
Course 3413 — Group Representations

Sample Paper I

Dr Timothy Murphy

December 2010

Attempt 6 questions. (If you attempt more, only the best 6 will
be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are compact (or finite), and
all representations are of finite degree over C.

1. What is a group representation?

What is meant by saying that a representation is simple?

Determine from first principles all simple representations of S(3).

Answer:

(a) A representation α of a group G in a vector space V is a homo-
morphism

α : G → GL(V ).

(b) The representation α of G in V is said to be simple if no subspace
U ⊂ V is stable under G except for U = 0, V . (The subspace U is
said to be stable under G if

g ∈ G, u ∈ U =⇒ gu ∈ U.)
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(c) We have
S3 = 〈s, t : s3 = t2 = 1, st = ts2〉

(taking s = (abc), t = (ab)).

Let us first suppose α is a 1-dimensional representations of S3. ie
a homomorphism

α : S3 → C∗.

Suppose
α(s) = λ, α(t) = µ.

Then
λ3 = µ2 = 1, λµ = µλ2.

The last relation gives
λ = 1.

Thus there are just two 1-dimensional representations given by

s 7→ 1, t 7→ ±1.

Now suppose α is a simple representation of S3 in the vector space
V over C, where dim V ≥ 2. Let e ∈ V be an eigenvector of s:

se = λe;

and let
f = te.

Then
sf = ste = ts2e = λ2te = λ2f,

ie f is a λ2-eigenvector of s.

It follows that the subspace

〈e, f〉 ⊂ V

is stable under S3, since

se = λe, sf = λ2f, te = f, tf = t2e = e.

Since V by hypothesis is simple, it follows that

V = 〈e, f〉.

In particular, dim α = 2, and e, f form a basis for V .



Since s3 = 1 we have λ3 = 1, ie λ ∈ {1, ω, ω2}, where ω = e2πi/3.

If λ = 1 then s would have eigenvalues 1, 1 (since 13 = 1). But
we know that s (ie α(s)) is diagonalisable. It follows that s = I.

Thus s will be diagonal with respect to any basis. Since we can
always diagonalise t, we can diagonalise s, t simultaneously. But
in that case the representation would not be simple; for if e is
a common eigenvector of s, t then the 1-dimensional space 〈e〉 is
stable under S3.

Thus we are left with the cases λ ∈ {ω, ω2}. If λ = ω2 then on
swapping e and f we would have λ = ω. So we have only one
2-dimensional representation (up to equivalence):

s 7→
(

i 0
0 −i

)
, t 7→

(
0 1
1 0

)
.

In conclusion, S3 has just 3 simple representations: two of dimen-
sion 1, and one of dimension 2.

2. What is meant by saying that the representation α is semisimple?

Prove that every finite-dimensional representation α of a finite group
over C is semisimple.

Show that the natural representation of Sn in Cn (by permutation of
coordinates) splits into 2 simple parts, for any n > 1.

Answer:

(a) The representation α of G in V is said to be semisimple if it can
be expressed as a sum of simple representations:

α = σ1 + · · ·+ σm.

This is equivalent to the condition that each stable subspace U ⊂ V
has a stable complement W :

V = U ⊕W.

(b) Suppose α is a representation of the finite group G in the vector
space V over C. Let

P (u, v)

be a positive-definite hermitian form on V . Define the hermitian
form Q on V by

Q(u, v) =
1

‖G‖
∑
g∈G

H(gu, gv).



Then Q is positive-definite (as a sum of positive-definite forms).

Moreover Q is invariant under G, ie

Q(gu, gv) = Q(u, v)

for all g ∈ G, u, v ∈ V . For

Q(hu, hv) =
1

‖G‖
∑
g∈G

H(ghu, ghv)

=
1

|G|
∑
g∈G

H(gu, gv)

= Q(u, v),

since gh runs over G as g does.

Now suppose U is a stable subspace of V . Then

U⊥ = {v ∈ V : Q(u, v) = 0∀u ∈ U}

is a stable complement to U .

(c) It is evident that the subspaces

U = {(x, x, . . . , x) : x ∈ C}, V = {(x1, x2, . . . , xn) : x1+x2+· · ·+xn}

of Cn are stable under Sn. We shall show that they are simple,
and that

Cn = U ⊕ V,

from which the result follows.

