Chapter 4

Modular arithmetic

4.1 The modular ring

Definition 4.1. Suppose n € N and z,y € Z. Then we say that x,y are
equivalent modulo n, and we write

xr =y modn

nlx—uy.

It is evident that equivalence modulo n is an equivalence relation, dividing
Z into equivalence or residue classes.

Definition 4.2. We denote the set of residue classes mod n by Z/(n).

Evidently there are just n classes modulo n if n > 1;

#(Z/(n)) = n.

We denote the class containing a € Z by a, or just by a if this causes no
ambiguity.

Proposition 4.1. If
r=1,y=y
then
r+y=a2+y, xy=2y.

Thus we can add and multiply the residue classes modd.

Corollary 4.1. Ifn >0, Z/(n) is a finite commutative ring (with 1).
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Ezample: Suppose n = 6. Then addition in Z/(6) is given by

+10 1 2 3 45
0/0 1 2 3 45
111 2 3 450
212 3 45 01
313 45 01 2
414 5 01 2 3
51501 2 3 4
while multiplication is given by
x(0 1 2 3 45
00 00O O0O0O
1101 2 3 4 5
2|10 240 2 4
310303 0 3
410 4 2 0 4 2
510 5 4 3 21

4.2 The prime fields

Theorem 4.1. The ring Z/(n) is a field if and only if n is prime.

Proof. Recall that an integral domain is a commutative ring A with 1 having

no zero divisors, ie
2y=0 = z=0o0ry=0.

In particular, a field is an integral domain in which every non-zero element
has a multiplicative inverse.
The result follows from the following two lemmas.

Lemma 4.1. Z/(n) is an integral domain if and only if n is prime.
Proof. Suppose n is not prime, say
n=rs,

where 1 < r, s <n. Then
rs=n=0.
So Z/(n) is not an integral domain.
Conversely, suppose n is prime; and suppose
rs=rs=0.
Then
nlrs = n|rorn|s = r=0ors=0.
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Lemma 4.2. A finite integral domain A is a field.
Proof. Suppose a € A, a # 0. Consider the map
r—ar:A— A
This map is injective; for
ax=ay = alr—y)=0 = x—y=0 = x=y.

But an injective map
f X=X

from a finite set X to itself is necessarily surjective.
In particular there is an element x € A such that

ar =1,

ie a has an inverse. Thus A is a field. O

4.3 The additive group

If we ‘forget’” multiplication in a ring A we obtain an additive group, which we
normally denote by the same symbol A. (In the language of category theory
we have a ‘forgetful functor’ from the category of rings to the category of
abelian groups.)

Proposition 4.2. The additive group Z/(n) is a cyclic group of order n.
This is obvious; the group is generated by the element 1 mod n.

Proposition 4.3. The element a mod n is a generator of Z/(n) if and only

of
ged(a,n) = 1.
Proof. Let
d = ged(a,n).
If d > 1 then 1 is not a multiple of @ mod n, since
l=ramodn = l=ra+sn = d| 1.
Conversely, if d = 1 then we can find r, s € Z such that
ra+ sn = 1;
SO

ra =1 mod n,

Thus 1 is a multiple of @ mod n, and so therefore is every element of Z/(n).
[l
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Note that there is only one cyclic group of order n, up to isomorphism.
So any statement about the additive groups Z/(n) is a statement about finite
cyclic groups, and vice versa. In particular, the result above is equivalent to
the statement that if G is a cyclic group of order n generated by g then ¢g" is
also a generator of GG if and only if ged(r,n) = 1.

Recall that a cyclic group G of order n has just one subgroup of each
order m | n allowed by Lagrange’s Theorem, and this subgroup is cyclic. In
the language of modular arithmetic this becomes:

Proposition 4.4. The additive group Z/(n) had just one subgroup of each
order m | n. If n = mr this is the subgroup

(ry =A{0,r,2r,...,(m—1)r}.

4.4 The multiplicative group

If A is a ring (with 1, but not necessarily commutative) then the invertible
elements form a group; for if a, b are invertible, say

ar=ra=1, bs =sb =1,

then
(ab)(rs) = (rs)(ab) =1,

and so ab is invertible.
We denote this group by A*.

Proposition 4.5. The element a € Z/(n) is invertible if and only if
ged(a,n) = 1.

Proof. 1f a is invertible modn, say
ab =1 mod n,

then
ab =1+ tn,

and it follows that
ged(a,n) = 1.

Conversely, if this is so then
ar +ny =1,

and it follows that z is the inverse of a mod n. O]

4-4



We see that the invertible elements in Z/(n) are precisely those elements
that generate the additive group Z/(n).

