
Chapter 1

The Fundamental Theorem of
Arithmetic

1.1 Primes
Definition 1.1. We say that p ∈ N is prime if it has just two factors in N,
1 and p itself.

Number theory might be described as the study of the sequence of primes

2, 3, 5, 7, 11, 13, . . . .

Definition 1.2. 1. We denote the nth prime by pn.

2. If x ∈ R then we denote the number of primes ≤ x by π(x).

Thus
p1 = 2, p2 = 3, p3 = 5, . . . ,

while
π(−2) = 0, π(2) = 1, π(π) = 2, . . . .

1.2 The fundamental theorem
Theorem 1.1. Every non-zero natural number n ∈ N can be expressed as a
product of primes

n = p1 · · · pr;

and this expression is unique up to order.
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By convention, an empty sum has value 0 and an empty product has
value 1. Thus n = 1 is the product of 0 primes.

Another way of putting the theorem is that each non-zero n ∈ N is
uniquely expressible in the form

n = 2e23e35e5 · · ·

where each ep ∈ N with ep = 0 for all but a finite number of primes p.
The proof of the theorem, which we shall give later in this chapter, is

non-trivial. It is easy to lose sight of this, since the theorem is normally met
long before the concept of proof is encountered.

1.3 Euclid’s Algorithm
Definition 1.3. Suppose m,n ∈ Z. We say that d ∈ N is the greatest
common divisor of m and n, and write

d = gcd(m,n),

if
d | m, d | n,

and if e ∈ N then
e | m, e | n =⇒ e | d.

The term highest common factor (or hcf), is often used in schools; but
we shall always refer to it as the gcd.

Note that at this point we do not know that gcd(m,n) exists. This follows
easily from the Fundamental Theorem; but we want to use it in proving the
theorem, so that is not relevant.

It is however clear that if gcd(m,n) exists then it is unique. For if d, d′ ∈ N
both satisfy the criteria then

d | d′, d′ | d =⇒ d = d′.

Theorem 1.2. Any two integers m,n have a greatest common divisor

d = gcd(m,n).

Moreover, we can find integers x, y such that

d = mx+ ny.
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Proof. We may assume that m > 0; for if m = 0 then it is clear that

gcd(m,n) = |n|,

while if m < 0 then we can replace m by −m.
Now we follow the Euclidean Algorithm. Divide n by m:

n = q0m+ r0 (0 ≤ r0 < m).

If r0 6= 0, divide m by r0:

m = q1r0 + r1 (0 ≤ r1 < r0).

If r1 6= 0, divide r0 by r1:

r0 = q2r1 + r2 (0 ≤ r2 < r1).

Continue in this way.
Since the remainders are strictly decreasing:

r0 > r1 > r2 > · · · ,

the sequence must end with remainder 0, say

rs+1 = 0.

We assert that
d = gcd(m,n) = rs,

ie the gcd is the last non-zero remainder.
For

d =| rs−1 since rs−1 = qs+1rs.

Now

d | rs, rs−1 =⇒ d | rs−2 since rs−2 = rs − qsrs−1;
d | rs−1, rs−2 =⇒ d | rs−3 since rs−3 = rs−1 − qs−1rs−2;

. . . . . .

d | r2, r1 =⇒ d | m;

d | r1,m =⇒ d | n.

Thus
d | m,n.

Conversely, if e | m,n then

e | r0 since r0 = n− q0m;

e | r1 since r1 = m− q1r0;
. . . . . .

e | rs since rs = rs−1 − qsrs−1.
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Thus
e | m,n =⇒ e | d.

We have proved therefore that gcd(m,n) exists and

gcd(m,n) = d = rs.

To prove the second part of the theorem, which states that d is a linear
combination of m and n (with integer coefficients), we note that if a, b are
linear combinations of m,n then a linear combination of a, b is also a linear
combination of m,n.

Now r1 is a linear combination ofm,n, from the first step in the algorithm;
r2 is a linear combination of m, r1, and so of m,n, from the second step; and
so on, until finally d = rs is a linear combination of m,n:

d = mx+ ny.

We say that m,n are coprime if

gcd(m,n) = 1.

Corollary 1.1. If m,n are coprime then there exist integers x, y such that

mx+ ny = 1.

1.4 Speeding up the algorithm
Note that if we allow negative remainders then given m,n ∈ Z we can find
q, r ∈ Z such that

n = qm+ r,

where |r| ≤ |m|/2.
If we follow the Euclidean Algorithm allowing negative remainders then

the remainder is at least halved at each step. It follows that if

2r ≤ n < 2r+1

then the algorithm will complete in ≤ r steps.
Another way to put this is to say that if n is written to base 2 then it

contains at most r bits (each bit being 0 or 1).
When talking of the efficiency of algorithms we measure the input in

terms of the number of bits. In particular, we define the length `(n) to be
the number of bits in n. We say that an algorithm completes in polynomial
time, or that it is in class P , if the number of steps it takes to complete its
task is ≤ P (r), where P (x) is a polynomial and r is the number of bits in
the input.

