
Chapter 6

Polynomial Rings

6.1 Polynomials
A polynomial of degree n over a ring A is an expression of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

where ai ∈ A and an 6= 0.
(It is better not to think of f(x) as a function, since a non-zero polynomial

may take the value 0 for all x ∈ A, particularly if A is finite.)
We know how to add and multiply polynomials, so the polynomials over

A form a ring.

Definition 6.1. We denote the ring of polynomials over the ring A by A[x].

In practice we will be concerned almost entirely with polynomials over a
field k. We will assume in the rest of the chapter that k denotes a field.

In this case we do not really distinguish between f(x) and cf(x), where
c 6= 0. To this end we often restrict the discussion to monic polynomials, ie
polynomials with leading coefficient 1:

f(x) = xn + a1x
n−1 + · · ·+ an.

6.2 Long division
Proposition 6.1. Suppose k is a field, and suppose f(x), g(x) ∈ k[x], with
g(x) 6= 0. Then there exist unique polynomials q(x), r(x) ∈ k[x] with deg(r(x)) <
deg(g(x)) such that

f(x) = q(x)g(x) + r(x).
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Proof. We begin by listing some obvious properties of the degree of a poly-
nomial over a field:

Lemma 6.1. 1. deg(f + g) ≤ max(deg(f), deg(g));

2. deg(fg) = deg(f) deg(g).

The existence of q(x) and r(x) follows easily enough by induction on
deg(f(x)). To see that the result is unique, suppose

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

Then
g(x)(q1(x)− q2(x)) = r2(x)− r1(x).

The term on the left has degree ≥ deg(g(x)), while that on the right has
degree < deg(g(x)).

6.3 Irreducibility
Definition 6.2. The polynomial p(x) ∈ k[x] is said to be irreducible if it
cannot be factorised into polynomials of lower degree:

p(x) = g(x)h(x) =⇒ g(x) of h(x) is constant.

In particular, any linear polynomial (ie of degree 1) is irreducible.

6.4 The Euclidean Algorithm for polynomials
Proposition 6.2. Any two polynomials f(x), g(x) ∈ k[x] have a gcd d(x),
ie

d(x) | f(x), g(x);

and
e(x) | f(x), g(x) =⇒ e(x) | d(x).

Furthermore, there exist polynomials u(x), v(x) such that

d(x) = u(x)f(x) + v(x)g(x).

Proof. The Euclidean Algorithm extends almost unchanged; the only differ-
ence is that deg(r(x)) takes the place of |r|.

Thus first we divide f(x) by g(x):

f(x) = q0(x)g(x) + r0(x),

where deg(r0(x)) < deg(g(x)).
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If r0(x) = 0 we are done; otherwise we divide g(x) by r0(x):

g(x)(x) = q1(x)r0(x) + r1(x),

where deg(r1(x)) < deg(r0(x)).
Since the polynomials are reducing in degree, we must reach 0 after at

most deg(g(x)) steps. It follows, by exactly the same argument we used with
the Euclidean Algorithm in Z, that the last non-zero remainder rs(x) is the
required gcd:

gcd(f(x), g(x)) = rs(x).

The last part of the Proposition, the fact that d(x) is a linear combination
(with polynomial coefficients) of f(x) and g(x), follows exactly as before.

6.5 Unique factorisation
Theorem 6.1. A monic polynomial f(x) ∈ k[x] can be expressed as a product
of irreducible monic polynomials, and the expression is unique up to order.

Proof. If f(x) is not itself irreducible then f(x) = g(x)h(x), where g(x), h(x)
are of lower degree. The result follows by induction on deg(f(x)).

To prove uniqueness we establish the polynomial version of Euclid’s Lemma;

Lemma 6.2. If p(x) is irreducible then

p(x) | f(x) g(x) =⇒ p(x) | f(x) or p(x) | g(x).

Proof. As with the classic Euclidean Algorithm, suppose p(x) - f(x). Then

gcd(p(x), f(x)) = 1.

Hence there exist u(x), v(x) such that

u(x)p(x) + v(x)f(x) = 1.

Multiplying by g(x),

u(x)p(x)g(x) + v(x)f(x)g(x) = g(x).

Now p(x) divides both terms on the left. Hence p(x) | g(x), as required.

To prove uniqueness, we argue by induction on deg(f(x)). Suppose

f(x) = p1(x) · · · pr(x) = q1(x) · · · qs(x).

Then p1(x) | qj(x), and so p1(x) = qj(x), for some j; and the result follows
on applying the inductive hypothesis to

f(x)/p1(x) = p2(x) · · · pr(x) = q1(x) · · · qr−1(x)qr+1(x) · · · qs(x).
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6.6 Quotient fields
We have seen that if p is a prime number then Z/(p) is a field. The analogous
result holds for irreducible polynomials.

