
Chapter 16

Z[
√
3] and the Lucas-Lehmer test

16.1 The field Q(
√
3)

We have
Q(
√

3) = {x+ y
√

3 : x, y ∈ Q}.

The conjugate and norm of

z = x+ y
√

3

are
z̄ = x− y

√
3, N (z) = zz̄ = x2 − 3y2.

16.2 The ring Z[
√
3]

Since 3 6≡ 1 mod 4,

Z(Q(
√

3)) = Q(
√

3) ∩ Z̄ = {m+ n
√

3 : m,n ∈ Z} = Z[
√

3].

16.3 The units in Z[
√
3]

Evidently
ε = 2 +

√
3

is a unit, since
N (ε) = 22 − 3 · 12 = 1,

Theorem 16.1. The units in Z[φ] are the numbers

±εn (n ∈ Z),
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where
ε = 2 +

√
3.

Proof. We have to show that ε is the smallest unit > 1.
Suppose η = m + n

√
3 is a unit > 1. Then m,n ≥ 0. For suppose

η = m− n
√

3, with m,n > 0. Then

m+ n
√

3 > m− n
√

3.

Hence
|η| < 1.

So the only possiblity (if η 6= ε) is η = 1 +
√

3. But this is not a unit since
N (()1 +

√
3) = −2.

16.4 Unique Factorisation
Theorem 16.2. Z[

√
3] is a Unique Factorisation Domain.

Proof. We hurry through the argument, which we have already given 3 times,
for Z,Γ and Z[φ].

Given z, w ∈ Z[
√

3] we write

z

w
= x+ y

√
3 (x, y ∈ Q),

and choose the nearest integers m,n to x, y, so that

|x−m| , |y −m| ≤ 1

2
.

Then we set
q = m+ n

√
3,

so that
z

w
− q = (x−m) + (y − n)

√
3,

and
N (

z − qw
w

) = (x−m)2 − 3(y − n)2.

Now
−3

4
≤ N (

z − qw
w

) ≤ 1

4
.

In particular, ∣∣∣∣N (
z − qw
w

)

∣∣∣∣ < 1,
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ie

|N (z − qw)| < |N (w)| .

This allows the Euclidean Algorithm to be used in Z[
√

3], and as a con-
sequence Eulid’s Lemma holds, and unique factorisation follows.

16.5 The primes in Z[
√
3]

Theorem 16.3. Suppose p ∈ N is a rational prime. Then

1. If p = 2 or 3 then p ramifies in Z[
√

3];

2. If p ≡ ±1 mod 12 then p splits into conjugate primes in Z[
√

3],

p = ±ππ̄;

3. If p ≡ ±5 mod 12 then p remains prime in Z[
√

3].

Proof. To see that 2 ramifies, note that

(1 +
√

3)2 = 2ε,

where ε = 2 +
√

3 is a unit. It is evident that 3 =
√

3
2
ramifies.

Suppose p 6= 2, 3.
If p splits, say

p = ππ′,

then
N (p) = p2 = N (π)N (π′).

Hence
N (π) = N (π′) = ±p.

Thus if π = m+ n
√

3 then

m2 − 3n2 = ±p.

In particular,
m2 − 3n2 ≡ 0 mod p.

Now
n ≡ 0 mod p =⇒ m ≡ 0 mod p =⇒ p | π,

which is impossible, Hence

a ≡ mn−1 mod p
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satisfies
a2 ≡ 3 mod p.

It follows that (
3

p

)
= 1.

Now suppose p ≡ 5 mod 12, ie p ≡ 1 mod 4, p ≡ 2 mod 3. By Gauss’
Quadratic Reciprocity Law,(

3

p

)
=

(
p

3

)
=

(
2

3

)
= −1.

Similarly, if p ≡ −5 mod 12, ie p ≡ 3 mod 4, p ≡ 1 mod 3, then by Gauss’
Quadratic Reciprocity Law,(

3

p

)
= −

(
p

3

)
= −

(
1

3

)
= −1.

So we see that p does not split in Z[
√

3] if p ≡ ±5 mod 12.
On the other hand, it follows in the same way that

p ≡ ±1 mod 12 =⇒
(

3

p

)
= 1,

in which case we can find a such that

a2 ≡ 3 mod p,

ie

p | (a2 − 3) = (a−
√

3)(a+
√

3).

If now p does not split then this implies that

p | a−
√

3 or p | a+
√

3.

But both these imply that p | 1, which is absurd.

16.6 The Lucas-Lehmer test for Mersenne pri-
mality

Theorem 16.4. If p is prime then

P = 2p − 1

is prime if and only if
ε2

p−1 ≡ −1 mod P,

where
ε = 2 +

√
3.
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Proof. Suppose P is prime. Then

εP ≡ 2P + (
√

3)P mod P,

since
P |

(
r

P

)
for r 6= 0, P .

But
2P ≡ 2 mod P

by Fermat’s Little Theorem, while

(
√

3)P−1 = 3
P−1
2 ≡

(
3

P

)
mod P

by Euler’s criterion. Thus

εP ≡ 2 +

(
3

P

)√
3.

Now
2p ≡ (−1)p ≡ −1 mod 3 =⇒ P ≡ 1 mod 3,

while
4 | 2p =⇒ P ≡ −1 mod 4.

