Chapter 12

Algebraic numbers and algebraic integers

12.1 Algebraic numbers

Definition 12.1. A complex number α is said to be algebraic if it satisfies a polynomial equation

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

with rational coefficients $a_i \in \mathbb{Q}$.

For example, $\sqrt{2}$ and i/2 are algebraic.

A complex number is said to be *transcendental* if it is not algebraic. Both e and π are transcendental. It is in general extremely difficult to prove a number transcendental, and there are many open problems in this area, eg it is not known if π^e is transcendental.

Proposition 12.1. $\alpha \in \mathbb{C}$ is an algebraic number if and only if there exists a finite-dimensional vector space $V \subset \mathbb{C}$ over \mathbb{Q} such that

 $\alpha V \subset V.$

Proof. Let e_1, \ldots, e_n be a basis for V. Then

$$\alpha e_1 = a_{11}e_1 + \cdots + a_{1n}e_n$$

$$\alpha e_2 = a_{21}e_1 + \cdots + a_{2n}e_n$$

$$\cdots$$

$$\alpha e_n = a_{n1}e_1 + \cdots + a_{nn}e_n,$$

Where $a_{ij}in\mathbb{Q}$. Thus α satisfies the polynomial equation

$$\det(xI - A) = 0,$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Hence $\alpha \in \overline{\mathbb{Q}}$.

(This argument is sometimes known as 'the determinantal trick'. We shall be using it again shortly. There is an alternative way of establishing the result. If $\alpha V \subset V$ then we can think of α^i as a linear map

$$v \mapsto \alpha^i v : V \to V.$$

But if dim V = n then it is easy to see that dim hom $(V, V) = n^2$, since we can represent the linear maps $V \to V$ by $n \times n$ matrices. It follows that the $n^2 + 1$ linear maps $1, \alpha, \ldots, \alpha^{m^2}$ must be linearly dependent, showing that α satisfies a polynomial equation of degree n^2 or less.)

Conversely, suppose α satisfies the polynomial equation

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

where $a_i \in \mathbb{Q}$. Let V be the vector space over \mathbb{Q} generated by $1, \alpha, \ldots, \alpha^{n-1}$:

$$V = \langle 1, \alpha, \dots, \alpha^{n-1} \rangle.$$

Then $\alpha V \subset V$.

Theorem 12.1. The algebraic numbers form a field $\overline{\mathbb{Q}} \subset \mathbb{C}$.

Proof. Suppose α, β satisfy the polynomial equation

$$f(x) = x^m + a_{m-1}x^{m-1} + \dots + a_0 = 0, \ g(x) = x^n + b_{n-1}x^{n-1} + \dots + b_0 = 0$$

with $a_i, b_j \in \mathbb{Q}$. Let V, W be the vector spaces

$$V = \langle \alpha^i : 0 \le i < m \rangle, \ W = \langle \beta^j : 0 \le j < n \rangle$$

over \mathbb{Q} . Then

$$\alpha V \subset V, \ \beta W \subset W.$$

Consider the vector space VW over \mathbb{Q} spanned by the mn elements $\alpha^i \beta^j$:

$$VW = \langle \alpha^i \beta^j : 0 \le i < m, \ 0 \le j < n \rangle.$$

Evidently

$$\alpha VW \subset VW, \ \beta VW \subset VW.$$

Hence

$$(\alpha + \beta)VW \subset VW, \ \alpha\beta VW \subset VW \implies \alpha + \beta, \ \alpha\beta \in \overline{\mathbb{Q}}.$$

Thus $\overline{\mathbb{Q}}$ is a ring.

(Note that each element of VW is now necessarily of the form vw; it is a sum of such elements. This is similar to the definition of the tensor product $V \otimes_{\mathbb{Q}} V$, an element of which is not necessarily of the form $v \otimes w$, but is a sum of such elements. In fact there is a natural linear map $V \otimes W \to VW$; VW is a quotient-space of $V \otimes W$. Nb VW can only be defined in this way because V and W are vector subspaces of \mathbb{C} .)

