
Chapter 1

Group Representations

Definition 1.1 A representationα of a group G in a vector space V over k is
defined by a homomorphism

α : G→GL(V).

Thedegreeof the representation is the dimension of the vector space:

degα = dimkV.

Remarks:

1. Recall thatGL(V)—the general linear group onV—is the group of invert-
ible linear mapst : V→V.

2. We shall be concerned almost exclusively with representations offinite de-
gree, that is, infinite-dimensionalvector spaces; and these will almost al-
ways be vector spaces overR or C. Therefore, to avoid repetition, let us
agree to use the term ‘representation’ to meanrepresentation of finite de-
gree overR or C, unless the contrary is explicitly stated.

Furthermore, in this first Part we shall be concerned almost exclusively with
finite groups; so let us also agree that the term ‘group’ will meanfinite
group,unless the contrary is stated.

3. Suppose{e1, . . . ,en} is a basis forV. Then each linear mapt : V → V is
defined (with respect to this basis) by ann×n-matrixT.

Explicitly,
tej = ∑

i
T i

j ei ;
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or in terms of coordinates, x1
...

xn

 7→ T

 x1
...

xn


Thus a representation inV can be defined by a homomorphism

α : G→GL(n,k),

whereGL(n,k) denotes the group of non-singularn×n-matrices overk. In
other words,α is defined by giving matricesA(g) for eachg∈G, satisfying
the conditions

A(gh) = A(g)A(h)

for all g,h∈G; and also
A(e) = I .

4. There is another way of looking at representations which perhaps has greater
intuitive content.

Recall that a group is said toact on the setX if we have a map

G×X→ X : (g,x) 7→ gx

satisfying

(a) (gh)x) = g(hx),

(b) ex= x.

Now supposeX = V is a vector space. Then we can say thatG acts linearly
onV if in addition

(c) g(u+v) = gu+gv,

(d) g(ρv) = ρ(gv).

Each representationα of G in V defines a linear action ofG onV, by

gv= α(g)v;

and every such action arises from a representation in this way.

Thus the notions ofrepresentationandlinear actionare completely equiv-
alent. We can use whichever we find more convenient in a given case.
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5. There are 2 other ways of looking at group representations, completely
equivalent to the definition but expressing slightly different points of view.

Firstly, we may speak of the vector spaceV, with the action ofG on it.
as aG-space. For those familiar with category theory, this would be the
categorical approach. Representation theory, from this point of view, is the
study of the category ofG-spaces andG-maps, where aG-map

t : U →V

from oneG-space to another is a linear map preserving the action ofG, ie
satisfying

t(gu) = g(tu) (g∈G,u∈U).

6. Secondly, and finally, mathematical physicists often speak—strikingly—of
the vector spaceV carryingthe representationα.

Examples:

1. Recall that the dihedral groupD4 is the symmetry group of a squareABCD

AB

C D

O x

y

Figure 1.1: The natural representation ofD4

(Figure 1.1). Let us take coordinatesOx,Oy as shown through the centreO
of the square. Then

D4 = {e, r, r2, r3,c,d,h,v},

wherer is the rotation aboutO throughπ/2 (sendingA to B), while c,d,h,v
are the reflections inAC,BD,Ox,Oy respectively.
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By definition a symmetryg∈D4 is an isometry of the planeE2 sending the
square into itself. Evidentlyg must sendO into itself, and so gives rise to a
linear map

A(g) : R2→ R2.

The map
g 7→ A(g) ∈GL(2,R)

defines a 2-dimensional representationρ of D4 over R. We may describe
this as thenatural2-dimensional representation ofD4.

(Evidently the symmetry groupG of any bounded subsetS⊂ En will have
a similar ‘natural’ representation inRn.)

The representationρ is given in matrix terms by

e 7→
(

1 0
0 1

)
, r 7→

(
0 −1
1 0

)
, r2 7→

(
−1 0
0 −1

)
, r3 7→

(
0 1
−1 0

)
,

c 7→
(

0 1
1 0

)
, d 7→

(
0 −1
−1 0

)
, h 7→

(
1 0
0 −1

)
, v 7→

(
−1 0
0 1

)
.

For example, the rotationr is given by(
x
y

)
7→

(
−y
x

)
=

(
0 −1
1 0

)(
x
y

)
.

Each group relation is represented in a corresponding matrix equation, eg

cd = r2 =⇒
(

0 1
1 0

)(
0 −1
−1 0

)
=

(
−1 0
0 −1

)
.

The representationρ is faithful, ie the homomorphism defining it is injec-
tive. Thus a relation holds inD4 if and only if the corresponding matrix
equation is true. However, representations are not necessarily faithful, and
the implication is only one way.

Every finite-dimensional representation can be expressed in matrix form in
this way, after choosing a basis for the vector space carrying the representa-
tion. However, while such matrix representations are reassuringly concrete,
they are impractical except in the lowest dimensions. Better just to keep at
the back of one’s mind that a representationcouldbe expressed in this way.

2. SupposeG acts on the setX:

(g,x) 7→ gx.
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Let
C(X) = C(X,k)

denote the space of maps
f : X→ k.

ThenG acts linearly onC(X)—and so defines a representationρ of G—by

g f(x) = f (g−1x).

(We needg−1 rather thang on the right to satisfy the rule

g(h f) = (gh) f .

It is fortunate that the relation

(gh)−1 = h−1g−1

enables us to correct the order reversal. We shall often have occasion to
take advantage of this, particularly when dealing—as here—with spaces of
functions.)

Now suppose thatX is finite; say

X = {x1, . . . ,xn}.

Then
degρ = n = ‖X‖,

the number of elements inX. For the functions

ey(x) =
{

1 if x = y,
0 otherwise.

(ie the characteristic functions of the 1-point subsets) form a basis forC(X).
Also

gex = egx,

since

gey(x) = ey(g−1x)

=

{
1 if g−1x = y

0 if g−1x 6= y

=

{
1 if x = gy

0 if x 6= gy
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Thus
g 7→ P(g)

whereP = P(g) is the matrix with entries

Py
x =

{
1 if y = gx,
0 otherwise.

Notice thatP is apermutation matrix, ie there is just one 1 in each row and
column, all other entries being 0. We call a representation that arises from
the action of a group on a set in this way apermutational representation.

As an illustration, consider the natural action ofS(3) on the set{a,b,c}.
This yields a 3-dimensional representationρ of S(3), under which

(abc) 7→

0 0 1
1 0 0
0 1 0

 , (ab) 7→

0 1 0
1 0 0
0 0 1

 .

(These 2 instances actually define the representation, since(abc) and(ab)
generateS(3).)

3. A 1-dimensionalrepresentationα of a groupG over k = R or C is just a
homomorphism

α : G→ k×,

wherek× denotes the multiplicative group on the setk\{0}. For

GL(1,k) = k×,

since we can identify the 1×1-matrix[x] with its single entryx.

We call the 1-dimensional representation defined by the identity homomor-
phism

g 7→ 1

(for all g∈G) thetrivial representationof G, and denote it by 1.

In a 1-dimensional representation, each group element is represented by a
number. Since these numbers commute, the study of 1-dimensional repre-
sentations is much simpler than those of higher dimension.

In general, when investigating the representations of a groupG, we start by
determining all its 1-dimensional representations.

Recall that 2 elementsg,h∈G are said to beconjugateif

h = xgx−1
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for some third elementx∈G. Supposeα is a 1-dimensional representation
of G. Then

α(h) = α(x)α(g)α(x−1)
= α(x)α(g)α(x)−1

= α(g)α(x)α(x)−1

= α(g),

since the numbersα(x),α(g) commute. It follows that a 1-dimensional
representationis constant on each conjugacy class of G.

Consider the groupS3. This has 3 classes (we shall usually abbreviate ‘con-
jugacy class’ toclass):

{1}, {(abc),(acb)}, {(bc),(ca),(ab)}.

Let us write
s= (abc), t = (bc).

Then (assumingk = C)

s3 = 1 =⇒ α(s)3 = 1 =⇒ α(s) = 1,ω or ω2,

t2 = 1 =⇒ α(s)2 = 1 =⇒ α(t) =±1.

But
tst−1 = s2.

It follows that
α(t)α(s)α(t)−1 = α(s)2,

from which we deduce that
α(s) = 1.

It follows thatS3 has just 2 1-dimensional representations: the trivial repre-
sentation

1 : g 7→ 1,

and theparity representation

ε : g 7→
{

1 if g is even,
−1 if g is odd.

4. The corresponding result is true for all the symmetric groupsSn (for n≥ 2);
Sn has just 2 1-dimensional representations, the trivial representation 1 and
the parity representationε.

To see this, let us recall 2 facts aboutSn.
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(a) The transpositionsτ = (xy) generate Sn, ie each permutationg∈ Sn is
expressible (not uniquely) as a product of transpositions

g = τ1 · · ·τr .

(b) The transpositions are all conjugate.

(This is a particular case of the general fact that 2 permutations inSn

are conjugate if and only if they are of the samecyclic type, ie they
have the same number of cycles of each length.)

It follows from (1) that a 1-dimensional representation ofSn is completely
determined by its values on the transpositions. It follows from (2) that the
representation is constant on the transpositions. Finally, since each transpo-
sition τ satisfiesτ2 = 1 it follows that this constant value is±1. Thus there
can only be 2 1-dimensional representations ofSn; the first takes the value
1 on the transpositions, and so is 1 everywhere; the second takes the value
-1 on the transpositions, and takes the value(−1)r on the permutation

g = τ1 · · ·τr .

ThusSn has just 2 1-dimensional representations; the trivial representation
1 and the parity representationε.

5. Let’s look again at the dihedral groupD4, ie the symmetry group of the
squareABCD. Let r denote the rotation throughπ/2, takingA into B; and
let c denote the reflection inAC.

It is readily verified thatr and c generateD4, ie each elementg ∈ D4 is
expressible as aword in r andc (eg g = r2cr). This follows for example
from Lagrange’s Theorem. The subgroup generated byr andc contains at
least the 5 elements 1, r, r2, r3,c, and so must be the whole group. (We shall
sometimes denote the identity element in a group by 1, while at other times
we shall useeor I .)

It is also easy to see thatr andc satisfy the relations

r4 = 1, c2 = 1, rc = cr3.

In fact these aredefining relationsfor D4, ie every relation betweenr andc
can be derived from these 3.

We can express this in the form

D4 = 〈r,c : r4 = c2 = 1, rc = cr3〉.
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Now supposeα is a 1-dimensional representation ofD4. Then we must have

α(r)4 = α(c)2 = 1, α(r)α(c) = α(c)α(r)3.

From the last relation
α(r)2 = 1.

Thus there are just 4 possibilities

α(r) =±1, α(c) =±1.

It is readily verified that all 4 of these satisfy the 3 defining relations fors
andt. It follows that each defines a homomorphism

α : D4→ k×.

We conclude thatD4 has just 4 1-dimensional representations.

6. We look now at some examples from chemistry and physics. It should be
emphasized, firstly that the theory is completely independent of these ex-
amples, which can safely be ignored; and secondly, thatwe are not on oath
when speaking of physics. It would be inappropriate to delve too deeply
here into the physical basis for the examples we give.

H H

H

HC

Figure 1.2: The methane molecule

First let us look at the methane molecule CH4. In its stable state the 4
hydrogen atoms are situated at the vertices of a regular tetrahedron, with
the single carbon atom at its centroid (Figure 1.2).

The molecule evidently has symmetry groupS4, being invariant under per-
mutations of the 4 hydrogen atoms.

