Chapter 4

Modular arithmetic

4.1 The modular ring

Definition 4.1. Suppose $n \in \mathbb{N}$ and $x, y \in \mathbb{Z}$. Then we say that x, y are equivalent modulo n, and we write

$$x \equiv y \mod n$$

if

$$n \mid x - y.$$

It is evident that equivalence modulo n is an equivalence relation, dividing \mathbb{Z} into equivalence or *residue* classes.

Definition 4.2. We denote the set of residue classes mod n by $\mathbb{Z}/(n)$.

Evidently there are just n classes modulo n if $n \ge 1$;

$$\#(\mathbb{Z}/(n)) = n.$$

We denote the class containing $a \in \mathbb{Z}$ by \bar{a} , or just by a if this causes no ambiguity.

Proposition 4.1. If

$$x \equiv x', \ y \equiv y'$$

then

$$x + y \equiv x' + y', \ xy \equiv x'y'.$$

Thus we can add and multiply the residue classes mod d.

Corollary 4.1. If n > 0, $\mathbb{Z}/(n)$ is a finite commutative ring (with 1).

Example: Suppose n = 6. Then addition in $\mathbb{Z}/(6)$ is given by

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

while multiplication is given by

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4.2 The prime fields

Theorem 4.1. The ring $\mathbb{Z}/(n)$ is a field if and only if n is prime.

Proof. Recall that an *integral domain* is a commutative ring A with 1 having no zero divisors, ie

 $xy = 0 \implies x = 0 \text{ or } y = 0.$

In particular, a field is an integral domain in which every non-zero element has a multiplicative inverse.

The result follows from the following two lemmas.

Lemma 4.1. $\mathbb{Z}/(n)$ is an integral domain if and only if n is prime.

Proof. Suppose n is not prime, say

$$n = rs$$
,

where 1 < r, s < n. Then

$$\bar{r}\ \bar{s}=\bar{n}=0.$$

So $\mathbb{Z}/(n)$ is not an integral domain.

Conversely, suppose n is prime; and suppose

$$\bar{r}\ \bar{s} = \overline{rs} = 0.$$

Then

$$n \mid rs \implies n \mid r \text{ or } n \mid s \implies \bar{r} = 0 \text{ or } \bar{s} = 0.$$

Lemma 4.2. A finite integral domain A is a field.

Proof. Suppose $a \in A$, $a \neq 0$. Consider the map

$$x \mapsto ax : A \to A.$$

This map is injective; for

$$ax = ay \implies a(x - y) = 0 \implies x - y = 0 \implies x = y$$

But an injective map

 $f:X\to X$

from a *finite* set X to itself is necessarily surjective.

In particular there is an element $x \in A$ such that

$$ax = 1$$
,

ie a has an inverse. Thus A is a field.

4.3 The additive group

If we 'forget' multiplication in a ring A we obtain an additive group, which we normally denote by the same symbol A. (In the language of category theory we have a 'forgetful functor' from the category of rings to the category of abelian groups.)

Proposition 4.2. The additive group $\mathbb{Z}/(n)$ is a cyclic group of order n.

This is obvious; the group is generated by the element $1 \mod n$.

Proposition 4.3. The element $a \mod n$ is a generator of $\mathbb{Z}/(n)$ if and only if

$$gcd(a, n) = 1.$$

Proof. Let

$$d = \gcd(a, n).$$

If d > 1 then 1 is not a multiple of $a \mod n$, since

 $1 \equiv ra \mod n \implies 1 = ra + sn \implies d \mid 1.$

Conversely, if d = 1 then we can find $r, s \in \mathbb{Z}$ such that

ra + sn = 1;

 \mathbf{SO}

$$ra \equiv 1 \bmod n,$$

Thus 1 is a multiple of $a \mod n$, and so therefore is every element of $\mathbb{Z}/(n)$.