Evidently the Euclidian algorithm (allowing negative remainders) is a
polynomial-time algorithm for computing gcd(m,n).
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1.5 Example
Let us determine

gcd(1075, 2468).

The algorithm goes:

2468 = 2 · 1075 + 318,

1075 = 3 · 318 + 121,

318 = 3 · 121− 45,

121 = 3 · 45− 14,

45 = 3 · 14 + 3,

14 = 5 · 3− 1,

3 = 3 · 1.

Thus
gcd(1075, 2468) = 1;

the numbers are coprime.
To solve

1075x+ 2468y = 1,

we start at the end:

1 = 5 · 3− 14

= 5(45− 3 · 14)− 14 = 5 · 45− 16 · 14
= 5 · 45− 16(3 · 45− 121) = 16 · 121− 43 · 45
= 16 · 121− 43(3 · 121− 318) = 43 · 318− 113 · 121
= 43 · 318− 113(1075− 3 · 318) = 382 · 318− 113 · 1075
= 382(2468− 2 · 1075)− 113 · 1075 = 382 · 2468− 877 · 1075.

Note that this solution is not unique; we could add any multiple 1075t to
x, and subtract 2468t from y, eg

1 = (382− 1075) · 2468 + (2468− 877) · 1075
= 1591 · 2468− 693 · 1075.

We shall return to this point later.

1.6 An alternative proof
There is an apparently simpler way of establishing the result.
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Proof. We may suppose that x, y are not both 0, since in that case it is
evident that gcd(m,n) = 0.

Consider the set S of all numbers of the form

mx+ ny (x, y ∈ Z).

There are evidently numbers > 0 in this set. Let d be the smallest such
integer; say

d = ma+ nb.

We assert that
d = gcd(m,n).

For suppose d - m. Divide m by d:

m = qd+ r,

where 0 < r < d. Then

r = m− qd = m(1− qa)− nqd,

Thus r ∈ S, contradicting the minimality of d.
Hence d | m, and similarly d | n.
On the other hand

d′ | m,n =⇒ d′ | ma+ nb = d.

We conclude that
d = gcd(m,n).

The trouble with this proof is that it gives no idea of how to determine
gcd(m,n). It appears to be non-constructive.

Actually, that is not technically correct. It is evident from the discussion
above that there is a solution to

mx+ ny = d

with
|x| ≤ |n|, |y| ≤ |m|.

So it would be theoretically possible to test all numbers (x, y) in this range,
and find which minimises mx+ ny.

However, if x, y are very large, say 100 digits, this is completely imprac-
tical.
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1.7 Euclid’s Lemma
Proposition 1.1. Suppose p is prime; and suppose m,n ∈ Z. Then

p | mn =⇒ p | m or p | n.

Proof. Suppose
p - m.

Then p,m are coprime, and so there exist a, b ∈ Z such that

pa+mb = 1.

Multiplying by n,
pna+mnb = n.

Now
p | pna, p | mnb =⇒ p | n.

1.8 Proof of the Fundamental Theorem
Proof.

Lemma 1.1. n is a product of primes.

Proof. We argue by induction on n If n is composite, ie not prime, then

n = rs,

with
1 < r, s < n.

By our inductive hypothesis, r, s are products of primes. Hence so is
n.

To complete the proof, we argue again by induction. Suppose

n = p1 · · · pr = q1 · · · qs

are two expressions for n as a product of primes.
Then

p1 | n =⇒ p1 | q1 · · · qs
=⇒ p1 | qj

for some j.
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But since qj is prime this implies that

qj = p1.

Let us re-number the q’s so that qj becomes q1. Then we have

n/p1 = p2 · · · pr = q2 · · · qs.

Applying our inductive hypothesis we conclude that r = s, and the primes
p2, . . . , pr and q2, . . . , qs are the same up to order.

The result follows.

1.9 A postscript
Suppose gcd(m,n) = 1. Then we have seen that we can find integers x0, y0
such that

mx0 + ny0 = 1.

We can now give the general solution to this equation:

(x, y) = (x0 + tn, y0 − tm)

for t ∈ Z.
Certainly this is a solution. To see that it is the general solution note

that

mx+ ny = d =⇒ mx+ ny = mx0 + ny0

=⇒ m(x− x0) = n(y0 − y).

Now n has no factor in common with m, by hypothesis. Hence all its factors
divide x− x0, ie

n | x− x0 =⇒ x− x0 = tn

=⇒ x = x0 + tn

=⇒ y = y0 − tm.
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