U is simple, since dim U = 1.

Suppose v = (x1, . . . , xn) ∈ V is non-zero. The xi cannot all be
equal, since their sum is zero. Suppose xi 6= xj, where i < j. Then

v − πijv = (xi − xj)eij ∈ V,

where

eij = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0),

with 1 in position i and −1 in position j.

There is a permutation σ taking the pair i, j into any other pair
i′, j′. It follows that

eij ∈ V



for all i, j.

But the eij span V ; for if v = (x1, . . . , xn) ∈ V then

v = x1e1n + x2e2n + · · ·+ xn−1en−1,n.

Thus V is simple.

Finally,
U ∩ V = 0,

since
v = (x, x, . . . , x) ∈ V =⇒ x = 0,

while
U + V = Cn,

since

(x1, . . . , xn) = (s, . . . , s) + (x1 − s, . . . , xn − s),

where

s = (x1 + · · ·+ xn)/n.

Thus Cn is a direct sum of simple subspaces, and so is semisimple.

3. Determine the conjugacy classes in S4, and draw up its character table.

Determine also the representation-ring for S4, ie express the product
αβ of each pair of simple representations as a sum of simple represen-
tations.

Answer:

(a) S4 has 5 classes, corresponding to the types 14, 122, 13, 22, 4. Thus
S4 has 5 simple representations.

Each symmetric group Sn (for n ≥ 2) has just 2 1-dimensional
representations, the trivial representation 1 and the parity repre-
sentation ε.

Let S4 = Perm(()X), where X = {a, b, c, d}. The action of S4 on
X defines a 4-dimensional representation ρ of S4, with character

χ(g) = |{x ∈ X : gx = x}|

In other words χ(g) is just the number of 1-cycles in g.



So now we can start our character table (where the second line
gives the number of elements in the class):

14 122 13 22 4
(1) (6) (8) (3) (6)

1 1 1 1 1 1
ε 1 −1 1 1 −1
ρ 4 2 1 0 0

Now

I(ρ, ρ) =
1

24
(1 · 16 + 6 · 4 + 8 · 1) = 2.

It follows that ρ has just 2 simple parts. Since

I(1, ρ) =
1

24
(1 · 4 + 6 · 2 + 8 · 1) = 1,

It follows that
ρ = 1 + α,

where α is a simple 3-dimensional representation, with character
given by

χ(g) = χρ(g)− 1.

The representation εα is also simple, and is not equal to α since
it has a different character. So now we have 4 simple characters
of S4, as follows:

14 122 13 22 4
(1) (6) (8) (3) (6)

1 1 1 1 1 1
ε 1 −1 1 1 −1
α 3 1 0 −1 −1
εα 3 −1 0 −1 1

To find the 5th simple representation, we can consider α2. This
has character

14 122 13 22 4
(1) (6) (8) (3) (6)

α2 9 1 0 1 1



We have

I(1, α2) =
1

24
(9 + 6 + 3 + 6) = 1,

I(ε, α2) =
1

24
(9− 6 + 3− 6) = 0,

I(α, α2) =
1

24
(27 + 6− 3− 6) = 1,

I(εα, α2) =
1

24
(27− 6− 3 + 6) = 1.I(α2, α2) =

1

24
(81 + 6 + 3 + 6) = 4,

It follows that α2 has 4 simple parts, so that

α2 = 1 + α + εα + β,

where β is the 5th simple representation, with character given by

χβ(g) = χα(g)2 − 1− χα(g)− ε(g)χα(g).

This allows us to complete the character table:

14 122 13 22 4
(1) (6) (8) (3) (6)

1 1 1 1 1 1
ε 1 −1 1 1 −1
α 3 1 0 −1 −1
εα 3 −1 0 −1 1
β 2 0 −1 2 0

(b) We already know how to express α2 in terms of the 5 simple rep-
resentations. Evidently εβ = β since there is only 1 simple repre-
sentation of dimension 2. The character of αβ is given by

14 122 13 22 4
αβ 6 0 0 −2 0

We have

I(αβ, αβ) =
1

24
(36 + 12) = 2.