Now suppose the molecule is vibrating about this stable position. We sup-
pose that the carbon atom at the centroid remains fixed. (We shall return to



GpReps-I–10

this point later.) Thus the configuration of the molecule at any moment is
defined by the displacement of the 4 hydrogen atoms, say

Xi = (xi1,xi2,xi3) (i = 1,2,3,4).

Since the centroid remains fixed,

∑
i

xi j = 0 ( j = 1,2,3).

This reduces the original 12 degrees of freedom to 9.

Now let us assume further that theangular momentum also remains 0, ie
the molecule is not slowly rotating. This imposes a further 3 conditions on
the xi j , leaving 6 degrees of freedom for the 12 ‘coordinates’xi j . Mathe-
matically, the coordinates are constrained to lie in a 6-dimensional space.
In other words we can find 6 ‘generalized coordinates’q1, . . . ,q6 — chosen
so thatq1 = q2 = · · ·= q6 = 0 at the point of equilibrium — such that each
of thexi j is expressible in terms of theqk:

xi j = xi j (q1, . . . ,q6).

The motion of the molecule is governed by the Euler-Lagrange equations

d
dt

(
∂K
∂q̇k

)
=− ∂V

∂qk

whereK is the kinetic energy of the system, andV its potential energy.
(These equations were developed for precisely this purpose, to express the
motion of a system whose configuration is defined by generalized coordi-
nates.)

The kinetic energy of the system is given in terms of the massm of the
hydrogen atom by

K =
1
2

m∑
i, j

ẋ2
i j

On substituting

ẋi j =
∂xi j

∂q1
q̇1 + · · ·+

∂xi j

∂q6
q̇6,

we see that
K = K(q̇1, . . . , q̇6),

whereK is a positive-definite quadratic form. Although the coefficients of
this quadratic form are actually functions ofq1, . . . ,q6, we may suppose
them constant since we are dealing with small vibrations.
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The potential energy of the system, which we may take to have minimal
value 0 at the stable position, is given to second order by some positive-
definite quadratic formQ in theqk:

V = Q(q1, . . . ,q6)+ . . . .

While we could explicitly choose the coordinatesqk, and determine the ki-
netic energyK, the potential energy formQ evidently depends on the forces
holding the molecule together. Fortunately, we can say a great deal about the
vibrational modes of the molecule without knowing anything about these
forces.

Since these 2 forms are positive-definite, we can simultaneously diagonalize
them, ie we can find new generalized coordinatesz1, . . . ,z6 such that

K = ż2
1 + · · ·+ ż2

6,

V = ω2
1z2

1 + · · ·+ω2
6z2

6.

The Euler-Lagrange equations now give

z̈i =−ω2
i zi (i = 1, . . . ,6).

Thus the motion is made up of 6 independent harmonic oscillations, with
frequenciesω1, . . . ,ω6.

As usual when studying harmonic or wave motion, life is easier if we allow
complex solutions (of which the ‘real’ solutions will be the real part). Each
harmonic oscillation then has 1 degree of freedom:

zj = Cje
iω j t .

The set of all solutions of these equations (ie all possible vibrations of the
system) thus forms a 6-dimensionalsolution-space V.

So far we have made no use of theS4-symmetry of the CH4 molecule. But
now we see that this symmetry group acts on the solution spaceV, which
thus carries a representation,ρ say, ofS4. Explicitly, supposeπ ∈ S4 is
a permutation of the 4 H atoms. This permutation is ‘implemented’ by
a unique spatial isometryΠ. (For example, the permutation(123)(4) is
effected by rotation through 1/3 of a revolution about the axis joining the C
atom to the 4th H atom.)

But now if we apply this isometryΠ to any vibrationv(t) we obtain a new
vibrationΠv(t). In this way the permutationπ acts on the solution-spaceV.
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In general,the symmetry group G of the physical configuration will act on
the solution-space V.

The fundamental result in the representation theory of a finite groupG (as
we shall establish) is that every representationρ of G splits into parts, each
corresponding to a ‘simple’ representation ofG. Each finite group has a fi-
nite number of such simple representations, which thus serve as the ‘atoms’
out of which every representation ofG is constructed. (There is a close
analogy with the Fundamental Theorem of Arithmetic, that every natural
number is uniquely expressible as a product of primes.)

The groupS4 (as we shall find) has 5 simple representations, of dimensions
1,1,2,3,3. Our 6-dimensional representation must be the ‘sum’ of some of
these.

It is not hard to see that there is just one 1-dimensional mode (up to a scalar
multiple) corresponding to a ‘pulsing’ of the molecule in which the 4 H
atoms move in and out (in ‘sync’) along the axes joining them to the cen-
tral C atom. (Recall thatS4 has just 2 1-dimensional representations: the
trivial representation, under which each permutation leaves everything un-
changed, and the parity representation, in which even permutations leave
things unchanged, while odd permutations reverse them. In our case, the
4 atoms must move in the same way under the trivial representation, while
their motion is reversed under an odd permutation. The latter is impossible.
For by considering the odd permutation(12)(3)(4) we deduce that the first
atom is moving out while the second moves in; while under the action of
the even permutation(12)(34) the first and second atoms must move in and
out together.)

We conclude (not rigorously, it should be emphasized!) that

ρ = 1+α+β

where 1 denotes the trivial representation ofS4, α is the unique 2-dimensional
representation, andβ is one of the two 3-dimensional representations.

Thus without any real work we’ve deduced quite a lot about the vibrations
of CH4.

Each of these 3 modes has a distinct frequency. To see that, note that our
system — and in fact any similar non-relativistic system — has atime sym-
metrycorresponding to the additive groupR. For if (zj(t) : 1≤ j ≤ 6) is
one solution then(zj(t +c)) is also a solution for any constantc∈ R.

The simple representations ofR are just the 1-dimensional representations

t 7→ eiωt .
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(We shall see that the simple representations of anabeliangroup are always
1-dimensional.) In effect, Fourier analysis — the splitting of a function
or motion into parts corresponding to different frequencies — is just the
representation theory ofR.

The actions ofS4 andR on the solution space commute, giving a represen-
tation of the product groupS4×R.

As we shall see, the simple representations of a product groupG×H arise
from simple representations ofG andH: ρ = σ× τ. In the present case we
must have

ρ = 1×E(ω1)+α×E(ω2)+β×E(ω3),

whereω1,ω2,ω3 are the frequencies of the 3 modes.

If the symmetry is slightly broken, eg by placing the vibrating molecule in
a magnetic field, these ‘degenerate’ frequencies will split, so that 6 frequen-
cies will be seen:ω′1,ω

′
2,ω
′′
2,ω

′
3,ω
′′
3,ω

′′′
3 , where egω′2 andω′′2 are close to

ω. This is the origin of ‘multiple lines’ in spectroscopy.

The concept ofbroken symmetryhas become one of the corner-stones of
mathematical physics. In ‘grand unified theories’ distinct particles are seen
as identical (like our 4 H atoms) under some large symmetry group, whose
action is ‘broken’ in our actual universe.

7. Vibrations of a circular drum. [?]. Consider a circular elastic membrane.
The motion of the membrane is determined by the function

z(x,y, t) (x2 +y2≤ r2)

wherez is the height of the point of the drum at position(x,y).

It is not hard to establish that under small vibrations this function will satisfy
the wave equation

T

(
∂2z
∂x2 +

∂2z
∂y2

)
= ρ

∂2z
∂t2 ,

whereT is the tension of the membrane andρ its mass per unit area. This
may be written (

∂2z
∂x2 +

∂2z
∂y2

)
=

1
c2

∂2z
∂t2 ,

wherec = (T/ρ)1/2 is thespeedof the wave motion.

The configuration hasO(2) symmetry, whereO(2) is the group of 2-dimensional
isometries leaving the centreO fixed, consisting of the rotations aboutO and
the reflections in lines throughO.
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Although this group is not finite, it iscompact. As we shall see, the repre-
sentation theory of compact groups is essentially identical to the finite the-
ory; the main difference being that a compact group has a countable infinity
of simple representations.

For example, the groupO(2) has the trivial representation 1, and an infinity
of representationsR(1),R(2), . . . , each of dimension 2.

The circular drum has corresponding modesM(0),M(1),M(2), . . . , each
with its characteristic frequency. As in our last example, after taking time
symmetry into account, the solution-space carries a representationρ of the
product groupO(2)×R, which splits into

1×E(ω0)+R(1)×E(ω1)+R(2)×E(ω2)+ · · · .

8. In the last example but one, we considered the 4 hydrogen atoms in the
methane molecule as particles, or solid balls. But now let us consider a
single hydrogen atom, consisting of an electron moving in the field of a
massive central proton.

According to classical non-relativistic quantum mechanics [?], the state of
the electron (and so of the atom) is determined by awave functionψ(x,y,z, t),
whose evolution is determined bySchr̈odinger’s equation

i~
∂ψ
∂t

= Hψ.

HereH is thehamiltonian operator, given by

Hψ =− ~2

2m
∇2ψ+V(r)ψ,

wherem is the mass of the electron,V(t) is its potential energy,~ is Planck’s
constant, and

∇2ψ =
∂2ψ
∂x2 +

∂2ψ
∂y2 +

∂2ψ
∂z2 .

Thus Schrodinger’s equation reads, in full,

i~
∂ψ
∂t

=− ~2

2m

(
∂2ψ
∂x2 +

∂2ψ
∂y2 +

∂2ψ
∂z2

)
− e2

r
ψ.

The essential point is that this is alinear differential equation, whose solu-
tions therefore form a vector space, thesolution-space.

We regard the central proton as fixed atO. (A more accurate account might
takeO to be the centre of mass of the system.) The system is invariant under
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the orthogonal groupO(3), consisting of all isometries — that is, distance-
preserving transformations — which leaveO fixed. Thus the solution space
carries a representation of the compact groupO(3).

This group is a product-group:

O(3) = SO(3)×C2,

whereC2 = {I ,J} (J denoting reflection inO), while SO(3) is the subgroup
of orientation-preserving isometries. In fact, each such isometry is a rotation
about some axis, soSO(3) is group of rotations in 3 dimensions.

The rotation groupSO(3) has simple representationsD0,D1,D2, . . . of di-
mensions 1,3,5, . . . . To each of these corresponds amodeof the hydrogen
atom, with a particular frequencyω and corresponding energy levelE = ~ω.

These energy levels are seen in the spectroscope, although the spectral lines
of hydrogen actually correspond todifferencesbetween energy levels, since
they arise from photons given off when the energy level changes.

This idea — considering the space of atomic wave functions as a representa-
tion of SO(3) gave the first explanation of the periodic table of the elements,
proposed many years before by Mendeleev on purely empirical grounds [?].

The discussion above ignores thespinof the electron. In fact representation
theory hints strongly at the existence of spin, since the ‘double-covering’
SU(2) of SO(3) adds the ‘spin representations’D1/2,D3/2, . . . of dimen-
sions 2,4, . . . to the sequence above, as we shall see.

Finally, it is worth noting that quantum theory (as also electrodynamics) are
linear theories, where the Principle of Superposition rules. Thus the appli-
cation of representation theory is exact, and not an approximation restricted
to small vibrations, as in classical mechanical systems like the methane
molecule, or the drum.

9. The classification of elementary particles. [?]. Consider an elementary
particleE, eg an electron, in relativistic quantum theory. The possible states
of E again correspond to the points of a vector spaceV. More precisely,
they correspond to the points of theprojective space P(V) formed by the
rays, or 1-dimensional subspaces, ofV. For the wave functionsψ andρψ
correspond to the same state ofE.