Note that there is only one cyclic group of order n, up to isomorphism. So any statement about the additive groups $\mathbb{Z}/(n)$ is a statement about finite cyclic groups, and vice versa. In particular, the result above is equivalent to the statement that if G is a cyclic group of order n generated by g then g^r is also a generator of G if and only if gcd(r, n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each order $m \mid n$ allowed by Lagrange's Theorem, and this subgroup is cyclic. In the language of modular arithmetic this becomes:

Proposition 4.4. The additive group $\mathbb{Z}/(n)$ had just one subgroup of each order $m \mid n$. If n = mr this is the subgroup

$$\langle r \rangle = \{0, r, 2r, \dots, (m-1)r\}.$$

4.4 The multiplicative group

If A is a ring (with 1, but not necessarily commutative) then the *invertible* elements form a group; for if a, b are invertible, say

$$ar = ra = 1, bs = sb = 1,$$

then

$$(ab)(rs) = (rs)(ab) = 1,$$

and so ab is invertible.

We denote this group by A^{\times} .

Proposition 4.5. The element $a \in \mathbb{Z}/(n)$ is invertible if and only if

$$gcd(a, n) = 1.$$

Proof. If a is invertible mod n, say

$$ab \equiv 1 \mod n$$
,

then

ab = 1 + tn,

and it follows that

gcd(a, n) = 1.

Conversely, if this is so then

$$ax + ny = 1$$

and it follows that x is the inverse of $a \mod n$.

We see that the invertible elements in $\mathbb{Z}/(n)$ are precisely those elements that generate the additive group $\mathbb{Z}/(n)$.

Definition 4.3. We denote the group of invertible elements in $\mathbb{Z}/(n)$ by $(\mathbb{Z}/n)^{\times}$. We call this group the multiplicative group mod n.

Thus $(\mathbb{Z}/n)^{\times}$ consists of the residue classes mod *n* coprime to *n*, ie all of whose elements are coprime to *n*.

Definition 4.4. If $n \in \mathbb{N}$, we denote by $\phi(n)$ the number of integers r such that

$$0 \le r < n \text{ and } \gcd(r, n) = 1.$$

This function is called *Euler's totient function*. As we shall see, it plays an important role in elementary number theory.

Example:

$$\phi(0) = 0, \phi(1) = 1, \phi(2) = 1, \phi(3) = 2, \phi(4) = 2, \phi(5) = 4, \phi(6) = 2.$$

It is evident that if p is prime then

$$\phi(p) = p - 1,$$

since every number in [0, p) except 0 is coprime to p.

Proposition 4.6. The order of the multiplicative group $(\mathbb{Z}/n)^{\times}$ is $\phi(n)$

This follows from the fact that each class can be represented by a remainder $r \in [0, n)$.

Example: Suppose n = 10. Then the multiplication table for the group $(\mathbb{Z}/10)^{\times}$ is

	1	3	7	9
1	1	3	7	9
3	3	9	1	7.
7	7	1	9	3
9	9	7	3	1

We see that this is a cyclic group of order 4, generated by 3:

$$(\mathbb{Z}/10)^{\times} = C_4.$$

Suppose gcd(a, n) = 1. To find the inverse x of a mod n we have in effect to solve the equation

ax + ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean Algorithm, in effect to determine gcd(a, n).

Example: Let us determine the inverse of 17 mod 23. Applying the Euclidean Algorithm,

$$23 = 17 + 6, 17 = 3 \cdot 6 - 1.$$

Thus

$$1 = 3 \cdot 6 - 17$$

= 3(23 - 17) - 17
= 3 \cdot 23 - 4 \cdot 17.

Hence

$$17^{-1} = -4 = 19 \mod 23.$$

Note that having found the inverse of a we can easily solve the congruence

$$ax = b \mod n$$

In effect

 $x = a^{-1}b.$

For example, the solution of

$$17x = 9 \mod 23$$

is

$$x = 17^{-1}9 = -4 \cdot 9 = -36 \equiv -13 \equiv 10 \mod 23.$$

4.5 Homomorphisms

Suppose $m \mid n$. Then each remainder mod n defines a remainder mod m. For example, if m = 3, n = 6 then

 $\begin{array}{l} 0 \mod 6 \mapsto 0 \mod 3, \\ 1 \mod 6 \mapsto 1 \mod 3, \\ 2 \mod 6 \mapsto 2 \mod 3, \\ 3 \mod 6 \mapsto 0 \mod 3, \\ 4 \mod 6 \mapsto 1 \mod 3, \\ 5 \mod 6 \mapsto 2 \mod 3. \end{array}$

Proposition 4.7. If $m \mid n$ the map

 $r \mod n \mapsto r \mod n$

is a ring-homomorphism

$$\mathbb{Z}/(n) \to \mathbb{Z}/(m).$$

4.6 Finite fields

We have seen that $\mathbb{Z}/(p)$ is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces over any field; and vector spaces over finite fields are central to coding theory and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer n such that

$$\underbrace{1+1+\cdots+1}^{n\ 1's} = 0.$$

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive group A.

