
Chapter 4

Modular arithmetic

4.1 The modular ring
Definition 4.1. Suppose n ∈ N and x, y ∈ Z. Then we say that x, y are
equivalent modulo n, and we write

x ≡ y mod n

if
n | x− y.

It is evident that equivalence modulo n is an equivalence relation, dividing
Z into equivalence or residue classes.

Definition 4.2. We denote the set of residue classes mod n by Z/(n).

Evidently there are just n classes modulo n if n ≥ 1;

#(Z/(n)) = n.

We denote the class containing a ∈ Z by ā, or just by a if this causes no
ambiguity.

Proposition 4.1. If
x ≡ x′, y ≡ y′

then
x+ y ≡ x′ + y′, xy ≡ x′y′.

Thus we can add and multiply the residue classes modd.

Corollary 4.1. If n > 0, Z/(n) is a finite commutative ring (with 1).
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Example: Suppose n = 6. Then addition in Z/(6) is given by

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

while multiplication is given by

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

.

4.2 The prime fields
Theorem 4.1. The ring Z/(n) is a field if and only if n is prime.

Proof. Recall that an integral domain is a commutative ring A with 1 having
no zero divisors, ie

xy = 0 =⇒ x = 0 or y = 0.

In particular, a field is an integral domain in which every non-zero element
has a multiplicative inverse.

The result follows from the following two lemmas.

Lemma 4.1. Z/(n) is an integral domain if and only if n is prime.

Proof. Suppose n is not prime, say

n = rs,

where 1 < r, s < n. Then
r̄ s̄ = n̄ = 0.

So Z/(n) is not an integral domain.
Conversely, suppose n is prime; and suppose

r̄ s̄ = rs = 0.

Then
n | rs =⇒ n | r or n | s =⇒ r̄ = 0 or s̄ = 0.
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Lemma 4.2. A finite integral domain A is a field.

Proof. Suppose a ∈ A, a 6= 0. Consider the map

x 7→ ax : A→ A.

This map is injective; for

ax = ay =⇒ a(x− y) = 0 =⇒ x− y = 0 =⇒ x = y.

But an injective map
f : X → X

from a finite set X to itself is necessarily surjective.
In particular there is an element x ∈ A such that

ax = 1,

ie a has an inverse. Thus A is a field.

4.3 The additive group
If we ‘forget’ multiplication in a ring A we obtain an additive group, which we
normally denote by the same symbol A. (In the language of category theory
we have a ‘forgetful functor’ from the category of rings to the category of
abelian groups.)

Proposition 4.2. The additive group Z/(n) is a cyclic group of order n.

This is obvious; the group is generated by the element 1 mod n.

Proposition 4.3. The element a mod n is a generator of Z/(n) if and only
if

gcd(a, n) = 1.

Proof. Let
d = gcd(a, n).

If d > 1 then 1 is not a multiple of a mod n, since

1 ≡ ra mod n =⇒ 1 = ra+ sn =⇒ d | 1.

Conversely, if d = 1 then we can find r, s ∈ Z such that

ra+ sn = 1;

so
ra ≡ 1 mod n,

Thus 1 is a multiple of a mod n, and so therefore is every element of Z/(n).
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Note that there is only one cyclic group of order n, up to isomorphism.
So any statement about the additive groups Z/(n) is a statement about finite
cyclic groups, and vice versa. In particular, the result above is equivalent to
the statement that if G is a cyclic group of order n generated by g then gr is
also a generator of G if and only if gcd(r, n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each
order m | n allowed by Lagrange’s Theorem, and this subgroup is cyclic. In
the language of modular arithmetic this becomes:

Proposition 4.4. The additive group Z/(n) had just one subgroup of each
order m | n. If n = mr this is the subgroup

〈r〉 = {0, r, 2r, . . . , (m− 1)r}.

4.4 The multiplicative group
If A is a ring (with 1, but not necessarily commutative) then the invertible
elements form a group; for if a, b are invertible, say

ar = ra = 1, bs = sb = 1,

then
(ab)(rs) = (rs)(ab) = 1,

and so ab is invertible.
We denote this group by A×.

Proposition 4.5. The element a ∈ Z/(n) is invertible if and only if

gcd(a, n) = 1.

Proof. If a is invertible modn, say

ab ≡ 1 mod n,

then
ab = 1 + tn,

and it follows that
gcd(a, n) = 1.

Conversely, if this is so then

ax+ ny = 1,

and it follows that x is the inverse of a mod n.
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We see that the invertible elements in Z/(n) are precisely those elements
that generate the additive group Z/(n).

Definition 4.3. We denote the group of invertible elements in Z/(n) by
(Z/n)×. We call this group the multiplicative group mod n.

