Chapter 15

Q(v/5) and the golden ratio

15.1 The field Q(+/5)

Recall that the quadratic field
Q(V5) ={x+yv5: 2,y € Q}.
Recall too that the conjugate and norm of
zZ=T+ y\/g
are
Z=a—yV5, N(2) = 22 = 2® — 5y,
We will be particularly interested in one element of this field.

Definition 15.1. The golden ratio is the number

1+V5
o=—"
The Greek letter ¢ (phi) is used for this number after the ancient Greek
sculptor Phidias, who is said to have used the ratio in his work.
Leonardo da Vinci used ¢ in analysing the human figure.

Evidently

Q(v5) = Q(9),

ie each element of the field can be written

z=x+yo (r,y€Q)

The following results are immediate:

Proposition 15.1. 1. ¢ = %5{

3. N(x +y¢) = 2* + zy — y*;
4. ¢, ¢ are the roots of the equation

2—r—1=0.
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15.2 The number ring Z[¢]

As we saw in the last Chapter, since 5 = 1 mod 4 the associated number ring

consists of the numbers

m 4+ n\/g

Yy
where m = n mod 2, ie m,n are both even or both odd. And we saw that
this is equivalent to

Proposition 15.2. The number ring associated to the quadratic field Q(+/5)
18
Zlgp| ={m+n¢:m,n € Z}.

15.3 Unique Factorisation

Theorem 15.1. The ring Z[¢] is a Unique Factorisation Domain.

Proof. We prove this in exactly the same way that we proved the correspond-
ing result for the gaussian integers I'.

The only slight difference is that the norm can now be negative, so we
must work with [N(2)].

Lemma 15.1. Given z,w € Z[¢] with w # 0 we can find q,r € Z[p| such

that
Z=qw+r,
with
V()| < [N (w)].
Proof. Let
z
—=z+ y¢7
w
where x,y € Q. Let m,n be the nearest integers to x,y, so that
o —ml < 2y —n| <
r—m| < = —n| < —.
=5 Y =5
Set
q=m-+no.
Then .
Z —g=—m)+ (- n)o.
w
Hence -
N(==q) =(=m+(z—m)y—n)=(y—n)"



It follows that

z 1
—— < N(=—-q) < =
(~—4a) <3
and so
’N(Z )‘<1<1
w g —- 2 ’
1e

N (z = qu)| < [N (w)].
O

This allows us to apply the euclidean algorithm in Z[¢], and establish

Lemma 15.2. Any two numbers z,w € Z[¢| have a greatest common divisor
0 such that
0] zw

and
8| z,w = & |06

Also, § is uniquely defined up to multiplication by a unit.
Moreover, there exists u,v € Z[¢] such that

uz +vw = 9.

From this we deduce that irreducibles in Z[¢] are primes.

Lemma 15.3. If m € Z[¢] is irreducible and z,w € Z[phi] then
T|zw = 7|z orm|w.

Now Euclid’s Lemma , and Unique Prime Factorisation, follow in the
familiar way. |

15.4 The units in Z[¢]
Theorem 15.2. The units in Z[¢] are the numbers
+¢" (neZ).

Proof. We saw in the last Chapter that any real quadratic field contains an
infinity of units, and that the units form the group

{xe" :n e Z},
where € is the smallest unit > 1.
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Thus the theorem will follow if we establish that ¢ is the smallest unit
> 11in Z[¢].
Suppose 1 € Z[¢] is a unit with

l<n=m-+ng<o.

Then m,n > 0; for if m < 0 then —m + n¢ > m + n¢ while if n < 0 then
m—ng¢ > m+ne¢, and since all these lie in the foursome 47, £n~!, only one
of which can lie in the range (1,00). Since no other algebraic integer m + n¢
can lie in the range (1, ¢] the units in Z[¢] are

+¢",

with n € N. ]

15.5 The primes in Z[¢]

Theorem 15.3. Suppose p € N is a rational prime.

1. If p=+£1mod 5 then p splits into distinct conjugate primes in Z[Q):
p = E£nT;
2. if p= 42 mod 5 then p remains prime in Z[¢).

Proof. Suppose p splits, say
p=nn,

where neither 7 nor 7’ is a unit. Then
N(p) =p* = N(mN(r') = N(r) = =£p.
Thus 77’ = +p = 7’ = £7. Suppose ™ = m + n¢. Then
N(7) =m? —mn —n® = +p.

Then p | n = p|m = p*|p. Hence p{n, and n has an inverse
n’ mod p with nn’ = 1 mod p. Thus

((mn')* = 5 mod p.

