Exercise 11

Gaussian Integers

In exercises 1-5, factorise the given gaussian integer into (gaussian) primes.

- ** 1. 3 + 5i
- ** 2. 5 + 3i
- ** 3. 5 + 12
- ** 4. 11 + 2i
- ** 5. 15 4i

In exercises 6-10, determine the gcd of the two given gaussian integers.

- ** 6. 3 + 2i, 2 + 3i
- ** 7. 12, 9 3i
- ** 8. 5-i, 3+2i
- ** 9. 4,10
- ** 10. 13 + 2i, 7 11i

In exercises 11-15, either express the given number as a sum of two squares, or else show that this is not possible.

- ** 11. 33
- ** 12. 45
- ** 13. 98
- ** 14. 99
- ** 15. 128
- *** 16. Find a formula expressing

$$(x^{2} + y^{2} + z^{2} + t^{2})(X^{2} + Y^{2} + Z^{2} + T^{2})$$

as a sum of 4 squares.

- *** 17. Show that every prime p can be expressed as a sum of 4 squares.
- ** 18. Deduce from the last 2 exercises that every $n \in \mathbb{N}$ can be expressed as a sum of 4 squares.
- ** 19. Show that if $n \equiv 7 \mod 8$ then n cannot be expressed as a sum of 3 squares.
- *** 20. Show that if $n = 4^{e}(8m + 7)$ then n cannot be expressed as a sum of 3 squares.

*** 21. Suppose $p \equiv 1 \mod 4$ is prime. If $p = m^2 + n^2$, find $u, v \in \mathbb{N}$ such that

$$2p = u^2 + v^2,$$

and show that this representation of 2p as a sum of 2 squares is unique. **** 22. Show that if p is a prime such that

$$2p = n^2 + 1$$

then p is the sum of the squares of two consecutive integers.

*** 23. Show that if the prime $p = m^2 + n^2$ and $p \equiv \pm 1 \mod 10$ then

$$5 \mid xy.$$

- *** 24. Find the smallest $n \in \mathbb{N}$ such that n, n + 1, n + 2 are each a sum of 2 squares, but none is a perfect square.
- **** 25. Show that there are arbitrarily long gaps between successive integers expressible as a sum of 2 squares.