Thus (Z/n)× consists of the residue classes mod n coprime to n, ie all of
whose elements are coprime to n.

Definition 4.4. If n ∈ N, we denote by φ(n) the number of integers r such
that

0 ≤ r < n and gcd(r, n) = 1.

This function is called Euler’s totient function. As we shall see, it plays
an important role in elementary number theory.

Example:

φ(0) = 0,

φ(1) = 1,

φ(2) = 1,

φ(3) = 2,

φ(4) = 2,

φ(5) = 4,

φ(6) = 2.

It is evident that if p is prime then

φ(p) = p− 1,

since every number in [0, p) except 0 is coprime to p.

Proposition 4.6. The order of the multiplicative group (Z/n)× is φ(n)

This follows from the fact that each class can be represented by a remain-
der r ∈ [0, n).

Example: Suppose n = 10. Then the multiplication table for the group
(Z/10)× is

1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

.
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We see that this is a cyclic group of order 4, generated by 3:

(Z/10)× = C4.

Suppose gcd(a, n) = 1. To find the inverse x of a mod n we have in effect
to solve the equation

ax+ ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean
Algorithm, in effect to determine gcd(a, n).

Example: Let us determine the inverse of 17 mod 23. Applying the Eu-
clidean Algorithm,

23 = 17 + 6,

17 = 3 · 6− 1.

Thus

1 = 3 · 6− 17

= 3(23− 17)− 17

= 3 · 23− 4 · 17.

Hence
17−1 = −4 = 19 mod 23.

Note that having found the inverse of a we can easily solve the congruence

ax = b mod n

In effect
x = a−1b.

For example, the solution of

17x = 9 mod 23

is
x = 17−19 = −4 · 9 = −36 ≡ −13 ≡ 10 mod 23.
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4.5 Homomorphisms
Suppose m | n. Then each remainder mod n defines a remainder mod m.

For example, if m = 3, n = 6 then

0 mod 6 7→ 0 mod 3,

1 mod 6 7→ 1 mod 3,

2 mod 6 7→ 2 mod 3,

3 mod 6 7→ 0 mod 3,

4 mod 6 7→ 1 mod 3,

5 mod 6 7→ 2 mod 3.

Proposition 4.7. If m | n the map

r mod n 7→ r mod n

is a ring-homomorphism
Z/(n)→ Z/(m).

4.6 Finite fields
We have seen that Z/(p) is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces
over any field; and vector spaces over finite fields are central to coding theory
and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer
n such that

n 1’s︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive
group A.

Evidently Z, Q, R, C are all of characteristic 0.

Proposition 4.8. The ring Z/(n) is of characteristic n.

Proposition 4.9. The characteristic of a finite field is a prime.

Proof. Let us write

n · 1 for
n 1’s︷ ︸︸ ︷

1 + 1 + · · ·+ 1 .
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Suppose the order n is composite, say n = rs. By the distributive law,

n · 1 = (r · 1)(s · 1).

There are no divisors of zero in a field; hence

r · 1 = 0 of s · 1 = 0,

contradicting the minimality of n.

The proof shows in fact that the characteristic of any field is either a
prime or 0.

Proposition 4.10. Suppose F is a finite field of characteristic p. Then F
contains a subfield isomorphic to Z/(p).
Proof. Consider the additive subgroup generated by 1:

〈1〉 = {0, 1, 2 · 1, . . . , (p− 1) · 1}.

It is readily verified that this set is closed under addition and multiplication;
and the map

r mod p 7→ r · 1 : Z/(p)→ 〈1〉
is an isomorphism.

This field is called the prime subfield of F .

Corollary 4.2. There is just one field containing p elements, up to isomor-
phism, namely Z/(p).
Theorem 4.2. A finite field F of characteristic p contains pn elements for
some n ≥ 1

Proof. We can consider F as a vector space over its prime subfield P . Suppose
this vector space is of dimension n. Let e1, . . . , en be a basis for the space.
Then each element of F is uniquely expressible in the form

a1e1 + · · ·+ anen,

where a1, . . . , an ∈ P . There are just p choices for each ai. Hence the total
number of choices, ie the number of elements in F , is pn.

Theorem 4.3. There is just one field F containing q = pn elements for each
n ≥ 1, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but no field con-
taining 6 elements.

We are not going to prove this theorem until later.

Definition 4.6. We denote the field containing q = pn elements by Fq.

The finite fields are often called Galois fields, after Evariste Galois who
discovered them.
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4.7 Primitive roots
Theorem 4.4. The multiplicative group F∗q of a finite field is cyclic.

In ofher words, we can find a ∈ Fq such that each non-zero b ∈ Fq is a
power of a: b = ar for some r ∈ N.