Theorem 6.2. Suppose p(x) ∈ k[x] is irreducible. Then the quotient-ring
k[x]/(p(x)) is a field.

Proof. Suppose f(x) is coprime to p(x), ie represents a non-zero element of
k[x] mod p(x). Then we can find polynomials u(x), v(x) such that

f(x)u(x) + p(x)v(x) = 1,

But then
f(x)u(x) ≡ 1 mod p(x),

ie fx) has the inverse u(x) modulo p(x).

This is particularly striking if k is a prime field Fp.

Corollary 6.1. Suppose f(x) ∈ Fp[x] is an irreducible polynomial of degree
n. Then K = Fp[x]/(f(x)) is a finite field with pn elements.

Proof. This follows from the fact that the residues modulo f(x) are repre-
sented by the pn polynomials

a0 + a1x+ · · ·+ an−1x
n−1 (0 ≤ a0, a1, . . . , an−1 < p).

Example: Let us look at the first irreducible polynomials in F2[x].
Every linear polynomial x − c in k[x] is irreducible, by definition. Thus

there are two irreducible polynomials of degree 1 in F2[x]: x and x+ 1.
If one of the four polynomials of degree 2 is not irreducible then it must

be one of the 3 products of x and x+ 1,

x2, x(x+ 1) = x2 + x, (x+ 1)2 = x2 + 1.

This leave one irredicible polynomial of degree 2: x2 + x+ 1.
Turning to the eight polynomials of degree 3, there are four linear prod-

ucts:

x3, x2(x+ 1) = x3 + x, x(x+ 1)2 = x3 + x, (x+ 1)3 = x3 + x2 + x+ 1.

There are two other ‘composite’ polynomials:

x(x2 + x+ 1) = x3 + x2 + x+ 1, (x+ 1)(x2 + x+ 1) = x3 + 1.
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We are left with two irreducibles:

x3 + x2 + 1, x3 + x+ 1.

Each polynomial of degree d in F2[x] can be represented by d digits. Thus
the irreducible polynomials listed above can be written:

10, 11, 111, 1101, 1011, . . . .

These compare with the familar prime numbers, in binary form:

10, 11, 101, 111, 1001, . . . .

The field F2[x]/(x
2 + x + 1) has 4 elements, represented by the residues

0, 1, x, x+ 1. The addition and multiplication tables for this field of order 4
are

+ 0 1 x x+ 1
0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

× 0 1 x x+ 1
0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

In the same way, the two irreducible polynomials of degree 3 define fields
of order 8. However, we shall see later that there is just one field of each
prime power pn, up to isomorphism. It follows that the two fields of order 8
must be two models of the same field.

6.7 Gauss’ Lemma
Factorisation of polynomials over the rationals plays an important role in
elementary number theory. The following result simplifies the issue.

Proposition 6.3. Suppose f(x) ∈ Z[x]. Then f(x) factorises in Q[x] if and
only if it factorises in Z[x].

Proof.

Lemma 6.3. Each polynomial f(x) ∈ Q[x] can be expressed in the form

f(x) = qF (x)

where q ∈ Q, F (x) ∈ Z[x] and the coefficients of F(x) are coprime; moreover,
this expression is unique up to ±.
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Proof. It is evident that f(x) can be brought to this form, by multiplying
by the lcm of the coefficients and then taking out the gcd of the resulting
integer coefficients.

If there were two such expressions, then multiplying across we would have

n1F1(x) = n2F2(x).

The gcd of the coefficients on the left is |n1|, while the gcd of those on the
right is |n2|. Thus n1 = ±n2, and the result follows.

Lemma 6.4. Suppose
u(x) = v(x)w(x),

where u(x), v(x), w(x) ∈ Z[x]. If the coefficients of v(x) are coprime, and
those of w(x) are also coprime, then the same is true of u(x).

Proof. Suppose to the contrary that the prime p divides all the coefficients
of f(x). Let

v(x) = brx
r + · · ·+ b0, w(x) = csx

s + · · ·+ c0, u(x) = ar+sx
r+s + · · ·+ a0.

By hypothesis, p does not divide all the bi, or all the cj. Suppose

p | br, br−1, . . . , bi+1 but p - bi,

and similarly
p | cs, cs−1, . . . , cj+1 but p - cj,

Then

p - ai+j = bi+jc0 + bi+j−1c1 + · · ·+ bicj + bi−1cj+1 + · · ·+ b0ci+j,

for p divides every term in the sum except bicj, which it does not divide since

p | bicj =⇒ p | bi or p | cj.

