Exercise 4 In Exercises 1–16 determine all solutions of the given congruence. - * 1. $3x \equiv 1 \mod 23$ - * 2. $7x \equiv 1 \mod 47$ - ** 3. $5x \equiv 2 \mod 210$ - ** 4. $6x \equiv 7 \mod 25$ - ** 5. $8x \equiv 5 \mod 31$ - ** 6. $8x \equiv 12 \mod 32$ - ** 7. $12x \equiv 6 \mod 21$ - ** 8. $2x \equiv 2 \mod 16$ - ** 9. $20x \equiv 8 \mod 24$ - *** 10. $7x \equiv -3 \mod 2009$ - ** 11. $x^2 \equiv 1 \mod 12$ - ** 12. $x^2 \equiv -1 \mod 15$ - ** 13. $x^2 + x + 1 \equiv 0 \mod 3$ - ** 14. $x^2 2x + 3 \equiv 0 \mod 5$ - ** 15. $x^2 2 \equiv 0 \mod 7$ - *** 16. $x^4 + 2x^2 + x 2 \equiv 0 \mod 7$ - * 17. What is the order of 10 in the additive group $\mathbb{Z}/(24)$? - ** 18. Determine the orders of the elements 7, 11, 21 in the multiplicative group $(\mathbb{Z}/36)^{\times}$. - ** 19. What is the order of the group $(\mathbb{Z}/36)^{\times}$? - *** 20. Is the group $(\mathbb{Z}/36)^{\times}$ cyclic? - *** 21. Is Christmas equally likely to take place on any day of the week? - **** 22. Given integers $x_1, x_2, ..., x_{11}$, show that there exists a finite sequence $a_1, ..., a_{11}$ of numbers from $\{-1, 0, 1\}$ such that the sum $a_1x_1 + ... + a_{11}x_{11}$ is divisible by 2009. - *** 23. Construct the field containing 4 elements. - **** 24. Show that there is no field containing 6 elements. - *** 25. Determine the orders of all the elements in \mathbb{F}_{11}^{\times} ? - ** 26. What is the order of the multiplicative group \mathbb{F}_{q}^{\times} ? - *** 27. How many elements are there of order 4 in \mathbb{F}_{17}^{\times} ? - *** 28. Prove that there is a multiple of 2009 which ends with the digits 000001. - In Exercises 21–25 determine the additive order of the given element. - * 29. 3 mod 5 - * 30. 3 mod 6 - * 31. 2 mod 7 - * 32. -13 mod 14 - ** 33. 100000 mod 123456 In Exercises 26-30 determine the multiplicative order of the given element. - * 34. 3 mod 5 - * 35. 7 mod 12 - ** 36. 2 mod 31 - ** $37. -2 \mod 31$ - *** 38. 2 mod 3⁵ In Exercises 31--35 determine the multiplicative inverse of the given element. - * 39. 3 mod 5 - * 40. 3 mod 13 - * 41. 2 mod 111 - ** 42. 137 mod 253 In Exercises 36–40 determine the order of the given multiplicative group, and list its elements. - * 43. $(\mathbb{Z}/2)^{\times}$ - * 44. $(\mathbb{Z}/6)^{\times}$ - * 45. $(\mathbb{Z}/8)^{\times}$ - * 46. $(\mathbb{Z}/12)^{\times}$ - * 47. $(\mathbb{Z}/15)^{\times}$ - * 48. Determine $\phi(45)$ - * 49. Determine $\phi(3^n)$ - * 50. Determine all positive integers n with $\phi(n) = n 1$. - ** 51. Determine all positive integers n with $\phi(n) = n 2$. - ** 52. What is the smallest value of $\phi(n)/n$? - *** 53. Show that there is a field containing 4 elements. - *** 54. Show that there is no field containing 6 elements.