Exercise 5

In exercises 1–10 find the smallest simultaneous solution $n \geq 0$ of the given congruences, or else show that there is no such solution.

- ** 1. $n \equiv 1 \mod 4$, $n \equiv 2 \mod 7$
- ** 2. $n \equiv 2 \mod 5$, $n \equiv 5 \mod 8$
- ** 3. $n \equiv 2 \mod 3$, $n \equiv 3 \mod 4$
- ** 4. $n \equiv 2 \mod 5$, $n \equiv 3 \mod 7$, $n \equiv 1 \mod 8$
- ** 5. $n \equiv 3 \mod 4$, $n \equiv 5 \mod 7$, $n \equiv 2 \mod 9$
- ** 6. $n \equiv 1 \mod 5$, $n \equiv 3 \mod 6$, $n \equiv 2 \mod 7$
- ** 7. $n \equiv 2 \mod 4$, $n \equiv 4 \mod 5$, $n \equiv 3 \mod 7$
- ** 8. $n \equiv 2 \mod 4$, $n \equiv 3 \mod 6$, $n \equiv 4 \mod 7$
- ** 9. $n \equiv 4 \mod 7$, $n \equiv 6 \mod 11$, $n \equiv 9 \mod 11$
- ** 10. $n \equiv 1 \mod 9$, $n \equiv 2 \mod 10$, $n \equiv 3 \mod 11$
- *** 11. How many positive integers $x \le 10,000$ are there such that the difference $2^x x^2$ is not divisible by 7?
- *** 12. Show that

$$\phi(n) \to \infty$$

as $n \to \infty$.

- **** 13. Find an odd integer k such that $k \cdot 2^n 1$ is composite for all $n \ge 1$.
- **** 14. Is there a 9-digit number

$$N = d_1 d_2 \cdots d_9$$

with the following properties: the 9 digits are distinct, and for each $k \in [1, 9]$ the number

$$d_1d_2\dots d_k$$

is divisible by k?