To see that $\overline{\mathbb{Q}}$ is a field, suppose α satisfies the equation

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0.$$

Then $1/\alpha$ satisfies the polynomial equation

$$x^n f(1/x) = 0.$$

Thus

$$\alpha \in \bar{\mathbb{Q}} \implies 1/\alpha \in \bar{\mathbb{Q}}.$$

Proposition 12.2. The field $\overline{\mathbb{Q}}$ is alcoharacterized, if $\alpha \in \mathbb{C}$ satisfies

 $f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0,$

where the coefficients satisfy $a_i \in \overline{\mathbb{Q}}$. Then $\alpha \in \overline{\mathbb{Q}}$.

Proof. Suppose

$$a_i V_i \subset V_i$$

for $0 \leq i \leq n$. Let

 $U = \langle 1, \alpha, \dots, \alpha^{n-1} \rangle V_1 V_2 \cdots V_n.$

Then

$$\alpha U \subset U \implies \alpha \in \bar{\mathbb{Q}}.$$

12.2 Algebraic integers

Definition 12.2. A number $\alpha \in \mathbb{C}$ is said to be an algebraic integer if it satisfies a monic polynomial equation

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0$$

with integral coefficients $a_i \in \mathbb{Z}$. We denote the set of algebraic integers by $\overline{\mathbb{Z}}$.

Proposition 12.3. $\alpha \in \mathbb{C}$ is an algebraic integer if and only if there exists a finitely-generated abelian group $A \subset \mathbb{C}$ such that

 $\alpha A \subset A.$

(We shall see that the arguments we give in this Section are very similar to those in the last Section, except that finite-dimensional vector spaces are replaced by finitely-generated abelian groups.)

Proof. Let a_1, \ldots, a_r generate A. A is torsion-free, ie

$$na = 0 \implies n = 0 \text{ or } a = 0,$$

since that is true in \mathbb{C} .

Lemma 12.1. A torsion-free finitely-generated abelian group A has an integral basis z_1, \ldots, z_n , ie each $a \in A$ is uniquely expressible in the form

$$a = \lambda_1 z_1 + \dots + \lambda_n z_n,$$

with $\lambda_i \in \mathbb{Z}$. In other words, $A = \mathbb{Z}^n$.

Proof. Let $V = A \otimes_Z \mathbb{Q}$. In simpler terms (it is not really necessary to bring torsion products into it), V is derived from A by 'extending the scalars' from \mathbb{Z} to \mathbb{Q} . Thus each $v \in V$ is expressible in the form

$$v = \lambda a$$
,

with $\lambda \in \mathbb{Q}$, $a \in A$. (Even simpler,

$$v = \frac{1}{n}a,$$

with $n \in \mathbb{N}$, $n \neq 0$.) It is easy to see how addition of these elements and scalar multiplication by elements of \mathbb{Q} is defined, and that $A \subset V$.

Let $e_1, \ldots e_n$ be a basis for the vector space V. Thus each $a \in A$ is uniquely expressible in the form

$$a = \lambda_1 e_1 + \dots + \lambda_n e_n,$$

with $\lambda_i \in \mathbb{Q}$.

Consider the coefficient λ_{ij} of the basis element e_i in the generator a_j Suppose these nr rationals are $\frac{a_{ij}}{d_{ij}}$. Let

$$d = \operatorname{lcm}\{d_{ij} : 1 \le i \le n, \ 1 \le j \le r\}.$$

Then since each $a \in A$ is a linear combination with integer coefficients of a_1, \ldots, a_r , it follows that a is expressible in the form

$$a = \frac{c_1}{d}f_1 + \dots + \frac{c_n}{d}f_n,$$

with $c_i \in \mathbb{Z}$. (We don't claim these fractions are in their lowest terms.)

Now consider the c's associated with a particular basis element, say e_1 . It is easy the see that

$$I = \{c_1 : a = \frac{c_1}{d}e_1 + \cdots\}$$

is an ideal in \mathbb{Z} . But \mathbb{Z} is a principal ideal domain (PID), ie all ideals in \mathbb{Z} are of the form $(m) = \{nm : n \in \mathbb{Z}\}$. Let $I = (n_1)$. (Recall that n_1 is the smallest positive integer in I.)