The state spaceV is now acted on by thePoincaŕe group E(1,3) formed by
the isometries of Minkowski space-time. It follows thatV carries a repre-
sentation ofE(1,3).
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Each elementary particle corresponds to a simple representation of the
Poincaŕe group E(1,3). This group is not compact. It is however aLie
group; and — as we shall see — a different approach to representation the-
ory, based onLie algebras, allows much of the theory to be extended to this
case.

A last remark. One might suppose, from its reliance on linearity, that rep-
resentation theory would have no rôle to play in curved space-time. But
that is far from true. Even if the underlying topological space is curved, the
vector and tensorfieldson such a space preserve their linear structure. (So
one can, for example, superpose vector fields on a sphere.) Thus represen-
tation theory can still be applied; and in fact, the so-calledgauge theories
introduced in the search for a unified ‘theory of everything’ are of precisely
this kind.
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Exercises

All representations are overC, unless the contrary is stated.

In Exercises 01–11 determine all 1-dimensional representations of the given group.

1 ∗C2 2 ∗∗C3 3 ∗∗Cn 4 ∗∗ D2 5 ∗∗ D3

6 ∗∗∗ Dn 7 ∗∗∗ Q8 8 ∗∗∗ A4 9 ∗∗∗∗ An 10∗∗ Z
11∗∗∗∗ D∞ = 〈r,s : s2 = 1, rsr = s〉

SupposeG is a group; and supposeg,h ∈ G. The element[g,h] = ghg−1h−1 is
called thecommutatorof g andh. The subgroupG′ ≡ [G,G] is generated by all
commutators inG is called the commutator subgroup, orderived groupof G.

12∗∗∗ Show thatG′ lies in the kernel of any 1-dimensional representationρ of G,
ie ρ(g) acts trivially if g∈G′.

13 ∗∗∗ Show thatG′ is a normal subgroup ofG, and thatG/G′ is abelian. Show
moreover that ifK is a normal subgroup ofG thenG/K is abelian if and only if
G′ ⊂ K. [In other words,G′ is the smallest normal subgroup such thatG/G′ is
abelian.)

14 ∗∗ Show that the 1-dimensional representations ofG form an abelian group
G∗ under multiplication. [Nb: this notationG∗ is normally only used whenG is
abelian.]

15∗∗ Show thatC∗n ∼= Cn.

16∗∗∗ Show that for any 2 groupsG,H

(G×H)∗ = G∗×H∗.

17 ∗∗∗∗ By using the Structure Theorem on Finite Abelian Groups (stating that
each such group is expressible as a product of cyclic groups) or otherwise, show
that

A∗ ∼= A

for any finite abelian groupA.

18∗∗SupposeΘ : G→H is a homomorphism of groups. Then each representation
α of H defines a representationΘα of G.

19 ∗∗∗ Show that the 1-dimensional representations ofG and ofG/G′ are in one-
one correspondence.

In Exercises 20–24 determine the derived groupG′ of the given groupG.

20∗∗∗Cn 21∗∗∗∗ Dn 22∗∗ Z 23∗∗∗∗ D∞
24∗∗∗ Q8 25∗∗∗ Sn 26∗∗∗ A4 27∗∗∗∗ An



Chapter 2

Equivalent Representations

Every mathematical theory starts from some notion of equivalence—an agree-
ment not to distinguish between objects that ‘look the same’ in some sense.

Definition 2.1 Supposeα,β are two representations of G in the vector spaces
U,V over k. We say thatα andβ are equivalent, and we writeα = β, if U and V
are isomorphic G-spaces.

In other words, we can find a linear map

t : U →V

which preserves the action ofG, ie

t(gu) = g(tu) for all g∈G,u∈U .

Remarks:

1. Supposeα andβ are given in matrix form:

α : g 7→ A(g), β : g 7→ B(g).

If α = β, thenU andV are isomorphic, and so in particular dimα = dimβ,
ie the matricesA(g) andB(g) are of the same size.

Suppose the linear mapt : U →V is given by the matrixP. Then the condi-
tion t(gu) = g(tu) gives

B(g) = PA(g)P−1

for eachg∈G. This is the condition in matrix terms for two representations
to be equivalent.

GpReps-I–1
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2. Recall that twon× n matricesS,T are said to besimilar if there exists a
non-singular (invertible) matrixP such that

T = PSP−1.

A necessary condition for this is thatA,B have the same eigenvalues. For
the characteristic equations of two similar matrices are identical:

det
(
PSP−1−λI

)
= detPdet(S−λI)detP−1

= det(S−λI).

3. In general this condition is necessary but not sufficient. For example, the
matrices (

1 0
0 1

)
,

(
1 1
0 1

)
have the same eigenvalues 1,1, but are not similar. (No matrix is similar to
the identity matrixI exceptI itself.)

However, there is one important case, or particular relevance to us, where
the converse is true. Let us recall a result from linear algebra.

An n× n complex matrix A is diagonalisable if and only if it satisfies a
separable polynomial equation, ie one without repeated roots.

It is easy to see that ifA is diagonalisable then it satisfies a separable equa-
tion. For if

A∼


λ1

. ..
λ1

λ2
...


thenA satisfies the separable equation

m(x)≡ (x−λ1)(x−λ2) · · ·= 0.

The converse is less obvious. SupposeA satisfies the polynomial equation

p(x)≡ (x−λ1) · · ·(x−λr) = 0

with λ1, . . . ,λr distinct. Consider the expression of 1/p(x) as a sum of par-
tial fractions:

1
p(x)

=
a1

x−λ1
+ · · ·+ ar

x−λr
.
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Multiplying across,

1 = a1Q1(x)+ · · ·+arQr(x),

where

Qi(x) = ∏
j 6=i

(x−λ j) =
p(x)

x−λi
.

Substitutingx = A,

I = a1Q1(A)+ · · ·+arQr(A).

Applying each side to the vectorv∈V,

v = a1Q1(A)v+ · · ·+arQr(A)v
= v1 + · · ·+vr ,

say. The vectorvi is an eigenvector ofA with eigenvalueλi , since

(A−λi)vi = ai p(A)v = 0.

Thus every vector is expressible as a sum of eigenvectors. In other words
the eigenvectors ofA span the space.

But that is precisely the condition forA to be diagonalisable. For we can
find a basis forV consisting of eigenvectors, and with respect to this basis
A will be diagonal.

4. It is important to note that while each matrixA(g) is diagonalisablesepa-
rately, we cannot in general diagonalise all theA(g) simultaneously. That
would imply that theA(g) commuted, which is certainly not the case in
general.

5. However, we can show thatif A1,A2, . . . is a set of commuting matrices
then they can be diagonalised simultaneously if and only if they can be
diagonalised separately.

To see this, supposeλ is an eigenvalue ofA1. Let

E = {v : A1v = λv}

be the corresponding eigenspace. ThenE is stable under all theAi , since

v∈ E =⇒ A1(Aiv) = AiA1v = λAiv =⇒ Aiv∈ E.
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Thus we have reduced the problem to the simultaneous diagonalisation of
the restrictions ofA2,A3, . . . to the eigenspaces ofA1. A simple inductive
argument on the degree of theAi yields the result.

In our case, this means that we can diagonalise some (or all) of our repre-
sentation matrices

A(g1),A(g2), . . .

if and only it these matrices commute.

This is perhaps best seen as a result on the representations of abelian groups,
which we shall meet later.

6. To summarise, two representationsα,β are certainlynotequivalent ifA(g),B(g)
have different eigenvalues for someg∈G.

Suppose to the contrary thatA(g),B(g) have the same eigenvalues for all
g∈G. Then as we have seen

A(g)∼ B(g)

for all g, ie
B(g) = P(g)A(g)P(g)−1

for some invertible matrixP(g).

Remarkably, we shall see that if this is so for allg∈G, then in factα andβ
are equivalent. In other words, if such a matrixP(g) exists for allg then we
can find a matrixP independent of gsuch that

B(g) = PA(g)P−1

for all g∈G.

7. SupposeA∼ B, ie
B = PAP−1.

We can interpret this as meaning thatA and B represent the same linear
transformation, under the change of basis defined byP.

Thus we can think of two equivalent representations as being, if effect, the
samerepresentation looked at from two points of view, that is, taking two
different bases for the representation-space.

Example:Let us look again at the natural 2-dimensional real representationρ of
the symmetry groupD4 of the squareABCD. Recall that when we took coordi-
nates with respect to axesOx,OybisectingDA, AB, ρ took the matrix form

s 7→
(

0 −1
1 0

)
c 7→

(
0 1
1 0

)
,
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wheres is the rotation through a right-angle (sendingA to B), andc is the reflection
in AC.

Now suppose we choose instead the axesOA, OB. Then we obtain the equiv-
alent representation

s 7→
(

0 −1
1 0

)
c 7→

(
1 0
0 −1

)
.

We observe thatc has the same eigenvalues,±1, in both cases.
Since we have identified equivalent representations, it makes sense to ask for

all the representations of a given group G of dimension d,say. What we have
to do in such a case is to give a list ofd-dimensional representations, prove that
everyd-dimensional representation is equivalent to one of them, and show also
that no two of the representations are equivalent.

It isn’t at all obvious that the number of such representations is finite, even
after we have identified equivalent representations. We shall see later that this is
so:a finite group G has only a finite number of representations of each dimension.

Example:Let us find all the 2-dimensional representations overC of

S3 = 〈s, t : s3 = t2 = 1,st = ts2〉,

that is, all 2-dimensional representationsup to equivalence.
Supposeα is a representation ofS(3) in the 2-dimensional vector spaceV.

Consider the eigenvectors ofs. There are 2 possibilities:

1. s has an eigenvectore with eigenvalueλ 6= 1. Sinces3 = 1, it follows that
λ3 = 1, ieλ = ω or ω2.

Now let f = te. Then

s f = ste= ts2e= λ2te= λ2 f .

Thus f is also an eigenvector ofs, although now with eigenvectorλ2.

Sincee and f are eigenvectors corresponding to different eigenvalues, they
must be linearly independent, and therefore span (and in fact form a basis
for) V:

V = 〈e, f 〉.

Sincese= λe, s f = λ2 f , we see thats is represented with respect to this
basis by the matrix

s 7→
(

λ 0
0 λ2

)
.
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On the other hand,te= f , t f = t2e= e, and so

t 7→
(

0 1
1 0

)
.

The 2 casesλ = ω,ω2 give the representations

α : s 7→
(

ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
;

β : s 7→
(

ω2 0
0 ω

)
, t 7→

(
0 1
1 0

)
;

In fact these 2 representations are equivalent,

α = β,

since one is got from the other by the swapping the basis elements:e, f 7→
f ,e.

2. The alternative possibility is that both eigenvalues ofs are equal to 1. In
that case, sinces is diagonalisable, it follows that

s 7→ I =
(

1 0
0 1

)
with respect to some basis. But then it follows that this remains the case
with respect to every basis:s is always represented by the matrixI .

In particular,s is always diagonal. So if we diagonalisec—as we know we
can—then we will simultaneously diagonalises andc, and so too all the
elements ofD4.

Suppose

s 7→
(

1 0
0 1

)
, t 7→

(
λ 0
0 µ

)
.

Then it is evident that
s 7→ 1, t 7→ λ

and
s 7→ 1, t 7→ µ

will define two 1-dimensional representations ofS3. But we know these
representations; there are just 2 of them. In combination, these will give 4
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2-dimensional representations ofS3. However, two of these will be equiv-
alent. The 1-dimensional representations 1 andε give the 2-dimensional
representation

s 7→
(

1 0
0 1

)
, t 7→

(
1 0
0 −1

)
.

(Later we shall denote this representation by 1+ ε, and call it thesumof 1
andε.)

