Exercise 4

In Exercises 1–16 determine all solutions of the given congruence.

- * 1. $3x \equiv 1 \mod 23$
- * 2. $7x \equiv 1 \mod 47$
- ** 3. $5x \equiv 2 \mod 210$
- ** 4. $6x \equiv 7 \mod 25$
- ** 5. $8x \equiv 5 \mod 31$
- ** 6. $8x \equiv 12 \mod 32$
- ** 7. $12x \equiv 6 \mod 21$
- ** 8. $2x \equiv 2 \mod 16$
- ** 9. $20x \equiv 8 \mod 24$
- *** 10. $7x \equiv -3 \mod 2009$
- ** 11. $x^2 \equiv 1 \mod 12$
- ** 12. $x^2 \equiv -1 \mod 15$
- ** 13. $x^2 + x + 1 \equiv 0 \mod 3$
- ** 14. $x^2 2x + 3 \equiv 0 \mod 5$
- ** 15. $x^2 2 \equiv 0 \mod 7$
- *** 16. $x^4 + 2x^2 + x 2 \equiv 0 \mod 7$
 - * 17. What is the order of 10 in the additive group $\mathbb{Z}/(24)$?
- ** 18. Determine the orders of the elements 7, 11, 21 in the multiplicative group $(\mathbb{Z}/36)^{\times}$.
- ** 19. What is the order of the group $(\mathbb{Z}/36)^{\times}$?
- *** 20. Is the group $(\mathbb{Z}/36)^{\times}$ cyclic?
- *** 21. Is Christmas equally likely to take place on any day of the week?
- **** 22. Given integers $x_1, x_2, ..., x_{11}$, show that there exists a finite sequence $a_1, ..., a_{11}$ of numbers from $\{-1, 0, 1\}$ such that the sum $a_1x_1 + ... + a_{11}x_{11}$ is divisible by 2009.
- *** 23. Construct the field containing 4 elements.
- **** 24. Show that there is no field containing 6 elements.
- *** 25. Determine the orders of all the elements in \mathbb{F}_{11}^{\times} ?
 - ** 26. What is the order of the multiplicative group \mathbb{F}_{q}^{\times} ?
- *** 27. How many elements are there of order 4 in \mathbb{F}_{17}^{\times} ?
- *** 28. Prove that there is a multiple of 2009 which ends with the digits 000001.
 - In Exercises 21–25 determine the additive order of the given element.

- * 29. 3 mod 5
- * 30. 3 mod 6
- * 31. 2 mod 7
- * 32. -13 mod 14
- ** 33. 100000 mod 123456

In Exercises 26-30 determine the multiplicative order of the given element.

- * 34. 3 mod 5
- * 35. 7 mod 12
- ** 36. 2 mod 31
- ** $37. -2 \mod 31$
- *** 38. 2 mod 3⁵

In Exercises 31--35 determine the multiplicative inverse of the given element.

- * 39. 3 mod 5
- * 40. 3 mod 13
- * 41. 2 mod 111
- ** 42. 137 mod 253

In Exercises 36–40 determine the order of the given multiplicative group, and list its elements.

- * 43. $(\mathbb{Z}/2)^{\times}$
- * 44. $(\mathbb{Z}/6)^{\times}$
- * 45. $(\mathbb{Z}/8)^{\times}$
- * 46. $(\mathbb{Z}/12)^{\times}$
- * 47. $(\mathbb{Z}/15)^{\times}$
- * 48. Determine $\phi(45)$
- * 49. Determine $\phi(3^n)$
- * 50. Determine all positive integers n with $\phi(n) = n 1$.
- ** 51. Determine all positive integers n with $\phi(n) = n 2$.
- ** 52. What is the smallest value of $\phi(n)/n$?
- *** 53. Show that there is a field containing 4 elements.
- *** 54. Show that there is no field containing 6 elements.