Evidently \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all of characteristic 0.

Proposition 4.8. The ring $\mathbb{Z}/(n)$ is of characteristic n.

Proposition 4.9. The characteristic of a finite field is a prime.

Proof. Let us write

$$n \cdot 1$$
 for $\overbrace{1+1+\cdots+1}^{n \cdot 1 \cdot s}$.

-1,

Suppose the order n is composite, say n = rs. By the distributive law,

$$n \cdot 1 = (r \cdot 1)(s \cdot 1).$$

There are no divisors of zero in a field; hence

$$r \cdot 1 = 0 \text{ of } s \cdot 1 = 0,$$

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a prime or 0.

Proposition 4.10. Suppose F is a finite field of characteristic p. Then F contains a subfield isomorphic to $\mathbb{Z}/(p)$.

Proof. Consider the additive subgroup generated by 1:

 $\langle 1 \rangle = \{0, 1, 2 \cdot 1, \dots, (p-1) \cdot 1\}.$

It is readily verified that this set is closed under addition and multiplication; and the map

$$r \bmod p \mapsto r \cdot 1 : \mathbb{Z}/(p) \to \langle 1 \rangle$$

is an isomorphism.

This field is called the *prime subfield* of F.

Corollary 4.2. There is just one field containing p elements, up to isomorphism, namely $\mathbb{Z}/(p)$.

Theorem 4.2. A finite field F of characteristic p contains p^n elements for some $n \ge 1$

Proof. We can consider F as a vector space over its prime subfield P. Suppose this vector space is of dimension n. Let e_1, \ldots, e_n be a basis for the space. Then each element of F is uniquely expressible in the form

$$a_1e_1+\cdots+a_ne_n$$

where $a_1, \ldots, a_n \in P$. There are just p choices for each a_i . Hence the total number of choices, is the number of elements in F, is p^n .

Theorem 4.3. There is just one field F containing $q = p^n$ elements for each $n \ge 1$, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but no field containing 6 elements.

We are not going to prove this theorem until later.

Definition 4.6. We denote the field containing $q = p^n$ elements by \mathbb{F}_q .

The finite fields are often called *Galois fields*, after Evariste Galois who discovered them.

4.7 Primitive roots

Theorem 4.4. The multiplicative group \mathbb{F}_{a}^{*} of a finite field is cyclic.

In ofher words, we can find $a \in \mathbb{F}_q$ such that each non-zero $b \in \mathbb{F}_q$ is a power of $a: b = a^r$ for some $r \in \mathbb{N}$.

The result is important, but the proof is difficult. It depends on a counting argument (like the proof above that a finite integral domain is a field), a common tool in modular arithmetic.

Incidentally, the proof is just as simple for general finite fields \mathbb{F}_q with $q = p^e$ as it is for the prime fields \mathbb{F}_p , so we shall deal with the general case even though we shall make little or no use of the non-prime finite fields.

Proof. By Lagrange's Theorem (in group theory), since \mathbb{F}_q^* has order q-1, each element $a \in \mathbb{F}_q^*$ has order $d \mid q-1$,

Let there be f(d) elements of order d for each d | q - 1. These elements all satisfy the polynomial equation $x^d = 1$ over the field \mathbb{F}_q . Also if a is one such element then the d elements $1, a, a^2, \ldots, a^{d-1}$ all satisfy this equation, and so give all the roots of the equation. (The theorem that a polynomial of degree d has at most d roots holds just as well over finite fields as it does over \mathbb{R} or \mathbb{C} .)

Lemma 4.3. If G is a group, and $g \in G$ has order d then g^r has order d if and only of gcd(d, r) = 1.