On the other hand,ε and 1 in the opposite order give the representation

s 7→
(

1 0
0 1

)
, t 7→

(
−1 0
0 1

)
.

This is equivalent to the previous case, one being taken into the other by the
change of coordinates(x,y) 7→ (y,x). (In other words,ε+1 = 1+ ε.)

We see from this that we obtain just 3 2-dimensional representations ofS3

in this way (in the notation above they will be 1+1, 1+ ε andε+ ε).

Adding the single 2-dimensional representation from the first case, we con-
clude thatS3 has just 4 2-dimensional representations.

It is easy to see that no 2 of these 4 representations are equivalent, by consid-
ering the eigenvalues ofs andc in the 4 cases.
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Exercises

All representations are overC, unless the contrary is stated.

In Exercises 01–15 determine all 2-dimensional representations (up to equiva-
lence) of the given group.

1 ∗∗C2 2 ∗∗C3 3 ∗∗Cn 4 ∗∗∗ D2 5 ∗∗∗ D4

6 ∗∗∗ D5 7 ∗∗∗∗ Dn 8 ∗∗∗ S3 9 ∗∗∗∗ S4 10∗∗∗∗∗ Sn

11∗∗∗∗ A4 12∗∗∗∗∗ An 13∗∗∗ Q8 14∗∗ Z 15∗∗∗∗ D∞

16∗∗∗ Show that a real matrixA∈Mat(n,R) is diagonalisable overR if and only
if its minimal polynomial has distinct roots, all of which are real.

17 ∗∗∗ Show that a rational matrixA∈Mat(n,Q) is diagonalisable overQ if and
only if its minimal polynomial has distinct roots, all of which are rational.

18∗∗∗∗ If 2 real matricesA,B∈Mat(n,R) are similar overC, are they necessarily
similar overR, ie can we find a matrixP∈GL(n,R) such thatB = PAP−1?

19∗∗∗∗ If 2 rational matricesA,B∈Mat(n,Q) are similar overC, are they neces-
sarily similar overQ?

20∗∗∗∗∗ If 2 integral matricesA,B∈Mat(n,Z) are similar overC, are they neces-
sarily similar overZ, ie can we find an integral matrixP∈GL(n,Z) with integral
inverse, such thatB = PAP−1?

The matrixA∈Mat(n,k) is said to besemisimpleif its minimal polynomial has
distinct roots. It is said to benilpotentif Ar = 0 for somer > 0.

21∗∗∗ Show that a matrixA∈Mat(n,k) cannot be both semisimple and nilpotent,
unlessA = 0.

22∗∗∗ Show that a polynomialp(x) has distinct roots if and only if

gcd
(
p(x), p′(x)

)
= 1.

23∗∗∗∗ Show that every matrixA∈Mat(n,C) is uniquely expressible in the form

A = S+N,

whereS is semisimple,N is nilpotent, and

SN= NS.

(We call S and N the semisimple and nilpotent parts of A.)

24∗∗∗∗ Show thatSandN are expressible as polynomials inA.
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25 ∗∗∗∗ Suppose the matrixB∈Mat(n,C) commutes with all matrices that com-
mute withA, ie

AX = XA=⇒ BX = XB.

Show thatB is expressible as a polynomial inA.



Chapter 3

Simple Representations

Definition 3.1 The representationα of G in the vector space V over k is said to
besimpleif no proper subspace of V is stable under G.

In other words,α is simple if it has the following property: ifU is a subspace
of V such that

g∈G,u∈U =⇒ gu∈U

then eitherU = 0 orU = V.

Proposition 3.1 1. A 1-dimensional representation over k is necessarily sim-
ple.

2. If α is a simple representation of G over k then

dimα≤ ‖G‖.

Proof I (1) is evident since a 1-dimensional space has no proper subspaces, stable
or otherwise.

For (2), supposeα is a simple representation ofG in V. Take anyv 6= 0 in V,
and consider the set of alltransforms gvof V. LetU be the subspace spanned by
these:

U = 〈gv : g∈G〉.

Eachg∈G permutes the transforms ofv, since

g(hv) = (gh)v.

It follows thatg sendsU into itself. ThusU is stable underG. Sinceα is simple,
by hypothesis,

V = U.

GpReps-I–1
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But sinceU is spanned by the‖G‖ transforms ofv,

dimV = dimU ≤ ‖G‖.

J

Remark:This result can be greatly improved, as we shall see. Ifk = C—the case
of greatest interest to us—then we shall prove that

dimα≤ ‖G‖
1
2

for any simple representationα.
We may as well announce now the full result. SupposeG is a finite group.

Then we shall show (in due course) that

1. The number of simple representations ofG overC is equal to the numbers
of conjugacy classes inG;

2. The dimensions of the simple representationsσ1, . . . ,σs of G overC satisfy
the relation

dim2σ1 + · · ·+dim2σs = ‖G‖.

3. The dimension each simple representationσi divides the order of the group:

dimσi | ‖G‖.

Of course we cannot use these results in any proof; and in fact we will not
even use them in examples. But at least they provide a useful check on our work.

Examples:

1. The first stage in studying the representation theory of a groupG is to de-
termine the simple representations ofG.

Let us agree henceforth to adopt the convention that if the scalar field k is
not explicitly mentioned, then we may take it that k= C.

We normally start our search for simple representations by listing the 1-
dimensional representations. In this case we know thatS3 has just 2 1-
dimensional representations, the trivial representation 1, and the parity rep-
resentationε.

Now suppose thatα is a simple representation ofS3 of dimension> 1.
Recall that

S3 = 〈s, t : s3 = t2 = 1,/;st = ts2〉,

wheres= (abc),/; t = (ab).
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Let ebe an eigenvector ofs. Thus

se= λe,

where
s3 = 1 =⇒ λ3 = 1 =⇒ λ = 1, ω, or ω2.

Let
f = te.

Then
s f = ste= ts2e= λ2te= λ2 f .

Thus f is also an eigenvector ofs, but with eigenvalueλ2.

Now consider the subspace
U = 〈e, f 〉

spanned byeand f . ThenU is stable unders andt, and so underS3. For

se= λe, s f = λ2 f , te= f , t f = t2e= e.

It follows, sinceα is simple, that

V = U.

So we have shown, in particular, that the simple representations ofS3 can
only have dimension 1 or 2.

Let us consider the 3 possible values forλ:

(a) λ = ω. In this case the representation takes the matrix form

s 7→
(

ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
.

(b) λ = ω2. In this case the representation takes the matrix form

s 7→
(

ω2 0
0 ω

)
, t 7→

(
0 1
1 0

)
.

But this is the same representation as the first,since the coordinate
swap(x,y) 7→ (y,x) takes one into the other.
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(c) λ = 1. In this case

se= e, s f = f =⇒ sv= v for all v∈V.

In other wordss acts as the identity onV. It follows thats is repre-
sented by the matrixI with respect toanybasis ofV.

(More generally, isg∈G is represented by a scalar multipleρI of the
identity with respect to one basis, then it is represented byρI with
respect to every basis; because

P(ρI)P−1 = ρI ,

if you like.)

So in this case we can turn tot, leavings to ‘look after itself’. Letebe
an eigenvector oft. Then the 1-dimensional space

U = 〈e〉

is stable underS3, since

se= e,/; te=±e.

Sinceα is simple, it follows thatV = U , ie V is 1-dimensional, con-
trary to hypothesis.

We conclude thatS3 has just 3 simple representations

1, ε andα,

of dimensions 1, 1 and 2, given by

1 : s 7→ 1,/; t 7→ 1

ε : s 7→ 1,/; t 7→ −1

α : s 7→
(

ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
.

2. Now let us determine the simple representations (overC) of the quaternion
group

Q8 = 〈s, t : s4 = 1,s2 = t2,st = ts3〉,

wheres= i,/; t = j. (It is best to forget at this point that one of the elements
of Q8 is called−1, and anotheri, since otherwise we shall fall into endless
confusion.)
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We know thatQ8 has four 1-dimensional representations, given by

s 7→ ±1, t 7→ ±1.

Supposeα is a simple representation ofQ8 in V, of dimension> 1. Let e
be an eigenvector ofs:

se= λe,

where
s4 = 1 =⇒ λ =±1,±i.

Let
te= f .

Then
s f = ste= ts3e= λ3te= λ3 f .

So as in the previous example,f is also an eigenvector ofs, but with eigen-
valueλ3.

Again, as in that example, the subspace

U = 〈e, f 〉

is stable underQ8, since

se= λe, s f = λ3 f , te= f , t f = t2e= s2e= λ2e.

SoV = U , and{e, f} is a basis forV. With respect to this basis our repre-
sentation takes the form

s 7→
(

λ 0
0 λ3

)
, t 7→

(
0 λ2

1 0

)
,

whereλ =±1,±i.

If λ = 1 this representation is not simple, since the 1-dimensional subspace

〈(1,1)〉

is stable underQ8. (This is the same argument as before. Every vector is an
eigenvector ofs, so we can find a simultaneous eigenvector by taking any
eigenvector oft.)

The same argument holds ifλ = −1, sinces is represented by−I with re-
spect to one basis, and so also with respect to any basis. Again, the subspace

〈(1,1)〉
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is stable underQ8, contradicting our assumption that the representation is
simple, and of dimension> 1.

We are left with the casesλ =±i. In fact these are equivalent. For ifλ =−i,
then f is ans-eigenvector with eigenvalueλ3 = i. So takingf in place ofe
we may assume thatλ = i.

We conclude thatQ8 has just 5 simple representations, of dimensions 1,1,1,1,2,
given by

1 : s 7→ 1,/; t 7→ 1

µ : s 7→ 1,/; t 7→ −1

ν : s 7→ −1,/; t 7→ 1

ρ : s 7→ −1,/; t 7→ −1

α : s 7→
(

i 0
0 −i

)
, t 7→

(
0 −1
1 0

)
.

We end by considering a very important case:abelian(or commutative) groups.

Proposition 3.2 A simple representation of a finite abelian group overC is nec-
essarily 1-dimensional.

Proof I Supposea∈ A. Let λ be an eigenvalue ofa, and let

E(λ) = {v∈V : av= λv}.

be the corresponding eigenspace.
ThenE(λ) is stable under A.For

b∈ A,v∈ E(λ) =⇒ a(bv) = (ab)v = (ba)v = b(av) = b(λv) = λ(bv)
=⇒ bv∈ E(λ).

ThusE(λ) is stable underb, and so underA. But sinceV is simple, by hypothesis,
it follows that

E(λ) = V.

In other wordsa acts as a scalar multiple of the identity:

a = λI .

It follows thateverysubspace ofV is stable undera. Since that is true for each
a∈ A, we conclude that every subspace ofV is stable underA. Therefore, sinceα
is simple,V has no proper subspaces. But that is only true if dimV = 1. J
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Example:Consider the group

D2 = {1,a,b,c : a2 = b2 = c2 = 1, bc= cb= a, ca= ac= b, ab= ca= c}.

This has just four 1-dimensional representations, as shown in the following table.

1 a b c
1 1 1 1 1
µ 1 1 −1 −1
ν 1 −1 1 −1
ρ 1 −1 −1 1
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Exercises

In Exercises 01–10 determine all simple representations of the given group over
C.

1 ∗∗C2 2 ∗∗C3 3 ∗∗Cn 4 ∗∗∗ D2 5 ∗∗∗ D4

6 ∗∗∗ D5 7 ∗∗∗∗ Dn 8 ∗∗∗ S3 9 ∗∗∗∗ A4 10∗∗∗∗∗ Q8

In Exercises 11–20 determine all simple representations of the given group over
R.