Hence 5 is a quadratic residue mod p.
But by Gauss’ Law of Quadratic Reciprocit,

<§>_(£)_ +1 ifp=4+1 mod5
p) \b) |-1 ifp=+2 mod5
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(For the quadratic residues mod 5 are 0,1 and 4 = —1.) Thus if p = £2
mod 5 then p cannot split in Z[¢].
Finally, suppose p = £1 mod 5 Then 5 is a quadratic residue mod p,
say
5 = n? mod p,

where we may suppose that 0 < n < p/2. Then p | (n 4+ V/5)(n — V/5), say
p | 7. Hence

N(p) = | NN (7).
But N (7) = N(7), and so
p | N(r)=n7.
Suppose p does not split. Then p | 7 or p | 7. In either case,
plntVs = n+V5=pla+bp) = 2n+2¢=p((2a +b) + bV/5).
Since /5 is irrational, it follows that
2n =p(2a+b), 2=pb = p| 2,

which is impossible. Hence p must split in Z[¢)]. O

15.6 The weak Lucas-Lehmer test for Mersenne
primality
Recall that the Mersenne number
M, =2"—1,

where p is a prime.

We give a version of the Lucas-Lehmer test for primality which only works
when p = 3 mod 4. In the next Chapter we shall give a stronger version which
works for all primes.

Proposition 15.3. Suppose the prime p = 3 mod 4. Then
P=2r—1

is prime if and only if
»* = —1 mod P.

Proof. Suppose first that P is a prime.
Since p = 3 mod 4 and 2* = 1 mod 5,

2P = 23 mod 5
= 3 mod 5.
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Hence
P=2P —1=2mod?5.

()

Now

2

_ 1P_|_ (\/E)P

5P mod P,

since P divides all the binomial coefficients except the first and last. Thus

14+ 5(P71)/2\/5
2

of mod P,

since 2 = 2 mod P by Fermat’s Little Theorem.

But -
512 — (2
P 9

by Euler’s criterion. Hence by Gauss’ Quadratic Reciprocity Law,

since P = 2 mod 5. Thus

and so

But

It follows that

1e



Conversely, suppose
»* = —1 mod P.

We must show that P is prime.
The order of ¢ is exactly 2P™!. For

¢2p+1 - (¢2p)2 = 1 mod P,
so the order divides 2°™!. On the other hand,
#»* # 1 mod P,

so the order does not divide 27.
Suppose now P is not prime. Since

P =2 mod 5,
it must have a prime factor
@ = +£2 mod 5.

(If all the prime factors of P were = +1 mod 5 then so would their product
be.) Hence @) does not split in Z|[¢).
Since @ | P, it follows that

¢2p Z 1 mod Q;

and so, by the argument above, the order of ¢ mod Q is 2P
We want to apply Fermat’s Little Theorem, but we need to be careful
since we are working in Z[¢] rather than Z.

Lemma 15.4 (Fermat’s Little Theorem, extended). If the rational prime Q
does not split in Z[¢| then

2971 =1 mod Q
for all z € Z[¢] with z #Z 0 mod Q.

Proof. The quotient-ring A = Z[¢] mod @ is a field, by exactly the same
argument that Z mod p is a field if p is a prime. For if z € A, z #£ 0 then
the map

wzw:A— A

is injective, and so surjective (since A is finite). Hence there is an element 2’
such that zz' = 1, ie z is invertible in A.
Also, A contains just Q) elements, represented by

m—+nv5 (0<m,n<Q).

Thus the group
A*=A\0

has order Q? — 1, and the result follows from Lagrange’s Theorem. O]
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In particular, it follows from this Lemma that
¢9 1 =1mod Q,

ie the order of ¢ mod @ divides Q2 — 1. But we know that the order of
¢ mod @ is 2P!. Hence

2 QE 1= (Q - 1)(Q+1).
But
ged(@Q@ —1,Q+1) =2.
It follows that either
21Q -1, 2| Q+1or2||Q+1,2"|Q—1.
Since () < P = 2P — 1, the only possibility is

2" Q+1,
ie = P, and so P is prime. ]
This result can be expressed in a different form, more suitable for com-
putation.
Note that

»* = —1 mod P
can be re-written as

(p—1)

¢2p71 + ¢* =0 mod P.
Let _ _
ti=¢" +¢°
Then
t2 _ ¢27L+1 + 2 + ¢27(i+1)
7
=tiy1+ 2,
ie
ti+1 — t? - 2
Since
to = 2

it follows that t; € N for all <.
Now we can re-state our result.

Corollary 15.1. Let the integer sequence t; be defined recursively by
ti—i—l == tlz - 2, to - 2

Then
P=27—1isprime <= P|t, .
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