Thus αβ has just 2 simple parts. These must be α and εα to give
dimension 6:

αβ = α + εα.



Also we have

I(β2, β2) =
1

24
(16 + 8 + 48) = 3.

Thus β has 3 simple parts. So by dimension, we must have

β2 = 1 + ε + β.

Now we can give the multiplication table for the representation-
ring:

1 ε β α εα
1 1 ε β α εα
ε ε 1 β εα α
β β β 1 + ε + β α + εα α + εα
α α εα α + εα 1 + β + α + εα ε + β + α + εα
εα εα α α + εα ε + β + α + εα 1 + β + α + εα

4. Prove that the number of simple representations of a finite group G is
equal to the number of conjugacy classes in G.

Answer: Let the simple representations of G be σ1, . . . , σr; and let
χi(g) be the character of σi.

The simple characters χ1, . . . , χr are linearly independent. For if say

ρ1χ1(g) + · · ·+ ρsχs(g) = 0

it follows from the formula for the intertwining number that for any
representation α

ρ1I(α, σ1) + · · ·+ ρrI(α, σr) = 0.

But on applying this with α = σi we deduce that ρi = 0 for each i.

The characters are class functions:

χ(gxg−1) = χ(x).

The space of class functions has dimension s, the number of classes in
G. It follows that r ≤ s.

To prove that r = s, it is sufficient to show that the characters span
the space of class functions.

Suppose g ∈ G has order e. Let [g] denote the class of g, and let
C = 〈g〉 be the cyclic group generated by g.



The group C has e 1-dimensional representations θ1, . . . , θe given by

θi : g 7→ ωi,

where ω = e2πi/e.

Let

f(x) = θ0(x) + ω−1θ1(x) + ω−2θ2(x) + · · ·+ ω−e+1θe−1(x)

Then

f(gj) =

{
e if j = 1

0 otherwise.

Now let us “induce up” each of the characters θi from C to G. We have

θG
i (x) =

|G|
|S||[x]|

∑
y∈[x]∩C

θi(y).

Let F (x) be the same linear combination of the induced characters that
f(x) was of the θi. Then

F (x) =
|G|

|S||[x]|
∑

y∈[x]∩C

f(y).

Since f(y) vanishes away from g, we deduce that F (x) vanishes off the
class [g], and is non-zero on that class:

F (x)

{
> 0 if x ∈ [g],

= 0 if x /∈ [g].

It follows that every class function on G can be expressed as a linear
combination of characters, and therefore as a linear combination of
simple characters. Hence the number of simple characters is at least as
great as the number of classes.

We have shown therefore that the number of simple representations is
equal to the number of classes.

5. Show that if the finite group G has simple representations σ1, . . . , σs

then
deg2 σ1 + · · ·+ deg2 σs = |G|.

Determine the degrees of the simple representations of S6.

Answer:



(a) Consider the regular representation ρ of G. We have

χρ(g) =

{
|G| if g = e,

0 if g 6= e.

Thus if α is any representation of G,

I(ρ, α) = χα(e) = dim α.

Applying this to the simple representations α = σi we deduce that

ρ = (dim σ1)σ1 + · · ·+ (dim σs)σs.

Taking dimensions on each side,

|G| = (dim σ1)
2 + · · ·+ (dim σs)

2.

(b) S6 has 11 classes:

16, 214, 2212, 23, 313, 321, 32, 32, 412, 51, 6.

Hence it has 11 simple representations over C.

It has 2 representations of degree 1: 1 and the parity representa-
tion ε.

The natural representation ρ1 of degree 6 (by permutation of co-
ordinates) splits into two simple parts:

ρ1 = 1 + σ1,

where σ1 is of degree 5.

If α is a simple representation of odd degree, then

εα 6= α.

For a transposition t has eigenvalues ±1, since t2 = 1. Hence

χα(t) 6= 0.

But
χεα(t) = χε(t)χα(t) = −χα(t).

Thus the simple representations of odd degree d divide into pairs
α, εα. So there are an even number of representations of degree
d.



In particular there are at least 2 simple representations of degree
5: σ and εσ.

We are going to draw up a partial character table for S6, adding
rows as we gather more material.