11∗∗C2 12∗∗∗C3 13∗∗∗Cn 14∗∗∗ D2 15∗∗∗∗ D4

16∗∗∗∗ D5 17∗∗∗∗ Dn 18∗∗∗∗ S3 19∗∗∗∗∗ A4 20∗∗∗∗∗ Q8

In Exercises 21–25 determine all simple representations of the given group over
the rationalsQ.

21∗∗∗∗Cn 22∗∗∗∗ Dn 23∗∗∗∗ S3 24∗∗∗ Q8 25∗∗∗∗∗ A4



Chapter 4

The Arithmetic of Representations

4.1 Addition

Representations can be added and multiplied, like numbers; and the usual
laws of arithmetic hold. There is even a conjugacy operation, analogous to
complex conjugation.

Definition 4.1 Supposeα,β are representations of G in the vector spaces U,V
over k. Thenα+β is the representation of G in U

L
V defined by the action

g(u⊕v) = gu⊕gv.

Remarks:

1. Recall thatU
L

V is the cartesian product ofU andV, where however we
write u⊕ v rather than(u,v). The structure of a vector space is defined on
this set in the natural way.

2. Note thatα + β is only defined whenα,β are representations of thesame
groupG over thesamescalar fieldk.

3. Supposeα,β are given in matrix form

α : g 7→ A(g), β : g 7→ B(g).

Thenα+β is the representation

g 7→
(

A(g) 0
0 B(g)

)

GpReps-I–1
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Example:Let us look again at the 2-dimensional representationsγ1,γ2,γ3 of S3

overC defined in Chapter 2

γ1 : s 7→
(

ω 0
0 ω2

)
, t 7→

(
1 0
0 1

)
, γ2 : s 7→

(
ω 0
0 ω2

)
, t 7→

(
1 0
0 −1

)
,

γ3 : s 7→
(

ω 0
0 ω2

)
, t 7→

(
−1 0
0 −1

)
.

We see now that
γ1 = 1+1, γ2 = 1+ ε, γ3 = ε+ ε,

where 1 is the trivial 1-dimensional representation ofS3, andε is the 1-dimensional
parity representation

s 7→ 1, t 7→ −1.

(We can safely write 1+1 = 2,ε+ ε = 2ε.)

Proposition 4.1 1. dim(α+β) = dimα+dimβ;

2. β+α = α+β;

3. α+(β+ γ) = (α+β)+ γ.

Proof I These are all immediate. For example, the second part follows from the
natural isomorphism

V
M

U →U
M

V : v⊕u 7→ u⊕v.

J

4.2 Multiplication

Definition 4.2 Supposeα,β are representations of G in the vector spaces U,V
over k. Thenαβ is the representation of G in U

N
V defined by the action

g(u1⊗v1 + · · ·+ur ⊗vr) = gu1⊗gv1 + · · ·gur ⊗gvr .

Remarks:
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1. Thetensor product U
N

V of 2 vector spacesU andV may be unfamiliar.
Each element ofU

N
V is expressible as a finite sum

u1⊗v1 + · · ·+ur ⊗vr .

If U has basis{e1, . . . ,em} andV has basis{ f1, . . . , fn} then themnelements

ei⊗ f j (i = 1, . . . ,m; j = 1, . . . ,n)

form a basis forU
N

V. In particular

dim(U⊗V) = dimU dimV.

(It is a common mistake to suppose that every element ofU
N

V is express-
ible in the formu⊗ v. That is not so; the general element requires a finite
sum.)

Formally, the tensor product is defined as the set of formal sums

u1⊗v1 + · · ·+ur ⊗vr ,

where 2 sums define the same element if one can be derived from the other
by applying the rules

(u1+u2)⊗v= u1⊗v+u2⊗v, u⊗(v1+v2)= u⊗v1+u⊗v2, (ρu)⊗v= u⊗(ρv).

The structure of a vector space is defined on this set in the natural way.

2. As withα+β, αβ is only defined whenα,β are representations of the same
groupG over the same scalar fieldk.

3. It is importantnot to writeα×β for αβ, as we shall attach a different mean-
ing to α×β later.

4. Supposeα,β are given in matrix form

α : g 7→ A(g), β : g 7→ B(g).

Thenαβ is the representation

αβ : g 7→ A(g)⊗B(g).

But what do we mean by the tensor productS⊗T of 2 square matricesS,T?
If S= si j is anm×m-matrix, andT = tkl is ann×n-matrix, thenS⊗T is
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themn×mn-matrix whose rows and columns are indexed by the pairs(i,k)
where 1≤ i ≤m,1≤ k≤ n, with matrix entries

(S⊗T)(i,k)( j,l) = Si j Tkl.

To write out this matrixS⊗T we must order the index-pairs. Let us settle
for the ‘lexicographic order’

(1,1),(1,2), . . . ,(1,n),(2,1), . . . ,(2,n), . . . ,(m,1), . . . ,(m,n).

(In fact the orderingdoes not matterfor our purposes. For if we choose a
different ordering of the rows, then we shall have to make the same change
in the ordering of the columns; and this double change simply corresponds
to a change of basis in the underlying vector space, leading to a similar
matrix toS⊗T.)

Example:Consider the 2-dimensional representationα of S3 overC

α : s 7→
(

ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)
We shall determine the 4-dimensional representationα2 = αα. (The notationα2

causes no problems.) We have

α2 : s 7→
(

ω 0
0 ω2

)O(
ω 0
0 ω2

)
, t 7→

(
0 1
1 0

)O(
0 1
1 0

)
It is simply (!) a matter of working out these 2 tensor products. In fact

(
ω 0
0 ω2

)O(
ω 0
0 ω2

)
=


ω ·ω ω ·0 0·ω 0·0
ω ·0 ω ·ω2 0·0 0·ω2

0·ω 0·0 ω2 ·ω ω2 ·0
0·0 0·ω2 ω2 ·0 ω2 ·ω2



=


ω2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ω

 ,

while (
0 1
1 0

)O(
0 1
1 0

)
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,
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We can simplify this by the change of coordinates(x,y,z, t) 7→ (y,z, t,x). This will
give the equivalent representation (which we may still denote byαβ):

αβ : s 7→


1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2

 , t 7→


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


But now we see that this splits into 2 2-dimensional representations, the second of
which isα itself:

α2 = β+α,

whereβ is the representation

β : s 7→
(

1 0
0 1

)
, t 7→

(
0 1
1 0

)
The representationβ can be split further. That is evident if we note that since

s is represented byI , we can diagonaliset without affectings. Sincet has eigen-
values±1, this must yield the representation

β : s 7→
(

1 0
0 1

)
, t 7→

(
1 0
0 −1

)
Concretely, the change of coordinates(x,y) 7→ (x+ y,x− y) brings this about.)
Thus

β = 1+ ε,

and so
α2 = 1+ ε+α.

(We hasten to add that this kind of matrix manipulation is not an essential part
of representation theory! We shall rapidly develop techniques which will enable
us to dispense with matrices altogether.)

Proposition 4.2 1. dim(αβ) = dimαdimβ;

2. βα = αβ;

3. α(βγ) = (αβ)γ;

4. α(β+ γ) = αβ+αγ;

5. 1α = α.



4.3. DUALITY GpReps-I–6

All these results, again, are immediate consequences of ‘canonical isomor-
phisms’ which it would be tedious to write out explicitly.

We have seen that the representations ofG overk can be added and multiplied.
They almost form a ring—only subtraction is missing. In fact if we introduce
‘virtual representations’α−β (whereα,β are representations) then we will indeed
obtain a ring

R(G) = R(G,k),

therepresentation-ringof G overk. (By convention ifk is omitted then we assume
thatk = C.)

We shall see later that

α+β = α+ γ =⇒ β = γ.

It follows that nothing is lost in passing from representations toR(G); if α = β in
R(G) thenα = β in ‘real life’.

4.3 Duality

Definition 4.3 Supposeα = is a representation of G in the vector space V over
k. Thenα∗ is the representation of G in the dual vector space U∗ defined by the
action

(gπ)(v) = π(g−1v) (g∈G, π ∈V∗, v∈V)

Remarks:

1. Recall that the dual vector spaceV∗ is the space of linear functionals

π : V→ k.

To any basis{e1, . . . ,en} of V there corresponds a dual basis{π1, . . . ,πn} of
V∗, where

π j(ei) =
{

1 if i = j
0 otherwise

2. Supposeα is given in matrix form

α : g 7→ A(g).

Thenα∗ is the representation

g 7→
(
A(g)−1)′ ,
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whereT ′ denotes the transpose ofT. Notice the mysterious way in which
the inverse and transpose, each of which is ‘contravariant’, ie

(RS)−1 = S−1T−1, (RS)′ = S′R′,

combine to give the required property(
(RS)−1)′ = (R−1)′(S−1)′.

Example:Considerα∗, whereα is the 2-dimensional representation ofS3 overC
considered above. By the rule above,α∗ is given by

α∗ : s 7→
(

ω2 0
0 ω

)
, t 7→

(
0 1
1 0

)
.

It is easy to see that swapping the coordinates,(x,y) 7→ (y,x), gives

α∗ = α

Many of the representations we shall meet will share this property of self-conjugacy.

Proposition 4.3 1. dim(α∗) = dimα;

2. (α∗)∗ = α;

3. (α+β)∗ = α∗+β∗.

4. (αβ)∗ = α∗β∗.

5. 1∗ = 1.

Summary: We have defined the representation ringR(G) of a groupG, and
shown that it carries an operationα 7→α∗ analogous to complex conjugation.
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Semisimple Representations

Definition 5.1 The represenationα of G is said to besemisimpleif it is express-
ible as a sum of simple representations:

α = σ1 + · · ·+σr .

Example:Consider the permutation representationρ of S3 in k3. (It doesn’t matter
for the following argument ifk = R or C.)

Recall that
g(x1,x2,x3) = (xg−11,xg−12,xg−13).

We have seen thatk3 has 2 proper stable subspaces:

U = {(x,x,x) : x∈ k}, W = {(x1,x2,x3) : x1 +x2 +x3 = 0}.

U has dimension 1, with basis{(1,1,1)}; W has dimension 2, with basis{(1,−1,0),(−1,0,1)}.
Evidently

U ∩V = 0.

Recall that a sumU +V of vector subspaces is direct,

U +V = U⊕V,

if (and only if) U ∩V = 0. So it follows here, by considering dimensions, that

k3 = U
M

W.

The representation onU is the trivial representation 1. Thus

ρ = 1+α,

whereα is the representation ofS3 in W.

GpReps-I–1
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We can see thatα is simple as follows. SupposeV ⊂W is stable underS3,
whereV 6= 0. Take any elementv 6= 0 in V: say

v = (x,y,z) (x+y+z= 0).

The coefficientsx,y,z cannot all be equal. Supposex 6= y. Then

(12)v = (y,x,z) ∈V;

and so
v− (12)v = (x−y,y−x,0) = (x−y)(1,−1,0) ∈V.

Hence
(1,−1,0) ∈V.

It follows that
(−1,0,1) = (132)(1,−1,0) ∈V

also. But these 2 elements generate W; hence

V = W.

So we have shown thatW is a simpleS3-space, whence the corresponding repre-
sentationα is simple.

We conclude that the representation

ρ = 1+α

is a sum of simple representations, and so is semisimple.
It is easy to see thatU andW are the only subspaces ofk3 stable underS3,

apart from 0 and the whole space. So it is evident that the splittingU ⊕V is
unique. In general this is not so; in fact we shall show later that there is a unique
split into simple subspaces if and only if the representations corresponding to
these subspaces are distinct. (So in this case the split is unique because 16= α.)
However the simple representations that appearare unique. This fact, which we
shall prove in the next chapter, is the foundation stone of representation theory.

