
Chapter 14

Pell’s Equation

14.1 Kronecker’s Theorem
Diophantine approximation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose θ ∈ R; and suppose N ∈ N, N 6= 0. Then there
exists m,n ∈ Z with 0 < n ≤ N such that

|nθ −m| < 1

N
.

Proof. If x ∈ R we write {x} for the fractional part of x, so that

x = [x] + {x}.

Consider then N + 1 fractional parts

0, {θ}, {2θ}, . . . {Nθ};

and consider the partition of [0, 1) into N equal parts;

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{iθ}, {jθ} ∈ [t/N, (t+ 1)/N ],

where 0 ≤ i < j < N . Setting

[iθ] = r, [jθ] = s,
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we can write this as

iθ − r, jθ − s ∈ [t/N, (t+ 1)/N).

Hence

|(jθ − s)− (iθ − r)| < 1/N,

ie

|nθ −m| < 1/N,

where n = j − i, m = r − s with 0 < n ≤ N .

Corollary 14.1. If θ ∈ R is irrational then there are an infinity of rational
numbers m/n such that ∣∣∣θ − m

n

∣∣∣ < 1

n2
.

Proof. By the Theorem, ∣∣∣θ − m

n

∣∣∣ < 1

nN

≤ 1

n2
.

14.2 Pell’s Equation
We use Kronecker’s Theorem to solve a classic Diophantine equation.

Theorem 14.2. Suppose the number d ∈ N is not a perfect square. Then
the equation

x2 − dy2 = 1

has an infinity of solutions with x, y ∈ Z.

Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n ∈ Z such that ∣∣∣√d− m

n

∣∣∣ < 1

n2
.

Since √
d+

m

n
= 2
√
d− (

√
d− m

n
)

14–2



it follows that ∣∣∣√d+
m

n

∣∣∣ < 2
√
d+ 1.

Hence ∣∣∣∣d− m2

n2

∣∣∣∣ =
∣∣∣√d− m

n

∣∣∣ · ∣∣∣√d+
m

n

∣∣∣
<

2
√
d+ 1

n2
.

Thus ∣∣m2 − dn2
∣∣ < 2

√
d+ 1.

It follows that there must be an infinity of m,n satisfying

m2 − dn2 = t

for some integer t with |t| < 2
√
d+ 1.

Since

(m− n
√
d)(M −N

√
d) = (mM + dnN)− (mN + nM)

√
d.

it follows (on taking norms) that

(mM + dnN)2 − d(mN + nM)2 = (m2 − dn2)(M2 − dN2) = t2.

So if we set
u =

mM + dnN

t
, v =

mN + nM

t

then
u2 − dv2 = 1.

Of course u, v will not in general be integers, so this does not solve the
problem. However, we shall see that by a suitable choice of m,n,M,N we
can ensure that u, v ∈ Z.

Let T = |t|; and consider (m,n) mod T = (m mod T, n mod T ). There
are just T 2 choices for the residues (m,n) mod T . Since there are an infin-
ity of solutions m,n there must be some residue pair (r, s) mod T with the
property that there are an infinity of solutions (m,n) withm ≡ r mod T, n ≡
s mod T .

Actually, all we need is two such solutions (m,n), (M,N), so that

m ≡M mod T, n ≡ N mod T.
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For then

mM − dnN ≡ m2 − dn2 = t ≡ 0 mod T,

and similarly

mN − nM ≡ mn− nm ≡ 0 mod T.

Thus
t | mM − dnN, t | mN − nM,

and so
u, v ∈ Z.

14.3 Units II: Real quadratic fields
Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit ε > 1 in Q(

√
d) such that the units in this field are

±εn

for n ∈ Z.

Proof. We know that the equation

x2 − dy2 = 1

has an infinity of solutions. In particular it has a solution with (x, y) 6=
(±1, 0).

Let
η = x+ y

√
d.

Then
N (η) = 1;

so η is a unit 6= ±1.
We may suppose that η > 1; for of the 4 units ±η,±η−1 just one appears

in each of the intervals (−∞,−1), (−1, 0), (0, 1), (1,∞).

Lemma 14.1. For any C > 1, there are only a finite number of units within
the range 1 < η ≤ C,

14–4



Proof. Suppose
η = x+ y

√
d ∈ (1, C)

is a unit. Then
η̄ = x− y

√
d = ±η−1.

Hence
−1 ≤ x+ y

√
d ≤ 1,

and so
0 < x < C + 1.

Since
x2 − dy2 = ±1

it follows that
y2 < x2 + 1 < (C + 1)2 + 1.

The result follows, since x and y have denominator 1 or 2.

We have seen that there is a unit η > 1. Since there are only a finite
number of units in (1, η] there is a least such unit ε = x+ y

√
d.

This unit is unique; for if there were a second unit X + Y
√
d = x+ y

√
d

then both have the same norm 1, so

X2 − dY 2 = x2 − dy2 =⇒ (X − Y
√
d(X + Y

√
d) = (x− y

√
d)(x+ y

√
d)

=⇒ X − Y
√
d = x− y

√
d(x+ y

√
d)

=⇒ X = x, Y = y.

Now suppose η > 1 is a unit. Since ε > 1,

εn →∞ as n→∞.

Hence we can find n ≥ 0 such that

εn ≤ η < εn+1.

Then
1 ≤ ε−nη < ε.

Since ε−nη is a unit, it follows from the minimality of ε that

ε−nη = 1,

ie

η = εn.
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