Exercise 2

In exercises 1–10 determine whether the given sum over $\mathbb N$ is convergent or not:

* 1.
$$\sum_{n} \frac{1}{n^{1/2}}$$

* 2. $\sum_{n} \frac{1}{n^{3/2}}$
** 3. $\sum_{n} \frac{1}{n \ln n}$
** 4. $\sum_{n} \frac{1}{n \ln^{2} n}$
** 5. $\sum_{n} \frac{\ln n}{n^{2}}$
* 6. $\sum_{n} \frac{(-1)^{n}}{n}$
** 7. $\sum_{n} \frac{(-1)^{n}}{n^{1/2}}$
** 8. $\sum_{n} \frac{\cos n}{n}$
*** 9. $\sum_{n} \frac{\tan n}{n}$
** 10. $\sum_{n} \sin n$

In exercises 11–13 determine whether the given sum over the primes is convergent or not:

** 11.
$$\sum_{p} \frac{1}{p \ln p}$$

*** 12. $\sum_{p} \frac{(-1)^{p}}{p}$
*** 13. $\sum_{p} \frac{(-1)^{p}}{\sqrt{p}}$

- **** 14. Show that there are an infinity of primes of the form 3m + 2, where m is a positive integer.
- **** 15. Show that there are an infinity of primes of the form 6m 1.
- **** 16. Show that if n is even then any prime factor of $n^2 + 1$ is of the form 4m + 1. [This may require knowledge of quadratic residues, which will be met in Chapter 9.] Hence show that there are an infinity of primes of the form 4m + 1.
 - *** 17. Determine $\zeta(2)$.
 - **** 18. Determine $\zeta(4)$.
 - **** 19. Show that the two forms of the Prime Number Theorem, $\pi(x) \sim \frac{x}{\log x}$ and $p_n \sim n \log$ are equivalent, is each can be derived from the other.
 - *** 20. Factorise your 8-digit college ID. [The Linux machines on the maths system, eg hamilton, have a program "factor" (or possibly "/usr/games/factor").]

** 21. Estimate
$$\sum_{n=10}^{100} \frac{1}{n^2}$$
.

*** 22. Estimate the probability that there is no prime among the college ID's of a class of 60.