Chapter 13

Quadratic fields and quadratic
number rings

12.1 Quadratic number fields

Definition 12.1. A quadratic number field is a number field of degree 2.
The integer d € Z is said to be square-free if it has no square factor, ie

a’|d = a=+l1.

Thus the square-free integers are
+1,+£2,43,45,. ...

Proposition 12.1. Suppose d # 1 is square-free. Then the numbers
r+yVd (z,y€Q)

form a quadratic number field Q(\/d).

Moreover, every quadratic number field is of this form; and different
square-free integers d,d # 1 give rise to different quadratic number fields.

Proof. Recall the classic proof that v/d is irrational;
Vd = m — n?d =m?,
n

and if any prime factor p | d divides the left hand side to an odd power, and
the right to an even power.

It is trivial to see that the numbers z + yv/d form a commutative ring,
while

1 B z—yVd
r+yVd  (x—yVd)(z+yVd)
_a—yvd

a2 — dy?’
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where 22 — dy? # 0 since Vd ¢ Q.

It follows that these numbers form a field; and the degree of the field is 2
since 1, v/d form a basis for the vector space.

Conversely, suppose F' is a quadratic number field. Let 1,6 be a basis
for the vector space. Then 1,0,6? are linearly independent, ie # satisfies a
quadratic equation

al* +b0 +c=0 (a,b,ccQ).
Since F' is of degree 2, a # 0, and we can take a = 1. Thus

_ —b++vD
2

6

with D = b% — 4c.
Now
D = ad?d,

where d is a square-free integer (with a € Q). It follows easily that
F=Q(Vd).
Finally if d # d' then Q(v/d) # Q(V/d'). For otherwise
Vd =z + y\/a
for some x,y € Q; and so, on squaring,
d? = 2% + dy? + 2zyVd.
But this implies that vd € Q if zy # 0; while y =0 = Vd =2z € Q, and
r=0 = d = dy’

which is easily seen to be incompatible with d,d being square-free. O

12.2 Conjugacy

We suppose in the rest of the Chapter that we are working in a specific
quadratic number field Q(V/d).

Definition 12.2. We define the conjugate of
z=x+yVd

to be

Z::L’—y\/c_l



If d < 0 then this coincides with the complex conjugate; but if d > 0 then
both z and z are real; and

2=z <= z€Q.
Proposition 12.2. The map

is an automorphism of Q(v/d). In fact it is the only such automorphism apart
from the trivial map z — z.

The proof is identical to that we gave for gaussian numbers.
Definition 12.3. The norm of z = = + yvd € @(\/E) is
N(z) = 22 = 2* — dy*.
Proposition 12.3. 1. N(z2) € Q;
2.N(2)=0 < 2=0;
3. N(zw) = N(2)N(w);
4. If a € Q then N(a) = a?;

Again, the proof is identical to that we gave for the corresponding result
for gaussian numbers.

12.3 Quadratic number rings
We want to determine the number ring
A=Q(Wd)NZ

associated to the number field Q(v/d), ie we want to find which numbers
x + yv/d are algebraic integers.

Theorem 12.1. Suppose
2=+ yVd e Q(Vd).
Then

1. Ifd #1mod 4 B
z €l — z:m—f—n\/a,

where m,n € 7.
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2. If d =1 mod 4 then

_ m+n\/3
z €l <— Z:T’

where m,n € Z and m =n mod 2.

Proof. If B
z= I—i-y\/EE Z

then i
f=xecyJdel

since z and Z satisfy the same polynomials over Q. Hence
24+z2=20€ZNQ=727.

Also
N(z)=z2z2=2>—dy* € Z.

It follows that
4dy* =d(2y)* €Z —= 2y€Z

since d is square-free. (For suppose 2y = m/n, where ged(m,n) = 1. Then
dm?/n? € Z. If the prime p | n then

p’ldm* = p*|d,

which is impossible since d is square-free.)

Thus
- m 4+ nvd
= 5 ,
where m,n € Z. Now
2 d 2
N(z) = % €z,

1e
m? = dn? mod 4.

If n is even then so is m; and if m is even then so is n, since 4 1 d. On
the other hand if m,n are both odd then

m? =n?=1mod 4.

It follows that
d =1 mod 4.

In other words, if d # 1 mod 4 then m,n are even, and so

z:a+b\/a,
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with a,b € Z.
On the other hand, if d = 1 mod 4 then m,n are both even or both odd.
It only remains to show that if d =1 mod 4 and m,n are both odd then

m + n\/c_i =
z2=——7——€1Z,
2
It is sufficient to show that
1 _
g 1tVi 5
2
since
z=(a+bVd) +6,
where
a=(m-—1)/2, b=(n—-1)/2 € Z.
But

(0 —1/2)* =d/4,
ie

0 — 0+ (1—d)/4
But (1 —d)/4 € Z if d = 1 mod 4. Hence

0cZ.

12.4 Units I: Imaginary quadratic fields

Suppose F'is a number field, with associated number ring A (the algebraic
integers in F'). By ‘abuse of language’; as the French say, we shall speak of
the units of F' when we are really referring to the units in A.

Proposition 12.4. Suppose z € Q(\/d) is an algebraic integer. Then
zis a unit <= N(z) = £1.
Proof. Suppose z is a unit, say
zw =1,
where w is also an integer. Then
N(zw) = N(2)N(w) = N(1) =17 = 1.
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Since N (z), N (w) € Z it follows that
N(z) = N(w) = £1.
On the other hand, if
N(z)=2z2=+1
then )
zl=+z¢cZ
[

Theorem 12.2. Suppose d is square-free and d < 0. Then the group of units
is finite. More precisely,

1. If d = —1 there are 4 units: +1, +i;
2. if d = =3 there are 6 units: 1, fw, +w?, where w = (1 +v/=3)/2;
3. in all other cases, there are just 2 units: £1.

Proof. Suppose € is a unit.
If d # 1 mod 4 then

e=m+nvVd (m,ne7).
Thus
N(e)=m? +dn® =1,

If d < —1 then it follows that m = £1, n = 0. If d = —1 then there are the
additional solutions m = 0, n = +1, as we know.
If d =1 mod 4 then

B m—l—n\/a
= 5 ,

where m,n € Z with m = n mod 2. In this case,
2 d 2

N(e) = % —1,

ie
m? — dn? = 4.
If d < —7 then this implies that m = +1, n = 0. This only leaves the case

d = —3, where

m? + 3n? = 4.
This has 6 solutions: m = £2, n = 0, giving € = +1; and m = £1, n = +1,
giving € = fw, £w?. O

Units in real quadratic fields (where d > 0) have a very different character,
requiring a completely new idea from the theory of diophantine approxima-
tion; we leave this to another Chapter.
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