Definition 4.3. We denote the group of invertible elements in 7Z/(n) by
(Z/n)*. We call this group the multiplicative group mod n.

Thus (Z/n)* consists of the residue classes mod n coprime to n, ie all of
whose elements are coprime to n.

Definition 4.4. Ifn € N, we denote by ¢(n) the number of integers r such
that
0<r<nand ged(r,n) = 1.

This function is called Euler’s totient function. As we shall see, it plays
an important role in elementary number theory.
Ezample:

It is evident that if p is prime then

o(p) =p—1,
since every number in [0, p) except 0 is coprime to p.
Proposition 4.6. The order of the multiplicative group (Z/n)* is ¢(n)

This follows from the fact that each class can be represented by a remain-
der r € [0,n).

Example: Suppose n = 10. Then the multiplication table for the group
(Z/10)* is

O 3 W

O© ~J W ==
N = O Ww
W WO = =
— W g O o
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We see that this is a cyclic group of order 4, generated by 3:

(Z/10)* = C,.

Suppose ged(a,n) = 1. To find the inverse x of a mod n we have in effect
to solve the equation
ar +ny = 1.

As we have seen, the standard way to solve this is to use the Euclidean
Algorithm, in effect to determine ged(a,n).

Example: Let us determine the inverse of 17 mod 23. Applying the Eu-
clidean Algorithm,

23 =17+6,
17=3-6—1.
Thus
1=3-6-17
=3(23—-17) - 17
=3-23—-4-17.
Hence

177! = —4 = 19 mod 23.

Note that having found the inverse of a we can easily solve the congruence
ar = b mod n

In effect
x=a ‘b

For example, the solution of
17z = 9 mod 23

s
xr=17"1'9=-4.9=-36=—13 = 10 mod 23.
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4.5 Homomorphisms

Suppose m | n. Then each remainder mod n defines a remainder mod m.
For example, if m = 3, n = 6 then

0 mod 6 +— 0 mod 3,
1 mod 6 — 1 mod 3,
2 mod 6 — 2 mod 3,
3 mod 6 — 0 mod 3,
4 mod 6 — 1 mod 3,
5 mod 6 +— 2 mod 3.

Proposition 4.7. If m | n the map
r mod n+—1r modn

s a ring-homomorphism

Z](n) — Z]/(m).

4.6 Finite fields

We have seen that Z/(p) is a field if p is prime.

Finite fields are important because linear algebra extends to vector spaces
over any field; and vector spaces over finite fields are central to coding theory
and cryptography, as well as other branches of pure mathematics.

Definition 4.5. The characteristic of a ring A is the least positive integer
n such that .

——f—
1+1+---4+1=0.

If there is no such n then A is said to be of characteristic 0.

Thus the characteristic of A, if finite, is the order of 1 in the additive
group A.
Evidently Z, Q, R, C are all of characteristic 0.

Proposition 4.8. The ring Z/(n) is of characteristic n.
Proposition 4.9. The characteristic of a finite field is a prime.
Proof. Let us write

n 1’s

——f——
n-lfor 1+1+---+1.
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Suppose the order n is composite, say n = rs. By the distributive law,
n-1=(@r-1)(s-1).
There are no divisors of zero in a field; hence
r-1=0o0fs-1=0,
contradicting the minimality of n. m

The proof shows in fact that the characteristic of any field is either a
prime or 0.

Proposition 4.10. Suppose F' is a finite field of characteristic p. Then F
contains a subfield isomorphic to Z/(p).

Proof. Consider the additive subgroup generated by 1:
(1) ={0,1,2-1,...,(p—1) - 1}.

It is readily verified that this set is closed under addition and multiplication;
and the map
rmodp—r-1:Z/(p) — (1)

is an isomorphism. O
This field is called the prime subfield of F'.

Corollary 4.2. There is just one field containing p elements, up to isomor-
phism, namely Z/(p).

Theorem 4.2. A finite field F' of characteristic p contains p" elements for
somen > 1

Proof. We can consider F as a vector space over its prime subfield P. Suppose
this vector space is of dimension n. Let eq,...,e, be a basis for the space.
Then each element of F'is uniquely expressible in the form

ajer + -+ + apéq,

where ay,...,a, € P. There are just p choices for each a;. Hence the total
number of choices, ie the number of elements in F', is p™. n

Theorem 4.3. There is just one field F' containing ¢ = p" elements for each
n > 1, up to isomorphism.

Thus there are fields containing 2,3,4 and 5 elements, but no field con-
taining 6 elements.
We are not going to prove this theorem until later.