Most of the time we do not need to look behind a representation at the un-
derlying representation-space. But sometimes we do; and the following results
should help to clarify the structure of semisimple representation-spaces.

Proposition 5.1 Suppose V is a sum (not necessarily direct) of simple subspaces:

V = S1 + · · ·+Sr .

Then V is semisimple.
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Proof I SinceS2 is simple,

S1∩S2 = 0 orS2.

In the former case
S1 +S2 = S1

M
S2;

in the latter caseS2⊂ S1 and so

S1 +S2 = S1.

Repeating the argument withS1 +S2 in place ofS1, andS3 in place ofS2,

(S1 +S2)∩S3 = 0 orS3,

sinceS3 is simple. In the former case

S1 +S2 +S3 = (S1 +S2)
M

S3;

in the latter caseS3⊂ S1 +S2 and so

S1 +S2 +S3 = S1 +S2.

Combining this with the previous step

S1 +S2 +S3 = S1
M

S2
M

S3 or S1
M

S3 or S1
M

S2 or S1.

Continuing in this style, at theith step, sinceSi is simple,

S1 + · · ·+Si = (S1 + · · ·+Si−1)
M

Si or S1 + · · ·+Si−1.

We conclude, finally, that

V = S1 + · · ·+Sr = Si1

M
· · ·Sis,

where{Si1, . . . ,Sis} is a subset of{S1, . . . ,Sr}. J

Remark: The subset{Si1, . . . ,Sis} depends in general on theorder in which we
takeS1, . . . ,Sr . In particular, sinceSi1 = S1, we can always specify that anyoneof
S1, . . . ,Sn appears in the direct sum.

Proposition 5.2 The following 2 properties of the G-space V are equivalent:

1. V is semisimple;
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2. each stable subspace U⊂ V has at least one complementary stable sub-
space W, ie

V = U
M

W.

Proof I Suppose first thatV is semisimple, say

V = S1
M
· · ·

M
Sr .

Let us follow the proof of the preceding proposition, but starting withU rather
thanS1. Thus our first step is to note that sinceS1 is simple,

U +S1 = U
M

S1 or U.

Continuing as before, we conclude that

V = U
M

Si1

M
· · ·

M
Sis,

from which the result follows, with

W = Si1

M
· · ·

M
Sis.

Now suppose that condition (2) holds. SinceV is finite-dimensional, we can
find a stable subspaceS1 of minimal dimension. EvidentlyS1 is simple; and by
our hypothesis

V = S1
M

W1.

Now let us find a stable subspaceS2 of W1 of minimal dimension. As before,
this subspace is simple; and

S1∩S2⊂ S1∩W = 0,

so that
S1 +S2 = S1

M
S2.

Applying the hypothesis again to this space, we can find a stable complement
W2:

V = S1
M

S2
M

W2.

Continuing in this way, sinceV is finite-dimensional we must conclude with
an expression forV as a direct sum of simple subspaces:

V = S1
M
· · ·

M
Sr .

HenceV is semisimple. J

Remark:This Proposition gives an alternative definition of semisimplicity:V is
semisimple if every stable subspace U⊂V posseses a complementary stable sub-
space W.This alternative definition allows us to extend the concept of semisim-
plicity to infinite-dimensional representations.
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Exercises

In Exercises 01–15 calculateeX for the given matrixX:

1. Show that anycommutingset of diagonalisable matrices can be simultane-
ously diagonalised. Hence show that any representation of a finite abelian
group

2. Show that for alln the natural representationρ of Sn in kn is semisimple.

3. If T ∈GL(n,k) then the map

Z→GL(n,k) : m 7→ Tm

defines a representationτ of the infinite abelian groupZ.

Show that ifk = C thenτ is semisimple if and only ifT is semisimple.

4. Prove the same result whenk = R.

5. Supposek = GF(2) = {0,1}, the finite field with 2 elements. Show that the
representation ofC2 = {e,g} given by

g 7→
(

1 1
0 1

)
is not semisimple.
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Every Representation of a Finite
Group is Semisimple

Theorem 6.1 (Maschke’s Theorem) Supposeα is a representation of the finite
group G over k, where k= R or C. Thenα is semisimple.

Proof I Supposeα is a representation onV. We take the alternative definition of
semisimplicity: every stable subspaceU ⊂V must have a stable complementW.

Our idea is to construct an invariant positive-definite formP onV. (By ‘form’
we mean herequadratic formif k = R, or hermitian formif k = C.) Then we can
takeW to be theorthogonal complementof U with respect to this form:

W = U⊥ = {v∈V : P(u,v) = 0 for all u∈U}.

We can construct such a form by takingany positive-definite formQ, and
averagingit over the group:

P(u,v) =
1
‖G‖ ∑

g∈G

Q(gu,gv).

(It’s not really necessary to divide by the order of the group; we do it because the
idea of ‘averaging over the group’ occurs in other contexts.)

It is easy to see that the resulting form is invariant:

P(gu,gv) =
1
‖G‖ ∑

h∈G

Q(hgu,hgv)

=
1
‖G‖ ∑

h∈G

Q(hu,hv)

= P(u,v)

GpReps-I–1
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sincehg runs over the group ash does so.
It is a straightforward matter to verify that ifP is invariant andU is stable then

so isU⊥. Writing 〈u,v〉 for P(u,v),

g∈G,w∈U⊥ =⇒ 〈u,w〉= 0∀u∈U

=⇒ 〈gu,gw〉= 〈u,w〉= 0∀u∈U

=⇒ 〈u,gw〉= 〈g(g−1u),w〉= 0∀u∈U

=⇒ gw∈U⊥.

J

Examples:

1. Consider the representation ofS3 in R3. There is an obvious invariant
quadratic form—as is often the case—namely

x2
1 +x2

2 +x2
3.

But as an exercise in averaging, let us take the positive-definite form

Q(x1,x2,x3) = 2x2
1−2x1x2 +3x2

2 +x2
3.

Then

Q(e(x1,x2,x3)) = Q(x1,x2,x3) = 2x2
1−2x1x2 +3x2

2 +x2
3

Q((23)(x1,x2,x3)) = Q(x1,x3,x2) = 2x2
1−2x1x3 +3x2

3 +x2
2

Q((13)(x1,x2,x3)) = Q(x3,x2,x1) = 2x2
3−2x3x2 +3x2

2 +x2
1

Q((12)(x1,x2,x3)) = Q(x2,x1,x3) = 2x2
2−2x2x1 +3x2

1 +x2
3

Q((123)(x1,x2,x3)) = Q(x3,x1,x2) = 2x2
3−2x3x1 +3x2

1 +x2
2

Q((132)(x1,x2,x3)) = Q(x2,x3,x1) = 2x2
2−2x2x3 +3x2

3 +x2
1

Adding, and dividing by 6,

P(x1,x2,x3) = 2
(
x2

1 +x2
2 +x2

3

)
− 2

3
(x2x3 +x1x3 +x1x2)

=
7
3

(
x2

1 +x2
2 +x2

3

)
− 1

3
(x1 +x2 +x3)

2 .

The corresponding inner product is given by

〈(x1,x2,x3),(y1,y2,y3)〉= 2(x1y1+x2y2+x3y3)−
1
3
(x2y3+x3y2+x3y1+x1y3+x1y2+x2y1)
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To see how this is used, let

U = {(x,x,x) : x∈ R}.

EvidentlyU is stable. Its orthogonal complement with respect to the form
above is

U⊥ = {(x1,x2,x3) : 〈(1,1,1),(x1,x2,x3)〉= 0}

= {(x1,x2,x3) :
4
3
(x1 +x2 +x3) = 0}

= {(x1,x2,x3) : x1 +x2 +x3 = 0},

which is just the complement we found before. This is not surprising since—
as we observed earlier—U andU⊥ are the only proper stable subspaces of
R3.

2. For an example using hermitian forms, consider the simple representation
of D4 overC defined by

s 7→
(

i 0
0 −i

)
, t 7→

(
0 1
1 0

)
.

Again, there is an obvious invariant hermitian form, namely

|x2
1 +x2

2|= x1x1 +x2x2.

But this will not give us much exercise.

The general hermitian form onC2 is

ax̄x+bȳy+cx̄y+ c̄ȳx (a,b∈ R, c∈ C)

Let us take
Q(x,y) = 2x̄x+ ȳy− ix̄y+ iȳx.

Note that
D4 = {e,s,s2,s3, t, ts, ts2, ts3}.

For these 8 elements are certainly distinct, eg

s2 = ts3 =⇒ ts= 1 =⇒ s= t.
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Now

Q(e(x,y)) = Q(x,y) = 2x̄x+ ȳy− ix̄y+ iȳx,

Q(s(x,y)) = Q(ix,−iy) = 2x̄x+ ȳy+ ix̄y− iȳx,

Q
(
s2(x,y)

)
= Q(−x,−y) = 2x̄x+ ȳy− ix̄y+ iȳx,

Q
(
s3(x,y)

)
= Q(−ix, iy) = 2x̄x+ ȳy+ ix̄y− iȳx,

Q(t(x,y)) = Q(y,x) = x̄x+2ȳy+ ix̄y− iȳx,

Q(ts(x,y)) = Q(iy,−ix) = x̄x+2ȳy− ix̄y+ iȳx,

Q
(
ts2(x,y)

)
= Q(−y,−x) = x̄x+2ȳy+ ix̄y− iȳx,

Q
(
ts3(x,y)

)
= Q(−iy, ix) = x̄x+2ȳy− ix̄y+ iȳx.

Averaging,

P(x,y) =
1
8∑g∈ D4Q(g(x,y))

=
3
2
(x̄x+ ȳy)

It is no coincidence that we have ended up with a scalar multiple of|x|2 +
|y|2. For it is easy to see that asimple G-space carries auniqueinvariant
hermitian form, up to a scalar multiple. SupposeP,Q were 2 such forms.
Let λ be an eigenvalue ofQ with respect toP, ie a solution of

det(A−λB) = 0,

whereA,B are the matrices ofP,Q. Then the corresponding eigenspace

E = {v : Av= λBv}

would be stable underG.

The alternative proof of Maschke’s Theory below may be preferred by the
algebraically-minded. It has the advantage of extending to scalar fields other than
R andC. Against that, it lacks the intuitive appeal of the earlier proof.

Alternative proofI Recall that a projectionp : V →V is a linear map satisfying
the relation

p2 = p

(ie p is idempotent).
If p is a projection then so is 1− p:

(1− p)2 = 1−2p+ p2 = 1−2p+ p = 1− p.
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The projections(p,1− p) define a splitting ofV into a direct sum

V = im p
M

im(1− p).

Note that
v∈ im p⇐⇒ pv= v.

Note also that
im(1− p) = kerp,

since
v = (1− p)w =⇒ pv= (p− p2)w = 0,

while
pv= 0 =⇒ v = (1− p)v.

Thus the splitting can equally well be written

V = im p
M

kerp.

Conversely, every splitting

V = U
M

W

arises from a projectionp in this way: if

v = u+w (u∈U,w∈W)

then we set
pv= u.

(Although the projectionp is often referred to as ‘the projection ontoU ’ it
depends onW as well asU . In general there are an infinity of projections ontoU ,
corresponding to the infinity of complementsW. When there is a positive-definite
form onV—quadratic or hermitian, according ask = R or C—then one of these
projections is distinguished: namely the ‘orthogonal projection’ corresponding to
the splitting

V = U
M

U⊥.

But we are not assuming the existence of such a form at the moment.)
Now supposeU is a stable subspace ofV. Choose any complementary sub-

spaceW:
V = U

M
W.