The result is important, but the proof is difficult. It depends on a counting
argument (like the proof above that a finite integral domain is a field), a
common tool in modular arithmetic.

Incidentally, the proof is just as simple for general finite fields Fq with
q = pe as it is for the prime fields Fp, so we shall deal with the general case
even though we shall make little or no use of the non-prime finite fields.

Proof. By Lagrange’s Theorem (in group theory), since F∗q has order q − 1,
each element a ∈ F∗q has order d | q − 1,

Let there be f(d) elements of order d for each d | q − 1. These elements
all satisfy the polynomial equation xd = 1 over the field Fq. Also if a is one
such element then the d elements 1, a, a2, . . . , ad−1 all satisfy this equation,
and so give all the roots of the equation. (The theorem that a polynomial
of degree d has at most d roots holds just as well over finite fields as it does
over R or C.)

Lemma 4.3. If G is a group, and g ∈ G has order d then gr has order d if
and only of gcd(d, r) = 1.

Proof. Suppose gcd(d, r) = 1; and suppose ar has order e. Then are = 1 =⇒
d | re =⇒ d | e since gcd(r, d) = 1.

Conversely, suppose gcd(d, r) = e > 1. Let d = ef, r = es. Then
e = d/f = r/s =⇒ rf = ds. Hence (ar)f = (ad)s = 1, and ar has order
smaller than d.

Now consider the cyclic group Cn, with generator g. This certainly has
elements of each order d | n; for if n = de then ge has order d. Moreover, if
gr has order d then n | dr =⇒ de | dr =⇒ e | r. Thus the elements of
order d are all multiples of ge, and so lie in the cyclic subgroup Cd generated
by ge.

Now the Lemma above shows that there are precisely φ(d) elements in
Cd of order d. Hence ∑

d|n

φ(d) = n.

Returning to the group F∗q, we saw that there were either 0 or φ(d) ele-
ments of order d for each d | n. But from the formula above, to account for
q− 1 elements there must be φ(d) elements of each order d | q− 1. In partic-
ular there must be φ(q − 1) > 0 elements of order q − 1: that is, generators
of the group F∗q.
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Definition 4.7. We call a generator of the multiplicative group F∗p a primi-
tive root modulo p.

Corollary 4.3. There are exaclty φ(p− 1) primitive roots modulo p for each
prime p.

Example: Suppose p = 23. There are φ(22) = 10 primitive roots modulo
23.

In general there is no better way of finding a primitive root other than
trying 2, 3, 5, 6, . . . successively. (There is no need to try 4, since if 2 is not
a primitive root then 22 certainly cannot be.)

Let us try 2. We know that any element of F∗23 has order d | 22, ie
d = 1, 2, 11 or 22. Evidently 2 does not have order 1 or 2.

Working modulo 23 throughout, 25 = 32 ≡ 9. Hence 210 ≡ 92 = 81 ≡ 12;
and so 211 ≡ 24 ≡ 1. So 2 has order 11 and is not a primitive root modulo
23.

Moving on to 3, we have 33 = 27 ≡ 4. Hence 36 ≡ 16 ≡ −7, and so
312 ≡ 49 ≡ 3 =⇒ 311 ≡ 1. So 3 is not a primitive root either.

Next we try 5. (Note that if 2 is not a primitive root then neither is
22 = 4. This is not because 4 is not a prime, but because it is a power.) We
have

52 = 25 ≡ 2 =⇒ 510 = (52)5 ≡ 25 = 32 ≡ 9 =⇒ 211 ≡ 45 ≡ −1.

So we have found a primitive root mod 23.
From the last Lemma, knowing one primitive root a, the full set is ad,

where d runs over d coprime to p. In this case there are φ(22) = 11 primitive
roots, namely 5d for d = 1, 3, 5, 7, 9, 13, 17, 19, 21. Note that the inverse of 5d

is 522−d, which may be easier to calculate.
From the work above,

53 ≡ 5 · 52 ≡ 5 · 2 = 10,

55 ≡ 25 · 53 = 250 ≡ 20 ≡ −3,

57 ≡ −75 ≡ −6,

59 ≡ 5 · 24 = 80 ≡ 11,

513 ≡ 11−1 ≡ −2,

515 ≡ −50 ≡ −4,

517 ≡ −3−1 ≡ −8,

519 ≡ 510 · 59 ≡ 99 ≡ 7,

521 ≡ 5 · 57 · 513 ≡ 60 ≡ −9.

Thus the primitive roots modulo 23 are: −9,−8,−6,−4,−2, 5, 7, 10, 11. (It
is a matter of personal preference whether or not to replace remainders > p/2
by ther negative equivalent.)
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