16 214 2212 23 313 321 32 42 412 51 6
# 1 15 45 15 40 120 40 90 90 144 120
ρ1 6 4 2 0 3 1 0 2 0 1 0
σ1 5 3 1 −1 2 0 −1 1 −1 0 −1
ρ2 15 7 3 3 3 1 0 1 1 0 0
τ 14 6 2 2 2 0 −1 0 0 −1 −1
σ2 9 3 1 3 0 0 0 −1 1 −1 0
ρ3 20 8 4 0 2 2 2 0 0 0 0
θ 19 7 3 −1 1 1 1 −1 −1 −1 −1
σ3 5 1 1 −3 −1 1 2 −1 −1 0 0
σ2

1 25 9 1 1 4 0 1 1 1 0 1
φ 24 8 0 0 3 −1 0 0 0 −1 0

Now consider the permutation representation ρ2 arising from the
action of S6 on the 15 pairs of elements. Evidently

I(ρ2, 1) > 0,

since all the terms in the sum for this are ≥ 0. Let τ = ρ2 − 1.
Then

I(τ, τ) =
1

720
(196 + 540 + 180 + 60 + 160 + 40 + 144 + 120) = 2,

while

I(τ, σ1) =
1

720
(70 + 270 + 90− 30 + 160 + 40 + 120) = 1.

Thus
σ2 = τ − σ1

is simple.

So far we have 6 simple representations:

1, ε, σ1, εσ1, σ2, εσ2,

of degrees 1,1,5,5,9,9.



Next consider the permutation representation ρ3 arising from the
action of S6 on the 20 subsets of 3 elements. Evidently

I(ρ3, 1) > 0,

since all the terms in the sum for this are ≥ 0.

[Although not needed here, it is worth recalling that if ρ is a per-
mutation representation arising from the action of G on the set
X then I(ρ, 1) is equal to the number of orbits of the action.]

Let θ = ρ3 − 1. Then

I(θ, θ) =
1

720
(361+735+405+15+40+120+40+90+90+144+120) = 3.

Thus θ has 3 simple parts.

Now

I(θ, σ1) =
1

720
(95+315+135+15+80− 40− 90+90+120) = 1,

while

I(θ, σ2) =
1

720
(171 + 315 + 135− 45 + 90− 90 + 144) = 1.

It follows that
σ3 = θ − σ1 − σ2

is simple.

Now we have 8 simple representations:

1, ε, σ1, εσ1, σ3, εσ3, σ2, εσ2,

of degrees 1,1,5,5,5,5,9,9.

We have 3 remaining simple representations. Suppose they are of
degrees a, b, c. Then

720 = 2 · 12 + 4 · 52 + 2 · 92 + a2 + b2 + c2

ie

a2 + b2 + c2 = 456.

Now
456 ≡ 0 mod 8.



If n is odd then n2 ≡ 1 mod 8. It follows that a, b, c are all even,
say

a = 2d, b = 2e, c = 2f,

with
d2 + e2 + f 2 = 114.

Since
114 ≡ 2 mod 8,

it follows that two of d, e, f are odd and one is divisible by 4. Let
us suppose these are d, e, f in that order. Then

f ∈ {4, 8}.

If f = 4 then
d2 + e2 = 98 =⇒ d = e = 7,

while if f = 8 then

d2 + e2 = 50 =⇒ d = e = 5.

So the three remaining simple representations have degrees

8, 14, 14 or 10, 10, 16.

Let
φ = σ2

1 − 1.

Then

I(φ, φ) =
1

720
(576 + 960 + 360 + 120 + 144) = 3.

Also

I(φ, σ1) =
1

720
(120 + 360 + 240) = 1,

while

I(φ, σ2) =
1

720
(216 + 360 + 144) = 1.

Thus
σ4 = φ− σ1 − σ2

is a simple representation of degree 10.

We conclude that the 11 simple representations have degrees

1, 1, 5, 5, 5, 5, 9, 9, 10, 10, 16.



6. Show that the dodecahedron has 60 proper symmetries, and determine
how these are divided into conjugacy classes.

Answer:

(a) Let G be the symmetry group of the dodecahedron.

The symmetries sending a given face F = ABCDE into itself
form a subgroup D5 ⊂ G of order 10.

