
Chapter 12

Algebraic numbers and
algebraic integers

12.1 Algebraic numbers

Definition 12.1. A number α ∈ C is said to be algebraic if it satisfies a
polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with rational coefficients ai ∈ Q.

For example,
√

2 and i/2 are algebraic.
A complex number is said to be transcendental if it is not algebraic. Both

e and π are transcendental. It is in general extremely difficult to prove a
number transcendental, and there are many open problems in this area, eg
it is not known if πe is transcendental.

Theorem 12.1. The algebraic numbers form a field Q̄ ⊂ C.

Proof. If α satisfies the equation f(x) = 0 then −α satisfies f(−x) = 0, while
1/α satisfies xnf(1/x) = 0 (where n is the degree of f(x)). It follows that
−α and 1/α are both algebraic. Thus it is sufficient to show that if α, β are
algebraic then so are α + β, αβ.

Lemma 12.1. Suppose V ⊂ C is a finite-dimensional vector space over Q,
with V 6= 0; and suppose x ∈ C. If

xV ⊂ V

then x ∈ Q̄.
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Proof. Let e1, . . . , en be a basis for V . Suppose

xe1 = a11e1 + · · · a1nen

xe2 = a21e1 + · · · a2nen

· · ·
xen = an1e1 + · · · annen.

Then
det(xI − A) = 0,

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 .

This is a polynomial equation with coefficients in Q. Hence x ∈ Q̄.

Consider the vector space

V = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

over Q spanned by the mn elements αiβj. Evidently

αV ⊂ V, βV ⊂ V.

Thus
(α + β)V ⊂ V, (αβ)V ⊂ V.

Hence α + β and αβ are algebraic.

12.2 Algebraic integers

Definition 12.2. A number α ∈ C is said to be an algebraic integer if it
satisfies a monic polynomial equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

with integral coefficients ai ∈ Z. We denote the set of algebraic integers by
Z̄.

Theorem 12.2. The algebraic integers form a ring Z̄ with

Z ⊂ Z̄ ⊂ Q̄.
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Proof. Evidently
Z ⊂ Z̄,

since n ∈ Z satisfies the equation

x− n = 0.

We have to show that

α, β ∈ Z̄ =⇒ α + β, αβ ∈ Z̄.

Lemma 12.2. Suppose S ⊂ C is a finitely-generated abelian group, with
S 6= 0; and suppose x ∈ C. If

xS ⊂ S

then x ∈ Z̄.

Proof. Let s1, . . . , sn generate S. Suppose

xs1 = a11s1 + · · · a1nsn

xs2 = a21s1 + · · · a2nsn

· · ·
xsn = an1s1 + · · · annsn.

Then
det(xI − A) = 0.

This is a monic equation with coefficients in Z. Hence x ∈ Z̄.

Consider the abelian group

S = 〈αiβj : 0 ≤ i < m, 0 ≤ j < n〉

generated by the mn elements αiβj. Evidently

αS ⊂ S, βS ⊂ S.

Thus
(α + β)S ⊂ S, (αβ)S ⊂ S.

Hence α + β and αβ are algebraic integers.

Proposition 12.1. A rational number c ∈ Q is an algebraic integer if and
only if it is a rational integer:

Z̄ ∩Q = Z.
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Proof. Suppose c = m/n, where gcd(m,n) = 1; and suppose c satisfies the
equation

xd + a1x
d−1 + · · ·+ ad = 0 (ai ∈ Z).

Then
md + a1m

d−1n+ · · ·+ adn
d = 0.

Since n divides every term after the first, it follows that n | md. But that is
incompatible with gcd(m,n) = 1, unless n = 1, ie c ∈ Z.

12.3 Number fields and number rings

Suppose F ⊂ C is a field. Then 1 ∈ F , by definition, and so

Q ⊂ F ⊂ C.

We can consider F as a vector space over Q.

Definition 12.3. An algebraic number field (or simply number field is a
subfield F ⊂ C which is a finite-dimensional vector space over Q. The degree
of F is the dimension of this vector space:

degF = dimQ F.

Proposition 12.2. The elements of a number field F are algebraic numbers:

Q ⊂ F ⊂ Q̄.

Proof. Suppose degF = d; and suppose α ∈ F . Then the d+ 1 numbers

1, α, α2, . . . , αd

are linearly dependent over Q, say

a0 + a1α + a2α
2 + · · ·+ adα

d = 0.

Thus
f(α) = 0,

where f(x) is the polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d ∈ Q[x].
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Definition 12.4. The algebraic integers in a number field F are said to form
an algebraic number ring (or simply number ring).

Thus the number ring associated to the number field F is

F ∩ Z̄.

Proposition 12.3. The number ring associated to the field of gaussian num-
bers is the ring Γ of gaussian integers.

Proof. Suppose
z = x+ iy (x, y ∈ Q)

is a gaussian number. We have to show that z is an algebraic integer if and
only if x, y ∈ Z.

If m,n ∈ Z then m+ in ∈ Z̄, since m,n, i ∈ Z̄ and Z̄ is a ring.
Conversely, suppose

z = x+ iy ∈ Z̄.

Then
z̄ = x− iy ∈ Z̄

since z and z̄ satisfy the same polynomials over Q. Hence

z + z̄ = 2x ∈ Z̄ ∩Q = Z.

Similarly
−iz = y − ix ∈ Z̄ =⇒ 2y ∈ Z.

Thus

z =
m+ in

2
,

with m,n ∈ Z.
But now

N (z) = zz̄ ∈ Z̄ ∩Q = Z,

ie

x2 + y2 =
m2 + n2

4
∈ Z,

ie

m2 + n2 ≡ 0 mod 4.
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But m2, n2 ≡ 0 or 1 mod 4. So

m2 + n2 ≡ 0 mod 4 =⇒ 2 | m,n
=⇒ z ∈ Γ.

Example:
√

2 is an algebraic integer, since it satisfies the equation

x2 − 2 = 0.

But
√

2/2 is not an algebraic integer. For if it were,

(
√

2/2)2 = 1/2

would be an algbraic integer (since Z̄ is a ring), which we have just seen is
not so.

Algebraic number theory is the study of number rings. The first question
one might ask is whether a given number ring is a Unique Factorisation
Domain.

We have seen that the number rings Z and Γ are. But in general number
rings are not UFDs.

The foundation of algebraic number theory was Dedekind’s amazing dis-
covery that unique factorisation could be recovered if one added what Dedekind
called ‘ideal numbers’, and what are today called ‘ideals’.

However, we are not going into that theory. We shall only be looking at
a small number of quadratic number rings which are UFDs.

74