Definition 4.6. We denote the field containing ¢ = p" elements by F,.

The finite fields are often called Galois fields, after Evariste Galois who
discovered them.
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4.7 Primitive roots

Theorem 4.4. The multiplicative group ¥, of a finite field is cyclic.

In ofher words, we can find a € [F, such that each non-zero b € IF, is a
power of a: b = a" for some r € N.

The result is important, but the proof is difficult. It depends on a counting
argument (like the proof above that a finite integral domain is a field), a
common tool in modular arithmetic.

Incidentally, the proof is just as simple for general finite fields I, with
q = p° as it is for the prime fields F,, so we shall deal with the general case
even though we shall make little or no use of the non-prime finite fields.

Proof. By Lagrange’s Theorem (in group theory), since F; has order ¢ — 1,
each element a € F} has order d | ¢ — 1,

Let there be f(d) elements of order d for each d | ¢ — 1. These elements
all satisfy the polynomial equation z? = 1 over the field F,. Also if a is one
such element then the d elements 1,a,a?,...,a% ! all satisfy this equation,
and so give all the roots of the equation. (The theorem that a polynomial

of degree d has at most d roots holds just as well over finite fields as it does
over R or C.)

Lemma 4.3. If G is a group, and g € G has order d then g" has order d if
and only of ged(d,r) = 1.

Proof. Suppose ged(d, r) = 1; and suppose a” has order e. Thena™ =1 =
d|re = d| e since ged(r,d) = 1.

Conversely, suppose ged(d,r) = e > 1. Let d = ef, r = es. Then
e=d/f =r/s = rf =ds. Hence (a")/ = (a?)® = 1, and a" has order
smaller than d. O

Now consider the cyclic group C),, with generator g. This certainly has
elements of each order d | n; for if n = de then ¢° has order d. Moreover, if
g" has order d then n | dr = de | dr = e | r. Thus the elements of
order d are all multiples of ¢g¢, and so lie in the cyclic subgroup C; generated
by ¢°.

Now the Lemma above shows that there are precisely ¢(d) elements in

Cy of order d. Hence
> o(d) =n.

din
Returning to the group [}, we saw that there were either 0 or ¢(d) ele-
ments of order d for each d | n. But from the formula above, to account for
q — 1 elements there must be ¢(d) elements of each order d | ¢ — 1. In partic-
ular there must be ¢(¢ — 1) > 0 elements of order ¢ — 1: that is, generators
of the group F;. O]
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Definition 4.7. We call a generator of the multiplicative group F; a primi-
tive root modulo p.

Corollary 4.3. There are exaclty ¢(p — 1) primitive roots modulo p for each
prime p.

Ezample: Suppose p = 23. There are ¢(22) = 10 primitive roots modulo
23.

In general there is no better way of finding a primitive root other than
trying 2,3,5,6, ... successively. (There is no need to try 4, since if 2 is not
a primitive root then 22 certainly cannot be.)

Let us try 2. We know that any element of Fj, has order d | 22, ie
d=1,2,11 or 22. Evidently 2 does not have order 1 or 2.

Working modulo 23 throughout, 2° = 32 = 9. Hence 2!° = 92 = 81 = 12;
and so 2! =24 = 1. So 2 has order 11 and is not a primitive root modulo
23.

Moving on to 3, we have 32 = 27 = 4. Hence 3° = 16 = —7, and so
312 =49=3 = 3! =1. So 3 is not a primitive root either.

Next we try 5. (Note that if 2 is not a primitive root then neither is
22 = 4. This is not because 4 is not a prime, but because it is a power.) We
have

2=2=2 = 50 =(5?)=2=32=9 — 2 =45=—1.

So we have found a primitive root mod 23.

From the last Lemma, knowing one primitive root a, the full set is a?,
where d runs over d coprime to p. In this case there are ¢(22) = 11 primitive
roots, namely 5¢ for d = 1,3,5,7,9,13,17,19,21. Note that the inverse of 5%
is 52274 which may be easier to calculate.

From the work above,

5=5-5"=5-2=10,

5 =255 = 250 = 20 = -3,

5 =75 = —6,

59=5-2" =80 =11,

pP=11""= -2,

5 = —50 = —4,

51T= 371 = g,

519 =510.59 =99 =7,

5 =5.5"-5%=60=—9.
Thus the primitive roots modulo 23 are: —9,—8, —6,—4,—2,5,7,10,11. (It
is a matter of personal preference whether or not to replace remainders > p/2
by ther negative equivalent.)
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