Suppose two symmetries g, h ∈ G send F into the same face. Then

gF = hF ⇐⇒ h−1gF = F ⇐⇒ h−1g ∈ S ⇐⇒ hS = gS

Thus there is a 1-1 correspondence between the left cosets of S and
the faces of the dodecahedron. Hence the index

[G : H] = 12,

the number of faces; and so G has order

12 · 10 = 120.

(b) The centre of G is
ZG = {I, J},

where J is reflection in the centre of the cube.

Since J is improper, it follows that the proper symmetries form a
subgroup P of order 60; and if C is a class of proper symmetries
then JC is a class of improper symmetries.

A proper isometry in 3 dimensions leaving a point O fixed is nec-
essarily a rotation about an axis through O. Hence any proper
symmetry of the cube is a rotation about some axis through the
centre O of the cube.

Let ` be the axis joining the centres of a pair F, F ′ of opposite faces.
There are 4 rotations about ` (apart from the identity I) through
angles ±2π/5,±4π/5 (each of order 5) sending the dodecahedron
into itselfs. Since there are 6 pairs of opposite faces, these give
6 · 4 = 24 symmetries.

It is easy to see that the rotations through angles ±2π/5 are all
conjugate, giving a class of size 12, since if we reverse the direction
of the axis, a rotation through θ becomes a rotation through −θ.

Similarly the rotations through ±4π/5 are conjugate, giving an-
other class of size 12.



There are 3 faces meeting each vertex, so there are rotations through
angles ±2π/3 about each axis joining opposite vertices. These are
all conjugate, giving a class of size 10 · 2 = 20, since there are 10
pairs of opposite vertices.

Finally, there are half-turns (rotations through π) about the axis
joining the centres of opposite edges; and these are all conjugate.

Since there are 15 pairs of opposite edges, these form a class of
size 15.

There is a fifth proper class {I} of size 1.

Thus there are 5 proper classes, of sizes 1,12,12,15,20.

Similarly there are 5 improper classes, of the same sizes, since
there is an improper class JC corresponding to each proper class
C.

7. Define a measure µ on a compact space X.

Sketch the proof that if G is a compact group then there exists a unique
invariant measure on G with µ(1) = 1.

Answer:

(a) A measure µ on X is a continuous linear functional

µ : C(X) → C,

where C(X) = C(X, R) is the space of real-valued continuous
functions on X with norm ‖f‖ = sup |f(x)|.

(b) The compact group G acts on C(G) by

(gf)(x) = f(g−1x).

The measure µ is said to be invariant under G if

µ(gf)µ(f)

for all g ∈ G, f ∈ C(G).

By an average F of f ∈ C(G) we mean a function of the form

F = λ1g1f + λ2g2f + · · ·+ λrgrf,

where 0 ≤ λi ≤ 1,
∑

λi = 1 and g1, g2, . . . , gr ∈ G.

If F is an average of f then

i. inf f ≤ inf F ≤ sup F ≤ supf ;



ii. If µ is an invariant measure then µ(F ) = µ(f);

iii. An average of F is an average of f .

If we set
var(f) = sup f − inf f

then
var(F ) ≤ var(f)

for any average F of f . We shall establish a sequence of averages
F0 = f, F1, F2, . . . (each an average of its predecessor) such that
var(Fi) → 0. It follows that

Fi → c ∈ R,

ie Fi(g) → c for each g ∈ G.

Suppose f ∈ C(G). It is not hard to find an average F of f with
var(F ) < var(f). Let

V = {g ∈ G : f(g) <
1

2
(sup f + inf f),

ie V is the set of points where f is ‘below average’. Since G is
compact, we can find g1, . . . , gr such that

G = g1V ∪ · · · ∪ grV.

Consider the average

F =
1

r
(g1f + · · ·+ grf) .

Suppose x ∈ G. Then x ∈ giV for some i, ie

g−1
i x ∈ V.

Hence

(gif)(x) <
1

2
(sup f + inf f),

and so

F (x) <
r − 1

r
sup f +

1

2r
(sup f + inf f)

= sup f − 1

2r
sup f − inf f.



Hence sup F < supf and so

var(F ) < var(f).

This allows us to construct a sequence of averages F0 = f, F1, F2, . . .
such that

var(f) = var(F )0 > var(F )1 > var(F )2 > · · · .