In generalW will not be stable underG. Our task is to find a stable complementary
subspaceW0:

V = U
M

W = U
M

W0.
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Let p be the projection ontoU with complementW. We know thatU is stable
underG, ie

g∈G, u∈U =⇒ gu∈U.

Thus
g∈G,u = pv=⇒ pgu= gu=⇒ pgpv= gpv.

Since this holds for allv∈V,
pgp= gp

for all g∈G. Conversely, if this is so thenU = im p is stable.
By the same argument,W = im(1− p) will be stable if and only if

(1− p)g(1− p) = g(1− p)

for all g∈G. This reduces to
pgp= pg.

BothU andW are stable if and only if

gp= pg.

For in that case

pgp= p(gp) = p(pg) = p2g = pg= gp.

Now
gp= pg⇐⇒ g−1pg= p.

In other words,p defines a splitting into stable subspaces if and only if it is invari-
ant underG.

In general, we can construct an invariant element by averaging overG. Let us
therefore set

P =
1
‖G‖ ∑

g∈G

g−1pg.

This will certainly be invariant underG:

g−1Pg =
1
‖G‖ ∑

h∈G

g−1h−1phg

=
1
‖G‖ ∑

h∈G

(hg)−1p(hg)−1

=
1
‖G‖ ∑

h∈G

h−1ph−1

= P,
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sincehg runs overG ash does so.
What is less obvious is thatP is a projection, and in fact a projection ontoU .

To see that, note that

u∈U =⇒ gu∈U =⇒ p(gu) = gu.

Hence by addition
u∈U =⇒ Pu= u.

Conversely,
v∈V =⇒ pgv∈U =⇒ gpgv∈U.

So by addition
v∈V =⇒ Pv∈U.

These 2 results imply thatP2 = P, and thatP projects ontoU . J

Remarks:

1. We can show directly thatP is a projection, as follows:

P2 =
1
‖G‖2 ∑

g,h

g−1pgh−1ph

=
1
‖G‖2 ∑

g,h

g−1gh−1ph

=
1
‖G‖2 ∑

g,h

h−1ph

=
1
‖G‖∑

h

h−1ph

= P.

Two projectionsp,q project onto the same (first) subspace if

qp= p, pq= q.

So to prove thatP projects onto the same subspaceU as p, we must show
thatPp= p andpP= P. These follow in much the same way:

Pp =
1
‖G‖∑

g
g−1pgp

=
1
‖G‖∑

g
g−1gp

= p,
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pP =
1
‖G‖∑

g
pg−1pg

=
1
‖G‖∑

g
g−1pg

= P.

2. Both proofs of Maschke’s Theorem rely on the same idea: obtaining an
invariant element (in the first proof, an invariant form; in the second, and
invariant projection) by averaging over transforms of a non-invariant ele-
ment.

In general, ifV is aG-space (in other words, we have a representation ofG
in V) then the invariant elements form a subspace

VG = {v∈V : gv= v∀g∈G}.

The averaging operation defines a projection ofV ontoVG:

v 7→ 1
‖G‖∑

g
gv.

ClearlyVG is a stable subspace ofV. Thus ifV is simple, eitherVG = 0
or VG = V. In the first case, all averages vanish. In the second case, the
representation inV is trivial, and soV must be 1-dimensional.

3. It is worth noting that our alternative proof works in any scalar fieldk, pro-
vided‖G‖ 6= 0 in k. Thus it even works over the finite fieldGF(pn), unless
p | ‖G‖.
Of course we are not considering suchmodular representations(as rep-
resentations over finite fields are known); but our argument shows that
semisimplicity still holds unless the characteristicp if the scalar field di-
vides the order of the group.



Chapter 7

Uniqueness and the Intertwining
Number

Definition 7.1 Supposeα,β are representations of G over k in the vector spaces
U,V respectively. Theintertwining numberI(α,β) is defined to be the dimension
of the space of G-maps t: U →V,

I(α,β) = dimhomG(U,V).

Remarks:

1. A G-mapt : U →V is a linear map which preserves the action ofG:

t(gu) = g(tu) (g∈G,u∈G).

TheseG-maps evidently form a vector space overk.

2. The intertwining number will remain somewhat abstract until we give a
formula for it (in terms of characters) in Chapter . But intuitivelyI(α,β)
measures how much the representationsα,β have in common.

3. The intertwining number of finite-dimensional representations is certainly
finite, as the following result shows.

Proposition 7.1 We have

I(α,β)≤ dimαdimβ.

Proof I The space hom(U,V) of all linear mapst :U→V has dimension dimU dimV,
since we can represent each such map by anm×n-matrix, wherem= dimU,n =
dimV.

GpReps-I–1
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The result follows, since

homG(U,V)⊂ hom(U,V).

J

Proposition 7.2 Supposeα,β aresimplerepresentations over k. Then

I(α,β) =
{

0 if α 6= β,
≥ 1 if α = β.

Proof I Supposeα,β are representations inU,V, respectively; and suppose

t : U →V

is aG-map. Then the subspaces

kert = {u∈U : tu = 0} and imt = {v∈V : ∃u∈U, tu = v}

are both stable underG. Thus

u∈ kert =⇒ tu = 0

=⇒ t(gu) = g(tu) = 0

=⇒ gu∈ kert,

while

v∈ im t =⇒ v = tu

=⇒ t(gu) = g(tu) = gv

=⇒ gv∈ im t.

But sinceU andV are both simple, by hypothesis, it follows that

kert = 0 orU, im t = 0 orV.

Now kert = U =⇒ t = 0, and imt = 0 =⇒ t = 0. So if t 6= 0,

kert = 0, im t = V.

But in this caset is anisomorphismof G-spaces, and soα = β.
On the other hand, ifα = β then (by the definition of equivalent representa-

tions) there exists aG-isomorphist : U →V, and soI(α,β)≥ 1. J

Whenk = C we can be more precise.
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Proposition 7.3 If α is a simple representation overC then

I(α,α) = 1.

Proof I SupposeV carries the representationα. We have to show that

dimhomG(V,V) = 1.

Since the identity map 1 :V→V is certainly aG-map, we have to show that every
G-mapt : V→V is a scalar multipleρ1 of the identity.

Let λ be an eigenvector oft. Then the corresponding eigenspace

E = E(λ) = {v∈V : tv = λv}

is stable underG. For

g∈G, v∈ E =⇒ t(gv) = g(tv) = λgv=⇒ gv∈ E.

Sinceα is simple, this implies thatE = V, ie

t = λ1.

J

Proposition 7.4 Supposeα,β,γ are representations over k. Then

1. I(α+β,γ) = I(α,γ)+ I(β,γ);

2. I(α,β+ γ) = I(α,β)+ I(α,γ);

3. I(αβ,γ) = I(α,β∗γ).

Proof I Supposeα,β,γ are representations inU,V,W respectively. The first 2
results are immediate, arising from the more-or-less self-evident isomorphisms

hom(U
M

V,W) ∼= hom(U,W)
M

hom(V,W)

hom(U,V
M

W) ∼= hom(U,V)
M

hom(U,W).

Take the first. This expresses the fact that a linear map

t : U
M

V→W

can be defined by giving 2 linear maps

t1 : U →W, t2 : V→W.
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In fact t1 is the restriction oft to U ⊂U
L

V, andt2 the restriction oft to V ⊂
U

L
V; and

t(u⊕v) = t1u⊕ t2v.

In much the same way, the second result expresses the fact that a linear map

t : U →V
M

W

can be defined by giving 2 linear maps

t1 : U →V, t2 : U →W.

In fact
t1 = π1t, t2 = π2t,

whereπ1,π2 are the projections ofU
L

V ontoV,W respectively; and

tu = t1u⊕ t2u.

The third result, although following from a similar ‘natural equivalence’

hom(U
O

V,W)∼= hom(U,V∗
O

W),

where
V∗ = hom(V,k),

is rather more difficult to establish.
We can divide the task in two. First, there is a natural equivalence

hom(U,hom(V,W))∼= hom(U
O

V,W).

For this, note that there is a 1–1 correspondence betweenlinear mapsb : U
N

V→
W andbilinear maps

B : U×V→W.

(This is sometimes taken as the definition ofU
N

V.) So we have to show how
such a bilinear mapB(u,v) gives rise to a linear map

t : U → hom(V,W).

But that is evident:
t(u)(v) = B(u,v).

It is a straightforward matter to verify that every such linear mapt arises in this
way from a unique bilinear mapB.
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It remains to show that

hom(V,W)∼= V∗
O

W.

For this, note first that both sides are ‘additive functors’ inW, ie

hom(V,W1
M

W2) = hom(V,W1)
M

hom(V,W2),

V∗
O

(W1
M

W2) = (V∗
O

W1)
M

(V∗
O

W2).

This allows us to reduce the problem, by expressingW as a sum of 1-dimensional
subspaces, to the case whereW is 1-dimensional. In that case, we may takeW = k;
so the result to be proved is

hom(V,k)∼= V∗
O

k.

But there is a natural isomorphism

U
O

k∼= U

for every vector spaceU . So our result reduces to the tautologyV∗ ∼= V∗.
It’s a straightforward (if tedious) matter to verify that these isomorphisms are

all compatible with the actions of the groupG. In particular theG-invariant ele-
ments on each side correspond:

homG(U
M

V,W) ∼= homG(U,W)
M

homG(V,W),

homG(U,V
M

W) ∼= homG(U,V)
M

homG(U,W),

homG(U
O

V,W) ∼= homG(U,V∗
O

W).

The 3 results follow on taking the dimensions of each side.J

Theorem 7.1 The expression for a semisimple representationα as a sum of sim-
ple parts

α = σ1 + · · ·+σr

is unique up to order.

Proof I Supposeσ is a simple representation ofG overk. We can use the inter-
twining number to compute the number of times,msay, thatσ occurs amongst the
σi . For

I(σ,α) = I(σ,σ1)+ · · ·+ I(σ,σr)
= mI(σ,σ),
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since only those summands for whichσi = σ will contribute to the sum. Thus

m=
I(σ,α)
I(σ,σ)

.

It follows thatσ will occur the same numberm times in every expression forα
as a sum of simple parts. Hence two such expressions can only differ in the order
of their summands. J

Although the expression

α = σ1 + · · ·+σr

for the representationα is unique, the corresponding splitting

V = U1
M
· · ·

M
Ur

of the representation-space is not in general unique. It’s perfectly possible for 2
different expressions forV as a direct sum of simpleG-subspaces to give rise to
thesameexpression forα: say

V = U1
M
· · ·

M
Ur , V = W1

M
· · ·

M
Wr

whereUi andWi both carry the representationσi .
For example, consider the trivial representationα = 1+1 of a groupG in the

2-dimensional spaceV = k2. Every subspace ofV is stable underG; so if we
chooseany2 different 1-dimensional subspacesU,W ⊂V, we will have

V = U
M

W.

However, the splitting ofV into isotypic componentsis unique, as we shall
see.

Definition 7.2 The representationα, and the underlying representation-space V,
are said to beisotypicof typeσ, whereσ is a simple representation, if

α = eσ = σ+ · · ·+σ.

In other words,σ is the only simple representation appearing inα.

Proposition 7.5 Suppose V is a G-space.

1. If V is isotypic of typeσ then so is every G-subspace U⊂V.

2. If U,W ⊂V are isotypic of typeσ then so is U+W.
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Proof I These results follow easily from the Uniqueness Theorem. But it is useful
to give an independent proof, since we can use this to construct an alternative
proof of the Uniqueness Theorem.

