are an infinity of primes.

This is sometimes called Euclid's Second Theorem, what we have called Euclid's Lemma being known as Euclid's First Theorem.

Proof. Suppose to the contrary there are only a finite number of primes, say

$$p_1, p_2, \ldots, p_r$$

Consider the number

$$N = p_1 p_2 \cdots p_r + 1$$

Then N is not divisible by p_i for i = 1, ..., r, since N has remainder 1 when divided by each of these primes.

Take any prime factor q of N. (We know from the Fundamental Theorem that there is such a prime.)

Then q differs from all of the primes p_1, \ldots, p_r , since it divides N.

Hence our assumption that the number of primes is finite is untenable. \Box

2.1 Variants on Euclid's proof

Proposition 2.1. There are an infinite number of primes of the form

$$p = 4n - 1.$$

Proof. Suppose there are only a finite number of such primes, say

$$p_1, p_2, \ldots, p_r.$$

Consider the number

 $N = 4p_1p_2\cdots p_r - 1.$

Since N is odd, it is a product of odd prime factors.

Any odd number is of the form 4n + 1 or 4n - 1. If all the prime factors of N were of the form 4n + 1 their product N would be of this form. Since it is not, we conclude that N has a prime factor of the form 4n - 1.

This must differ from p_1, \ldots, p_r , since none of these primes divides N.

Hence we have a further prime of the form 4n - 1, contradicting our original assumption.

Rather suprisingly, perhaps, we cannot show in the same way that there are an infinity of primes of the form 4n + 1, although that is true.

There is one other variant.

Proposition 2.2. There are an infinite number of primes of the form

$$p = 6n - 1.$$

The proof is left to the reader.

2.2 Euler's Product Formula

Consider the formal equation

$$1+2+3+4+\dots = (1+2+2^2+\dots)(1+3+3^2+\dots)(1+5+5^2+\dots)\dots$$

This doesn't make sense as it stands, since everything is divergent. However, each term on the left corresponds to a finite product on the right. For example

$$12 = 2^2 \cdot 3 \cdot 1 \cdot 1 \cdots,$$

with 2^2 from the first sum on the right, 3 from the second, and 1 from the remainder.

But now raise each term to the power r:

$$1+2^{r}+3^{r}+4^{r}+\dots = \left(1+2^{r}+(2^{2})^{r}+\dots\right)\left(1+3^{r}+(3^{2})^{r}+\dots\right)\left(1+5^{r}+(5^{2})^{r}+\dots\right)\dots$$

Again, each term on the left corresponds to a finite product on the right. At first sight this doesn't make any more sense.

However, r can be negative, eg if r = -2 the equation reads

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \left(1 + \frac{1}{2^2} + \frac{1}{2^4} + \dots\right) \left(1 + \frac{1}{3^2} + \frac{1}{3^4} + \dots\right) \dots$$

This makes perfect sense; everything is convergent.

The series

$$1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

converges for s > 1. This can be seen by comparison with the integral

$$\int_{2}^{\infty} \frac{1}{x^{s}} dx.$$

For

$$\frac{1}{(n+1)^s} < \int_n^{n+1} \frac{1}{x^s} dx < \frac{1}{n^s}$$

and so

$$\int_{1}^{n} \frac{1}{x^{s}} dx < 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \dots + \frac{1}{n^{s}} < \int_{1}^{n+1} \frac{1}{x^{s}} dx,$$

from which the result follows.

(This is a very useful technique, which is often used in number theory: If f(x) > 0 and $f(x) \to 0$ as $x \to \infty$ then

$$\sum f(n)$$
 and $\int f(x)dx$

converge or diverge together.)

Note that we can sum each of the geometric series on the right of the Product Formula:

$$1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \dots = \left(1 - \frac{1}{p^s}\right)^{-1}$$

so that the Product Formula takes the form

$$\sum_{n} \frac{1}{n^s} = \left(\prod_{p} (1 - \frac{1}{p^s})\right)^{-1}.$$

Theorem 2.2. The series

$$\sum \frac{1}{p}$$

(where p runs over the primes) diverges.

Proof. Taking s = 1 in the above formula, the series

$$\sum \frac{1}{n}$$

diverges. So the product

$$\prod \left(1 - \frac{1}{p}\right)^{-1}$$

also diverges.

It follows that the inverse

$$\prod \left(1 - \frac{1}{p}\right) = 0,$$

ie the partial product

$$P_n = \prod_1^n \left(1 - \frac{1}{p}\right) \to 0$$

as $n \to \infty$.

We say that the infinite product 'diverges to 0'. Taking logarithms, it follows that

$$\sum_{p} \log\left(1 - \frac{1}{p}\right) = -\infty.$$

Recall that

$$\log(1-x) = -x + \frac{x^2}{2} - \frac{x^3}{3} + \cdots$$

If x is small, say |x| < 1/2, we can combine the second and later terms:

$$|x^2/2 - x^3/3 + \dots| \le x^2/2(1 + x + x^2 + \dots)$$

= $\frac{x^2}{2(1 - x)}$
 $\le x^2.$

Thus

$$\frac{1}{p} = -\log(1 - \frac{1}{p}) + a_p.$$

where $\sum a_p$ converges, since

$$|a_p| \le \frac{1}{p^2},$$

and $\sum 1/p^2$ converges with $\sum 1/n^2$. We conclude that $\sum 1/p$ is the sum of a divergent series and a convergent series, and therefore diverges.

Note that

$$\sum_{p} \frac{1}{p^r}$$

converges for r > 1, since

$$\sum_{n} \frac{1}{n^r}$$

converges (by comparison with the integral $\int 1/x^r$).