So p does not divide all the coefficients of u(x), contrary to hypothesis.

Writing f(x), g(x), h(x) in the form of the first Lemma,

q1F (x) = (q2G(x))(q3H(x)),

where the coefficients of each of F (x), G(x), H(x) are coprime integers. Thus

F (x) = (q2q3/q1)G(x)H(x).

Since the coefficients of both F (x) and G(x)H(x) are coprime, by the second
Lemma they are equal up to sign, and the result follows.
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6.8 Euclidean domains, PIDs and UFDs
Definition 6.3. An integral domain A is said to be a euclidean domain if
there exists a function N : A → N such that N(a) = 0 ⇐⇒ a = 0, and
given a, b ∈ A with b 6= 0 there exists q, r ∈ A with

a = bq + r

with N(r) < N(b).

Definition 6.4. An element e of a ring A is said to be a unit if ef = 1 for
some element f ∈ A.

Proposition 6.4. The units in a ring A form a multiplicative group A×.

Examples: Z× = {±1}.
If k is a field then k× = k \ {0}.

Definition 6.5. An ideal in an integral domain A is a non-empty subset
I ⊂ A with the properties

1. a, b ∈ I =⇒ a+ b ∈ I,

2. a ∈ A, b ∈ I =⇒ ab ∈ I,

Example: The whole ring A is an ideal in A, and so is the set {0}.
If a ∈ A then (a) = {ax : x ∈ A} is an ideal. An ideal of this form is said

to be principal.
If a, b ∈ A then

b | a ⇐⇒ (a) ⊂ (b).

Also
(a) = (b) ⇐⇒ b = eb,

where e is a unit.

Definition 6.6. An integral domain A is said to be a principal ideal domain
(PID) if every ideal I ⊂ A is principal: I = (a) for some a ∈ A.

Proposition 6.5. A euclidean domain is a principal ideal domain.

Proof. Suppose I is an ideal in the euclidean domain A. If I 6= (0) let d ∈ I
be a non-zero element with minimal N(d). Suppose a ∈ I. Then d | a, for
else

a = qd+ r,

with N(r) < N(d); and then r ∈ I contradicts the definition of d.

Definition 6.7. An element p in an integral domain A is said to be primitive
if p | ab =⇒ p | a or p | b.
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Proposition 6.6. A primitive element p cannot be factored; if p = ab then
either a or b

Proof. Since p | p = ab, p | a or p | b. Suppose p | a, say a = pc. Then
p = pcb =⇒ bc = 1, so that b is a unit.

Definition 6.8. A unique factorisation domain (UFD) is an integral domain
A with the property that every non-zero element a ∈ A is expressible in the
form

a = ep1p2 . . . pr,

where e is a unit and p1, p2, . . . , pr are primitive elements.

We allow a = e with r = 0. Also, we note that we can omit e if r ≥ 1
since ep is primitive if p is primitive.

Theorem 6.3. A principal ideal domain is a unique factorisation domain:

PID =⇒ UFD.

Proof. Suppose A is a PID; and suppose a ∈ A, a 6= 0. We may assume that
a is not a unit, since the result holds trivially (with no primitive elements)
in that case.

We must show that a cannot be factorised into an arbitrarily large number
of non-units. Suppose that is false.

Then in particular x = y0z0, where y0, z0 are non-units. One of y0, z0,
say y0, can be factorised into an arbitrarily large number of non-units. In
particular y0 = y1z1, where y1, z1 are non-units. One of y1, z1, say y1, can
be factorised into an arbitrarily large number of non-units. In particular
y1 = y2z2, where y2, z2 are non-units.

Continuing in this way, we obtain an infinite sequence

y1, y2, y3, . . . ,

such that yi+1 | yi for all i. Thus
(y1) ⊂ (y2) ⊂ (y3) ⊂ · · ·

Let
I = (y1) ∪ (y2) ∪ (y3) ∪ · · · .

It is readily verified that I is an ideal. Since A is a PID, it follows that
I = (d) for some d ∈ A. Thus d ∈ (yn) for some n. But yn+1 ∈ (d). It follows
that yn | yn+1. Since yn+1 | yn, it follows that yn = yn+1e with e a unit. But
then yn+1e = yn+1zn+1 =⇒ zn+1 = e, contrary to hypothesis.

Let
x = ep1 · · · pr

be an expression for x with the maximal number r of primitive elements.
Then pi cannot be factored, or we would get an expression for x with r + 1
primitive elements; so p1, . . . , pr are primitive elements.
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