Now if we set

$$z_i = \frac{n_i}{d} e_i,$$

we see that z_1, \ldots, z_n form an integral basis for A.

Now suppose $\alpha \in \mathbb{Z}$. Then

$$\alpha z_1 = a_{11}z_1 + \cdots + a_{1n}z_n$$

$$\alpha z_2 = a_{21}z_1 + \cdots + a_{2n}z_n$$

$$\cdots$$

$$\alpha z_n = a_{n1}z_1 + \cdots + a_{nn}z_n,$$

Where $a_{ij} \in \mathbb{Z}$. Thus α satisfies the polynomial equation

$$\det(xI - A) = 0,$$

where

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Hence $\alpha \in \overline{\mathbb{Z}}$.

Conversely, suppose α satisfies the polynomial equation

$$f(x) = x^n + a_1 x^{n-1} + \dots + a_n = 0$$

where $a_i \in \mathbb{Z}$. Let A be the abelian group generated by $1, \alpha, \ldots, \alpha^{n-1}$:

$$A = \langle 1, \alpha, \dots, \alpha^{n-1} \rangle$$

Then $\alpha A \subset A$.

Theorem 12.2. The algebraic integers form a ring $\overline{\mathbb{Z}}$ with

$$\mathbb{Z}\subset \bar{\mathbb{Z}}\subset \bar{\mathbb{Q}}.$$

Proof. Suppose α, β satisfy the polynomial equations

 $f(x) = x^m + a_{m-1}x^{m-1} + \dots + a_0 = 0, \ g(x) = x^n + b_{n-1}x^{n-1} + \dots + b_0 = 0$ with $a_i, b_j \in \mathbb{Z}$. Let A, B be the abelian groups

 $A = \langle \alpha^i : 0 \le i < m \rangle, \ B = \langle \beta^j : 0 \le j < n \rangle$

over \mathbb{Q} . Then

$$\alpha A \subset A, \ \beta B \subset B.$$

Consider the abelian group AB over \mathbb{Z} spanned by the mn elements $\alpha^i \beta^j$:

 $AB = \langle \alpha^i \beta^j : 0 \le i < m, \ 0 \le j < n \rangle.$

Evidently

$$\alpha AB \subset AB, \ \beta AB \subset AB.$$

Hence

$$(\alpha + \beta)AB \subset AB, \ (\alpha\beta)AB \subset AB \implies \alpha + \beta, \ \alpha\beta \in \overline{\mathbb{Z}}.$$

Thus $\overline{\mathbb{Q}}$ is a ring.

Finally,

$$\mathbb{Z} \subset \overline{\mathbb{Z}},$$

since $n \in \mathbb{Z}$ satisfies the equation

$$x - n = 0.$$

Proposition 12.4. A rational number $c \in \mathbb{Q}$ is an algebraic integer if and only if it is a rational integer:

$$\bar{\mathbb{Z}} \cap \mathbb{Q} = \mathbb{Z}.$$

Proof. Suppose c = m/n, where gcd(m, n) = 1; and suppose c satisfies the equation

$$x^{d} + a_1 x^{d-1} + \dots + a_d = 0 \quad (a_i \in \mathbb{Z}).$$

Then

$$m^d + a_1 m^{d-1} n + \dots + a_d n^d = 0.$$

Since n divides every term after the first, it follows that $n \mid m^d$. But that is incompatible with gcd(m, n) = 1, unless n = 1, ie $c \in \mathbb{Z}$.

Proposition 12.5. The ring $\overline{\mathbb{Z}}$ of algebraic integers is alebraically closed, ie if $\alpha \in \mathbb{C}$ satisfies

$$f(x) = x^{n} + a_{1}x^{n-1} + \dots + a_{n} = 0,$$

where the coefficients $a_i \in \overline{\mathbb{Z}}$. Then $\alpha \in \overline{\mathbb{Z}}$.

Proof. Suppose

$$a_i Z_i \subset Z_i$$

for $0 \leq i \leq n$. Let

$$A = \langle 1, \alpha, \dots, \alpha^{n-1} \rangle Z_1 Z_2 \cdots Z_n.$$

Then

$$\alpha A \subset A \implies \alpha \in \bar{\mathbb{Z}}.$$