But that is not sufficient to show that var(F )i → 0. For that we
must use the fact that any f ∈ C(G) is uniformly continuous.

[I would accept this last remark as sufficient in the exam, and
would not insist on the detailed argument that follows.]

In other words, given ε > 0 we can find an open set U 3 e such
that

x−1y ∈ U =⇒ |f(x)− f(y)| < ε.

Since
(g−1x)−1(g−1y) = x−1y,

the same result also holds for the function gf . Hence the result
holds for any average F of f .

Let V be an open neighbourhood of e such that

V V ⊂ U, V −1 = V.

(If V satisfies the first condition, then V ∩ V −1 satisfies both con-
ditions.) Then

xV ∪ yV 6= ∅ =⇒ |f(x)− f(y)| < ε.

For if xv = yv′ then

x−1y = vv′
−1 ∈ U.

Since G is compact we can find g1, . . . , gr such that

G = g1V ∪ · · · ∪ grV.

Suppose f attains its minimum inf f at x0 ∈ giV ; and suppose
x ∈ gjV . Then

g−1
i x0, g−1

j x ∈ V.

Hence (
g−1

j x
)−1 (

g−1
i x0

)
=

(
gig

−1
j x

)−1
x0 ∈ U,



and so
|f(gig

−1
j x)− f(x0)| < ε.

In particular,
(gjg

−1
i f)(x) < inf f + ε.

Let F be the average

F =
1

r2

∑
i,j

gjg
−1
i f.

Then

sup F <
r2 − 1

r2
sup f +

1

r2
(inf f + ε),

and so

var(F ) <
r2 − 1

r2
var(f) +

1

r2
ε

<
r2 − 1/2

r2
var(f),

if ε < var(f)/2.

Moreover this result also holds for any average of f in place of f .
It follows that a succession of averages of this kind

F0 = f, F1, . . . , Fs

will bring us to

var(F )s <
1

2
var(f).

Now repeating the same argument with Fs, and so on, we will
obtain a sequence of successive averages F0 = f, F1, . . . with

var(F )i ↓ 0.

It follows that
Fi → c

(the constant function with value c).

It remains to show that this limit value c is unique. For this we
introduce right averages

H(x) =
∑

j

µjf(xhj)



where 0 ≤ µj ≤ 1,
∑

µj = 1. (Note that a right average of f is in
effect a left average of f̃ , where f̃(x) = f(x−1). In particular the
results we have established for left averages will hold equally well
for right averages.)

Given a left average and a right average of f , say

F (x) =
∑

λif(g−1
i x), H(x) =

∑
µjf(xhj),

we can form the joint average

J(x) =
∑
i,j

λiµjf(g−1
i xhj).

It is easy to see that

inf F ≤ inf J ≤ sup J ≤ sup H,

sup F ≥ sup J ≥ inf J ≥ inf H.

But if now H0 = f, H1, . . . is a succession of right averages with
Hi → d then it follows that

c = d.

In particular, any two convergent sequences of successive left av-
erages must tend to the same limit. We can therefore set

µ(f) = c.

Thus µ(f) is well-defined; and it is invariant since f and gf have
the same set of averages. Finally, if f = 1 then var(f) = 0, and
f, f, f, . . . converges to 1, so that

µ(1) = 1.

The invariant measure on G is unique up to a scalar multiple. In
other words, it is unique if we normalise the measure by specifying
that

µ(1) = 1

(where 1 on the left denotes the constant function 1).

8. Determine the simple representations of SO(2).

Determine the simple representations of O(2).

Answer:



(a) Let
R(θ) ∈ SO(2)

denote rotation through angle θ. Then the map

R(θ) 7→ eiθ : SO(2) → U(1)

is an isomorphism, allowing us to identify SO(2) with U(1).

This group is abelian; so every simple representation α (over C)
is of degree 1; and since the group is compact

im α ⊂ U(1).

ie α is a homomorphism

U(1) → U(1).

For each n ∈ Z the map

E(n) : z → zn

defines such a homomorphism. We claim that every representation
of U(1) is of this form.

For suppose
α : U(1) → U(1)

is a representation of U(1) distinct from all the E(n).