Proof. Suppose gcd(d, r) = 1; and suppose a^r has order e. Then $a^{re} = 1 \implies d \mid re \implies d \mid e$ since gcd(r, d) = 1.

Conversely, suppose gcd(d, r) = e > 1. Let d = ef, r = es. Then $e = d/f = r/s \implies rf = ds$. Hence $(a^r)^f = (a^d)^s = 1$, and a^r has order smaller than d.

Now consider the cyclic group C_n , with generator g. This certainly has elements of each order $d \mid n$; for if n = de then g^e has order d. Moreover, if g^r has order d then $n \mid dr \implies de \mid dr \implies e \mid r$. Thus the elements of order d are all multiples of g^e , and so lie in the cyclic subgroup C_d generated by g^e .

Now the Lemma above shows that there are precisely $\phi(d)$ elements in C_d of order d. Hence

$$\sum_{d|n} \phi(d) = n$$

Returning to the group \mathbb{F}_q^* , we saw that there were either 0 or $\phi(d)$ elements of order d for each $d \mid n$. But from the formula above, to account for q-1 elements there must be $\phi(d)$ elements of each order $d \mid q-1$. In particular there must be $\phi(q-1) > 0$ elements of order q-1: that is, generators of the group \mathbb{F}_q^* .

Definition 4.7. We call a generator of the multiplicative group \mathbb{F}_p^* a primitive root modulo p.

Corollary 4.3. There are exactly $\phi(p-1)$ primitive roots modulo p for each prime p.

Example: Suppose p = 23. There are $\phi(22) = 10$ primitive roots modulo 23.

In general there is no better way of finding a primitive root other than trying $2, 3, 5, 6, \ldots$ successively. (There is no need to try 4, since if 2 is not a primitive root then 2^2 certainly cannot be.)

Let us try 2. We know that any element of \mathbb{F}_{23}^* has order $d \mid 22$, ie d = 1, 2, 11 or 22. Evidently 2 does not have order 1 or 2.

Working modulo 23 throughout, $2^5 = 32 \equiv 9$. Hence $2^{10} \equiv 9^2 = 81 \equiv 12$; and so $2^{11} \equiv 24 \equiv 1$. So 2 has order 11 and is not a primitive root modulo 23.

Moving on to 3, we have $3^3 = 27 \equiv 4$. Hence $3^6 \equiv 16 \equiv -7$, and so $3^{12} \equiv 49 \equiv 3 \implies 3^{11} \equiv 1$. So 3 is not a primitive root either.

Next we try 5. (Note that if 2 is not a primitive root then neither is $2^2 = 4$. This is not because 4 is not a prime, but because it is a power.) We have

$$5^2 = 25 \equiv 2 \implies 5^{10} = (5^2)^5 \equiv 2^5 = 32 \equiv 9 \implies 2^{11} \equiv 45 \equiv -1.$$

So we have found a primitive root mod 23.

From the last Lemma, knowing one primitive root a, the full set is a^d , where d runs over d coprime to p. In this case there are $\phi(22) = 11$ primitive roots, namely 5^d for d = 1, 3, 5, 7, 9, 13, 17, 19, 21. Note that the inverse of 5^d is 5^{22-d} , which may be easier to calculate.

From the work above,

$$5^{3} \equiv 5 \cdot 5^{2} \equiv 5 \cdot 2 = 10,$$

$$5^{5} \equiv 25 \cdot 5^{3} = 250 \equiv 20 \equiv -3,$$

$$5^{7} \equiv -75 \equiv -6,$$

$$5^{9} \equiv 5 \cdot 2^{4} = 80 \equiv 11,$$

$$5^{13} \equiv 11^{-1} \equiv -2,$$

$$5^{15} \equiv -50 \equiv -4,$$

$$5^{17} \equiv -3^{-1} \equiv -8,$$

$$5^{19} \equiv 5^{10} \cdot 5^{9} \equiv 99 \equiv 7,$$

$$5^{21} \equiv 5 \cdot 5^{7} \cdot 5^{13} \equiv 60 \equiv -9.$$

Thus the primitive roots modulo 23 are: -9, -8, -6, -4, -2, 5, 7, 10, 11. (It is a matter of personal preference whether or not to replace remainders > p/2 by ther negative equivalent.)