So by Gauss’ Reciprocity, (
3

P

)
= −

(
P

3

)
= −

(
1

3

)
= −1.

Thus
εP ≡ 2−

√
3 = ε̄ = ε−1.

Hence

εP+1 ≡ 1 mod P,

ie

ε2
p ≡ 1 mod P.
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Consequently,
ε2

p−1 ≡ ±1 mod P.

We need a little trick to determine which of these holds; it is based on
the observation that

(1 +
√

3)2 = 4 + 2
√

3 = 2ε.

As before,

(1 +
√

3)P ≡ 1 + 3(P−1)/2
√

3 mod P

≡ 1−
√

3 mod P.

But now

(1−
√

3)(1 +
√

3) = −2,

and so

1−
√

3 = −2(1 +
√

3)−1.

Thus

(1 +
√

3)P+1 ≡ −2 mod P,

ie

(1 +
√

3)2
p ≡ −2 mod P,

ie

(2ε)2
p−1 ≡ −2 mod P.

To deal with the powers of 2, note that by Euler’s criterion

2(P−1)/2 ≡
(

2

P

)
mod P.

Recall that (
2

P

)
=

{
1 if P ≡ ±1 mod 8,

−1 if P ≡ ±1 mod 8.

In this case,
P = 2p − 1 ≡ −1 mod 8.

Thus

2(P−1)/2 ≡ 1 mod P,
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and so

2(P+1)/2 ≡ 2 mod P,

ie

22p−1 ≡ 2 mod P.

So our previous result simplifies to

ε2
p−1 ≡ −1 mod P.

This was on the assumption that P is prime. Suppose now that P is not
prime, but that the above equivalence holds.

Then P has a prime factor Q ≤
√
P . Also

ε2
p−1 ≡ −1 mod Q.

It follows that the order of ε mod Q is 2p.
But consider the quotient-ring

A = Z[
√

3]/(Q).

This ring contains just Q2 elements, represented by

m+ n
√

5 (0 ≤ m,n < Q).

It follows that the group A× of invertible elements contains < Q2 ele-
ments. Hence any invertible element of A has order < Q2, by Lagrange’s
Theorem. In particular the order or ε mod P is < Q2. Accordingly

2p < Q2,

which is impossible, since

Q2 ≤ P = 2p − 1.

We conclude that P is prime.

As with the weaker result in the last Chapter, there is a more computer-
friendly version of the Theorem, using the fact that

ε2
p−1 ≡ −1 mod P

can be re-written as
ε2

p−2

+ ε−2
p−2 ≡ 0 mod P.
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Let
si = ε2

i

+ ε−2
i

Then

s2i = ε2
i+1

+ 2 + ε2
−(i+1)

= si+1 + 2,

ie
si+1 = s2i − 2.

Since
s0 = ε+ ε−1 = 4

it follows that si ∈ N for all i, with the sequence starting 4, 14, 194, . . . .
Now we can re-state our result.

Corollary 16.1. Let the integer sequence si be defined recursively by

si+1 = s2i − 2, s0 = 4.

Then
P = 2p − 1 is prime ⇐⇒ P | sp−2.

16.7 Tests for Primality: a review
Recall that Fermat’s Little Theorem states that if p is prime then

ap−1 ≡ 1 mod p

for all a coprime to p; or equivalently,

ap ≡ a mod p

for all a.
This suggests the Fermat Test for primality: perhaps n is prime if and

only if
an ≡ a mod n

for all a.
Unfortunately, it turns out that there exist integers n ∈ N (known as

Carmichael numbers) which are not prime, but for which

an ≡ a mod n

for all a.
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Carmichael numbers are very rare, compared with primes, so the Fermat
test remains a good bet for large n. However, a relatively simple variaant —
the Miller-Rabin test — avoids this problem, and is always valid. Both the
Fermat test and the Miller-Rabin test can be completed in polynomial time
P (`) in terms of the length ` of the input. (‘Time’ here means the number
of steps taken by a Turing machine.)

If n is very large it is not feasible to test all a ∈ [0, n). But if n is not
prime the probability of it passing the test is < 1/4. So assuming tests with
different a are independent, the probability of a non-prime passing the test
for 10 different a, say, is < 2−20 ≈ 10−6 which would normally be regarded
as impossibly unlikely.

There is also the ‘Indian’ AKS test, which is a polynomial time test and
is not statistical — it says immediately whether a number is prime or not.
But to date Miller-Rabin seems to be the standard test, presumablly because
of familiarity.

16.8 Primality and Mersenne Primes
The Lucas-Lehmer test for the primality of Mersenne numbers 2p − 1 is the
reason why Mersenne primes have provided the largest known prime for the
last 100 years, with about one new largest prime being discovered each year.
(The latest largest prime, with p ≈ 7×1010, was discovered in January 2016.)

Although there are polynomial time primality tests for general numbers,
the length of the current largest prime is `(Mp) ≈ 253 ln 2 is so vast that even
polynomial time tests may prove impracticable.

Interestingly, for the last 20 years the largest prime has been discovered
not by supercomputers but by the GIMPS, the Great Internet Mersenne
Prime Search. This links thousands of mathematicians around the globe —
anyone can join — who agree to allow their laptop or desktop to be used
when otherwise idle in an enormous parallel program. The person who finds
a new Mersenne prime gets a reward of $3000.
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