Then
I(En, α) = 0

for all n, ie

cn =
1

2π

∫ 2π

0

α(eiθ)e−inθ dθ = 0.

In other words, all the Fourier coefficients of α(eiθ) vanish.

But this implies (from Fourier theory) that the function itself must
vanish, which is impossible since α(1) = 1.

(b) Since SO(2) is a subgroup of index 2 in O(2), the representation
E(n) of SO(2) = U(1) induces a representation

αn = E(n)O(2)

of O(2) of degree 2.



Any element of O(2) \ SO(2) is a reflection T (l) in some line l
through the origin. These reflections are all conjugate, since

R(θ)T (l)R(−θ) = T (l′),

where l′ = R(θ)l.

Also
T (l)R(θ)T (l) = R(−θ);

so the O(2)-conjugacy classes consist of pairs {R(±θ)}, together
with the set of all reflections.

Explicitly, on taking e, Te as basis for the induced representation
(where T is any reflection) we see that αn is given by

R(θ) 7→
(

eiθ 0
0 e−iθ

)
, T (l) 7→

(
0 1
1 0.

)
.

If n 6= 0 this representation is simple. For

αn| SO(2) = E(n) + E(−n).

It follows that the only proper subspaces stable under SO(2) are
〈e〉, 〈Te〉, and these are not stable under T .

If n = 0 the representation splits into two parts:

α0 = 1 + ε,

where
ε(R(θ)) = 1, ε(T (l) = −1,

ie ε(S) = ±1 according as S is proper or improper.

We claim that the simple representations of O(2) are precisely
these representations αn for n 6= 0, together with the representa-
tions 1, ε of degree 1.

For suppose α is a simple representation of O(2) in the vector
space V . Then

α| SO(2) = E(n1) + · · ·+ E(nr),

ie V is the direct sum of 1-dimensional subspaces stable under
SO(2).

Let U = 〈e〉 be one such subspace. Then U carries some represen-
tation E(n), ie

R(θ)e = einθe



for all θ.

Take any reflection T . Then the subspace 〈e, Te〉 is stable under
the full group O(2). Since α is simple,

V = 〈e, Te〉,

If n 6= 0 then we see explicitly that

α = αn.

If n = 0 then SO(2) acts trivially on U . If Te = e then U is 1-
dimensional, and α = 1. If not, then the 1-dimensional subspace
〈e− Te〉 carries the representation ε, and so α = ε.

We conclude that these are the only simple representations of

O(2).

9. Determine the conjugacy classes in SU(2).

Prove that SU(2) has one simple representation of each dimension
0, 1, 2, . . . , and determine the character of this representation.

Answer:

(a) We know that

i. if U ∈ SU(2) then U has eigenvalues

e±iθ (θ ∈ R).

ii. if X, Y ∈ GL(n, k) then

X ∼ Y =⇒ X, Y have the same eigenvalues.

A fortiori, if U ∼ V ∈ SU(2) then U, V have the same eigen-
values.

We shall show that the converse of the last result is also true, that
is: U ∼ V in SU(2) if and only if U, V have the same eigenvalues
e±iθ, This is equivalent to proving that

U ∼ U(θ) =

(
eiθ 0
0 e−iθ

)
,

ie we can find V ∈ SU(2) such that

V −1UV = U(θ).



To see this, let v be an eiθ-eigenvalue of U . Normalise v, so that
v∗v = 1; and let w be a unit vector orthogonal to v, ie w∗w =
1, v∗w = 0. Then the matrix

V = (vw) ∈ Mat(2, C)

is unitary; and

V −1UV =

(
eiθ x
0 e−iθ

)
But in a unitary matrix, the squares of the absolute values of each
row and column sum to 1. It follows that

|eiθ|2 + |x|2 = 1 =⇒ x = 0,

ie
V −1UV = U(θ).

We only know that V ∈ U(2), not that V ∈ SU(2). However

V ∈ U(2) =⇒ | det V | = 1 =⇒ det V = eiφ.

Thus
V ′ = e−iφ/2V ∈ SU(2)

and still
(V ′)−1UV = U(θ).

