Exercise 6

Polynomial Rings

In exercises 1–10 factorize the given polynomial in $\mathbb{F}_2[x]$.

- * 1. $x^2 + x$
- * 2. $x^2 + 1$
- * 3. $x^2 + x + 1$
- ** 4. $x^3 + x^2$ + x + 1
- ** 5. $x^4 + x^3 + x^2$ + x + 1
- ** 6. $x^5 + 1$
- ** 7. $x^5 + x^3 + 1$
- ** 8. $x^8 + 1$
- *** 9. $x^8 + x + 1$
- *** $10. x^9 + 1$
- ** 11. Determine the irreducible polynomials of degrees 1,2 and 3 over \mathbb{F}_2 .
- *** 12. Determine the irreducible polynomials of degree 4 over \mathbb{F}_2 .
- *** 13. How many irreducible polynomials are there of degree 5 over \mathbb{F}_2 ?
- ** 14. Determine the irreducible polynomials of degree 2 over \mathbb{F}_3 .
- *** 15. Determine the irreducible polynomials of degree 3 over \mathbb{F}_3 .
- *** 16. How many irreducible polynomials are there of degree 4 over \mathbb{F}_3 ?
- ** 17. Determine the irreducible polynomials of degree 2 over \mathbb{F}_5 .
- ** 18. Determine the irreducible polynomials of degree 2 over \mathbb{F}_7 .
- ** 19. Show that an irreducible polynomial over \mathbb{R} is of degree 1 or 2.
- ** 20. Determine the irreducible polynomials over \mathbb{C} .

 In exercises 21–25 determine if the given polynomial is irreducible over \mathbb{O} .
- ** 21. $x^2 + x + 1$
- ** 22. $x^3 + 2x + 1$
- *** 23. $x^4 + 1$
- *** 24. $x^4 + 2$
- *** 25. $x^4 + 4x^3 + 1$

**** 26. Can you find polynomials $f(x), g(x), h(x) \in \mathbb{F}_2[x]$ such that $f(x)^3 + g(x)^3 + h(x)^3 = 0$?

In the remaining exercises k[[x]] denotes the ring of formal power series

$$a_0 + a_1 x + a_2 x^2 + \cdots \quad (a_i \in k)$$
?

- ** 27. Determine $\frac{1}{1-t+t^2}$ in $\mathbb{F}_1[[x]]$.
- ** 28. Show that k[[x]] is an integral domain.
- ** 29. Determine the invertible elements in k[[x]].
- *** 30. Does unique factorisation hold in the ring k[[x]]?