Chapter 14

Pell’s Equation

14.1 Kronecker’s Theorem

Diophantine approzimation concerns the approximation of real numbers by
rationals. Kronecker’s Theorem is a major result in this subject, and a very
nice application of the Pigeon Hole Principle.

Theorem 14.1. Suppose 0 € R; and suppose N € N, N # 0. Then there
exists m,n € Z with 0 <n < N such that

6 — —.
In m]<N

Proof. 1If x € R we write {x} for the fractional part of z, so that
v = [x] + {z}.
Consider then N + 1 fractional parts
0,{6},{20},...{N6};
and consider the partition of [0,1) into N equal parts;
[0,1/N),[1/N,2/N),...,[([N —1)/N,1).

By the pigeon-hole principal, two of the fractional parts must lie in the
same partition, say

{i0}, {40} € [t/N, (t +1)/N],
where 0 < i < j < N. Setting

[Ze] =T, []9] = S,
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we can write this as

i0—r, j8—s €[t/N,(t+1)/N).

Hence
(G0 = s) = (i0 —r)[ < 1/N,
ie
|nf —m| < 1/N,
wheren =37 —1¢, m=r—swith0 <n < N. O]

Corollary 14.1. If 6 € R is irrational then there are an infinity of rational
numbers m/n such that

1
-l L
n n
Proof. By the Theorem,
m 1
0-=| < —
‘ n nN

< 1
_n2'

14.2 Pell’s Equation

We use Kronecker’s Theorem to solve a classic Diophantine equation.

Theorem 14.2. Suppose the number d € N is not a perfect square. Then
the equation
2 —dy? =1

has an infinity of solutions with x,y € Z.

Proof. By the Corollary to Kronecker’s Theorem there exist an infinity of
m,n € Z such that

va-2l <

Since

V4o =2Vd- (Vi- )
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it follows that m
‘\/Zl + —] <2Vd+1.
n

Hence
2

‘d—m—z :‘W—T ~‘\/8+T(
n n n

2v/d+1

<—2.

n
Thus

|m2 - dn2| < 2Vd+1.

It follows that there must be an infinity of m,n satisfying
m? —dn® =t

for some integer ¢ with |t| < 2v/d + 1.
Since

(m — nVd)(M — NVd) = (mM + dnN) — (mN +nM)Vd.
it follows (on taking norms) that
(mM + dnN)? —d(mN +nM)* = (m* — dn®)(M?* — dN?) = t*.
So if we set
" mM + dnN Y mN +nM
t ’ t

then
u? —dv? =1.

Of course u,v will not in general be integers, so this does not solve the
problem. However, we shall see that by a suitable choice of m,n, M, N we
can ensure that u,v € Z.

Let T' = |t|; and consider (m,n) mod T" = (m mod T,n mod T'). There
are just T2 choices for the residues (m,n) mod T. Since there are an infin-
ity of solutions m,n there must be some residue pair (r,s) mod T with the
property that there are an infinity of solutions (m,n) with m = r mod T, n =
s mod T

Actually, all we need is two such solutions (m,n), (M, N), so that

m=MmodT, n= N modT.
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For then

mM —dnN =m? —dn* =t = 0mod T,
and similarly

mN —nM =mn —nm =0 mod T.

Thus
t| mM—dnN, t| mN —nM,

and so
u,v € 2.

14.3 Units 1I: Real quadratic fields

Theorem 14.3. Suppose d > 1 is square-free. Then there exists a unique
unit € > 1 in Q(v/d) such that the units in this field are

+e"

forn e Z.
Proof. We know that the equation

2 —dy? =1
has an infinity of solutions. In particular it has a solution with (z,y) #
(£+1,0).

Let

n=x+yVd

Then
N(W) =1

so n is a unit # +1.
We may suppose that n > 1; for of the 4 units 47, n~! just one appears
in each of the intervals (—oo, —1), (—1,0), (0,1), (1, 00).

Lemma 14.1. For any C' > 1, there are only a finite number of units within
the range 1 <n < C),
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Proof. Suppose
n=x+yvde (1,0)

is a unit. Then
=x—yVd==4n",

Hence
—1<z+y/d<1,
and so
O<ax<C+1.
Since
? — dy* = £1

it follows that
v <®+1<(C+1)+1.

The result follows, since x and y have denominator 1 or 2. O]

We have seen that there is a unit n > 1. Since there are only a finite
number of units in (1,7] there is a least such unit € = z + y/d.

This unit is unique; for if there were a second unit X + Yvd = z + yvd
then both have the same norm 1, so

X2 —dY? =2 —dy = (X —YVd(X +YVd) = (z — yVd)(z+ yVd)
— X —YVd=2z—yVd(z+yVd)

— X =2z Y=y
Now suppose 1 > 1 is a unit. Since € > 1,
€' — 00 as n — 00.
Hence we can find n > 0 such that
€' <n< Ry

Then
1<e™<e

Since € "7 is a unit, it follows from the minimality of € that

1e
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