To summarise: Since U(−θ) ∼ U(θ) (by interchange of coordi-
nates), we have show that if

C(θ) = {U ∈ SU(2) : U has eigenvalues e±iθ}

then the conjugacy classes in SU(2) are

C(θ) (0 ≤ θ ≤ π).

(b) Suppose m ∈ N, Let V (m) denote the space of homogeneous poly-
nomials P (z, w) in z, w. Thus V (m) is a vector space over C of
dimension m + 1, with basis zm, zm−1w, . . . , wm.

Suppose U ∈ SU(2). Then U acts on z, w by(
z
w

)
7→

(
z′

w′

)
= U

(
z
w

)
.



This action in turn defines an action of SU(2) on V (m):

P (z, w) 7→ P (z′, w′).

We claim that the corresponding representation of SU(2) — which
we denote by Dm/2 — is simple, and that these are the only simple
(finite-dimensional) representations of SU(2) over C.

To prove this, let

U(1) ⊂ SU(2)

be the subgroup formed by the diagonal matrices U(θ). The action
of SU(2) on z, w restricts to the action

(z, w) 7→ (eiθz, e−iθw)

of U(1). Thus in the action of U(1) on V (m),

zm−rwr 7→ e(m−2r)iθzm−rwr,

It follows that the restriction of Dm/1 to U(1) is the representation

Dm/2|U(1) = E(m) + E(m− 2) + · · ·+ E(−m)

where E(m) is the representation

eiθ 7→ emiθ

of U(1).

In particular, the character of Dm/2 is given by

χm/2(U) = emiθ + e(m−2iθ + · · ·+ e−miθ

if U has eigenvalues e±iθ.

Now suppose Dm/2 is not simple, say

Dm/2 = α + β.

(We know that Dm/2 is semisimple, since SU(2) is compact.) Let
a corresponding split of the representation space be

V (m) = W1 ⊕W2.

Since the simple parts of Dm/2|U(1) are distinct, the expression
of V (m) as a direct sum of U(1)-spaces,

V (m) = 〈zm〉 ⊕ 〈zm−1w〉 ⊕ · · · ⊕ 〈wm〉



is unique. It follows that W1 must be the direct sum of some of
these spaces, and W2 the direct sum of the others. In particular
zm ∈ W1 or zn ∈ W2, say zm ∈ W1. Let

U =
1√
2

(
1 −1
1 1

)
∈ SU(2).

Then (
z
w

)
7→ 1√

2

(
z + w
−z + w

)
under U . Hence

zm 7→ 2−m/2(z + w)m.

Since this contains non-zero components in each subspace 〈zm−rwr〉,
it follows that

W1 = V (m),

ie the representation Dm/2 of SU(2) in V (m) is simple.

To see that every simple (finite-dimensional) representation of
SU(2) is of this form, suppose α is such a representation. Con-
sider its restriction to U(1). Suppose

α|U(1) = erE(r)+er−1E(r−1)+· · ·+e−rE(−r) (er, er−1, . . . , e−r ∈ N).

Then α has character

χ(U) = χ(θ) = ere
riθ + er−1e

(r−1)iθ + · · ·+ e−re
−riθ

if U has eigenvalues e±iθ.

Since U(−θ) ∼ U(θ) it follows that

χ(−θ) = χ(θ),

and so

e−i = ei,

ie

χ(θ) = er(e
riθ + e−riθ) + er−1(e

(r−1)iθ + e−(r−1)iθ) + · · · .

It is easy to see that this is expressible as a sum of the χj(θ) with
integer (possibly negative) coefficients:

χ(θ) = a0χ0(θ)+a1/2χ1/2(θ)+· · ·+asχs(θ) (a0, a1/2, . . . , as ∈ Z).



Using the intertwining number,

I(α, α) = a2
0 + a2

1/2 + · · ·+ a2
s

(since I(Dj, Dk) = 0). Since α is simple,

I(α, α) = 1.

It follows that one of the coefficients aj is ±1 and the rest are 0,
ie

χ(θ) = ±χj(θ)

for some half-integer j. But

χ(θ) = −χj(θ) =⇒ I(α, Dj) = −I(Dj, Dj) = −1,

which is impossible. Hence

χ(θ) = χj(θ),

and so (since a representation is determined up to equivalence by
its character)

α = Dj.