Lemma 7.1 Suppose
V = U1 + · · ·+Ur

is an expression for the G-space V as a sum of simple spaces; and suppose the
subspace U⊂V is also simple. Then U is isomorphic (as a G-space) to one of the
summands:

U ∼= Ui

for some i.

Proof of LemmaB We know that

V = Ui1

M
· · ·

M
Uit

for some subset{Ui1, . . . ,Uit} ⊂ {U1, . . . ,Ur}. Thus we may assume that the sum
is direct:

V = U1
M
· · ·

M
Ur .

For eachi, consider the composition

U →V→Ui ,

where the second map is the projection ofV onto its componentUi . SinceU and
Ui are both simple, this map is either an isomorphism, or else 0.

But it cannot be 0 for alli. For supposeu∈U,u 6= 0. We can expressu as a
sum

u = u1⊕·· ·⊕ur (ui ∈Ui).

Not all theui vanish. Nowu 7→ ui under the compositionU →V→Ui . Thus one
(at least) of these compositions is6= 0. HenceU ∼= Ui for somei. C

Turning to the first part of the Proposition, ifU ⊂ V, whereV is σ-isotypic,
then each simple summand ofU must be of typeσ, by the Lemma. It follows that
U is alsoσ-isotypic.

For the second part, ifU andW are bothσ-isotypic, thenU +W is a sum (not
necessarily direct) of simple subspacesXi of typeσ:

U +W = X1 + · · ·+Xr .

But then
U +W = Xi1

M
· · ·

M
Xit ,

where{Xi1, . . . ,Xit} are some of theX1, . . . ,Xr . In particularU +W is σ-isotypic.
J
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Corollary 7.1 Supposeσ is a simple representation of G over k, Then each G-
space V over k possesses a maximalσ-isotypic subspace Vσ, which contains every
otherσ-isotypic subspace.

Definition 7.3 This subspace Vσ is called theσ-component of V .

Proposition 7.6 Every semimsimple G-space V is the direct sum of its isotypic
components:

V = Vσ1

M
· · ·

M
Vσr .

Proof I If we take an expression forV as a direct sum of simple subspaces, and
combine those that are isomorphic, we will obtain an expression forV as a direct
sum of isotypic spaces of different types, each of which will be contained in the
corresponding isotypic component. It follows that

V = Vσ1 + · · ·+Vσr .

We have to show that this sum is direct.
It is sufficient to show that

(Vσ1 + · · ·+Vσi−1)
\

Vσi = 0

for i = 2, . . . , r.
Suppose not. Then we can find a simple subspace

U ⊂Vσi , U ⊂Vσ1 + · · ·+Vσi−1.

By the Lemma to the last Proposition,U must be of typeσi , as a subspace ofVσi .
On the other hand, as a subspace ofVσ1 + · · ·+Vσi−1 it must be of one of the types
σ1, . . . ,σi−1, by the same Lemma.

This is a contradiction. Hence the sum is direct:

V = Vσ1

M
· · ·

M
Vσr .

J

Corollary 7.2 If the G-space V carries a multiple-free representation

α = σ1 + · · ·+σr

(where theσi are distinct) then V has a unique expression as a direct sum of simple
subspaces.
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Remark:It is easy to see that multiplicitydoesgive rise to non-uniqueness. For
suppose

V = U
M

U,

whereU is simple. For eachλ ∈ k consider the map

u 7→ u⊕λu : U →U
M

U = V.

The image of this map is a subspace

U(λ) = {u⊕λu : u∈U}.

This subspace is isomorphic toU , sinceU is simple.
It is readily verified that

U(λ) 6= U(µ)⇐⇒ λ = µ.

It follows that
V = U(λ)

M
U(µ)

for anyλ,µ with λ 6= µ.



Chapter 8

The Character of a Representation

Amazingly, all the information about a representation of a groupG can be
encoded in a single function onG, thecharacterof the representation.

Definition 8.1 Supposeα is a representation of G over k. Thecharacterχ = χα
of α is the functionχ : G→ k defined by

χ(g) = tr(α(g)) .

Remarks:

1. Recall that thetrace of an n× n-matrix A is the sum of the diagonal ele-
ments:

trA = ∑
1≤i≤n

Aii .

The trace has the following properties:

(a) tr(A+B) = trA+ trB;

(b) tr(λA) = λ trA.

(c) trAB= trBA;

(d) trA′ = trA;

(e) trA∗ = trA.

HereA′ denotes the transpose ofA, andA∗ the conjugate transpose:

A′i j = A ji , A∗i j = A ji .

The third property is the only one that is not immediate:

trAB= ∑
i
(AB)ii = ∑

i
∑

j
Ai j B ji = ∑

j
∑
i

B ji Ai j = trBA.

GpReps-I–1
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Note that
trABC 6= trBAC

in general. However the traceis invariant undercyclicpermutations, eg

trABC= trBCA= trCAB.

In particular, ifP is invertible (non-singular) then

trPAP−1 = trP−1PA= trA :

similar matrices have the same trace.

It follows from this that we can speak without ambiguity of the trace trt of a
linear transformationt : V→V; for the matrixT representingt with respect
to one basis will be changed toPTP−1 with respect to another basis, where
P is the matrix of the change of basis.

Example:Consider the 2-dimensional representationα of D4 overC given by

s 7→
(

i 0
0 −i

)
t 7→

(
0 1
1 0

)
.

Writing χ for χα

χ(e) = dimα = 2

χ(s) = i− i = 0

χ(s2) = tr

(
−1 0
0 −1

)
=−1−1 =−2

χ(s3) = tr

(
−i 0
0 i

)
=−i + i = 0

χ(t) = i− i = 0

χ(st) = tr

(
0 i
−i 0

)
= 0

χ(s2t) = tr

(
0 −1
−1 0

)
= 0

χ(s3t) = tr

(
0 −i
i 0

)
= 0

In summary
χ(e) = 2,χ(s2) =−2,χ(g) = 0 if g 6= e,s2.
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Proposition 8.1 1. χα+β(g) = χα(g)+χβ(g)

2. χαβ(g) = χα(g)χβ(g)

3. χα∗(g) = χα(g−1)

4. χ1(g) = 1

5. χα(e) = dimα

Proof I (1) follows from the matrix form

g 7→
(

A(g) 0
0 B(g)

)
for α+β.

(2) follows from the fact that ifA is anm×m-matrix andB is ann×n-matrix
then the diagonal elements of the tensor productA⊗B are just the products

Aii B j j (1≤ i ≤m, 1≤ j ≤ n)

Thus
tr(A⊗B) = trAtrB.

(3) If α takes the matrix form

g 7→ A(g)

then its dual is given (with respect to the dual basis) by

g 7→ A(g)′−1 = A(g−1)′.

Hence
χα∗(g) = trA(g−1)′ = trA(g−1) = χα(g−1).

(4) and (5) are immediate. J

Remark:In effect the character defines aring-homomorphism

χ : R(G,k)→C(G,k)

from the representation-ringR(G) = R(G,k) to the ringC(G,k) of functions onG
(with values ink).

Theorem 8.1 Supposeα,β are representations of G over k. Then

I(α,β) =
1
‖G‖ ∑

g∈G

χα(g−1)χβ(g).
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Proof I It is sufficient to prove the result whenα = 1. For on the left-hand side

I(α,β) = I(1,α∗β);

while on the right-hand side

∑
g∈G

χα(g−1)χβ(g) = ∑
g

χα∗(g)χβ(g)

= ∑
g

χα∗β(g)

= ∑
g

χχ1(g)α∗β(g).

Thus the result forα,β follows from that for 1,α∗β.
We have to show therefore that

I(1,α) =
1
‖G‖ ∑

g∈G

χα(g).

By definition, if α is a representation inV,

I(1,α) = dimhomG(k,V).

Now
hom(k,V) = V,

with the vectorv∈V corresponding to the map

λ 7→ λv : k→V.

Moreover, the action ofG is preserved under this identification; so we may write

homG(k,V) = VG,

whereVG denotes the space ofG-invariant elements ofV:

VG = {v∈V : gv= v∀g∈G}

Thus we have to prove that

dimVG =
1
‖G‖ ∑

g∈G

χα(g).

Consider the ‘averaging map’π : V→V defined by

v 7→ 1
‖G‖ ∑

g∈G

gv,
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that is,

π =
1
‖G‖ ∑

g∈G

α(g).

It is evident thatπv∈VG for all v∈V, ie πv is invariant underG. For

gπv =
1
‖G‖ ∑

h∈G

ghv

=
1
‖G‖ ∑

h∈G

hv

= πv,

sincegh runs overG ash does.
On the other hand, ifv∈VG thengv= v for all g and so

πv =
1
‖G‖ ∑

g∈G

gv= v.

It follws that π is a projection onto VG.

Lemma 8.1 Suppose p: V→V is a projection onto the subspace U⊂V. Then

tr p = dimU.

Proof of LemmaB We know that

V = im p⊕kerp.

Let e1, . . . ,em be a basis forimp = U , and letem+1, . . . ,en be a basis for kerp.
Then

pei =
{

ei 1≤ i ≤m,
0 m+1≤ ilen.

It follows that the matrix ofp with respect to the basise1, . . . ,en is

P =



1
...

1
0

...
0


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with m 1’s down the diagonal and 0’s elsewhere. Hence

tr p = trP = m= dimU.

C

Applying this to the averaging mapπ,

trπ = dimVG.

On the other hand, by the linearity of the trace,

trπ =
1
‖G‖∑

g
trα(g)

=
1
‖G‖∑

g
χα(g)

Thus

dimVG =
1
‖G‖∑

g
χα(g),

as we had to show. J

Proposition 8.2 If k = R,

χα∗(g) = χα(g−1) = χα(g).

If k = C,
χα∗(g) = χα(g−1) = χα(g).

Proof I First supposek = C. Let λ1, . . . ,λn be the eigenvalues ofα(g). Then

χα(g) = trα(g) = λ1 + · · ·+λn.

In fact, we can diagonaliseα(g), ie we can find a basis with respect to which

g 7→ A(g) =

 λ1 0
...

0 λn


Now

A(g−1) = A(g)−1 =

 λ−1
1 0

...
0 λ−1

n


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and so
χα(g−1) = trA(g−1) = λ−1

1 + · · ·+λ−1
n .

But sinceG is a finite group,gn = e for somen (eg forn = ‖G‖), and so

λn
i = 1 =⇒ |λi |= 1 =⇒ λ−1

i = λi

for each eigenvalueλi . Hence

χα(g−1) = λ1 + · · ·+λn = χα(g).

The result fork = R follows from this. For ifA is a real matrix satisfying
An = I then we may regardA as a complex matrix, and so deduce by the argument
above that

tr(A−1) = trA.

But sinceA is real, so is trA, and thereforeHence

tr(A−1) = trA.

J

Corollary 8.1 Supposeα,β are representations of G over k. Then

I(α,β) =

{
1
‖G‖∑g∈Gχα(g)χβ(g) if k = R

1
‖G‖∑g∈Gχα(g)χβ(g) if k = C

Definition 8.2 We define the inner product

〈u,v〉 (u(g),v(g) ∈C(G,k))

by

〈u,v〉=

{
1
‖G‖∑g∈Gu(g)v(g) if k = C

1
‖G‖∑g∈Gu(g)v(g) if k = R

Proposition 8.3 1. The inner product〈u,v〉 is positive-definite.

2. I(α,β) = 〈χα,χβ〉.

Proposition 8.4 Two representations are equivalent if and only if their characters
are equal:

α = β⇐⇒ χα(g) = χβ(g) for all g ∈G.
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Proof I If α = β then
B(g) = PA(g)P−1

for someP. Hence

χβ(g) = trB(g) = trA(g) = χα(g).

On the other hand, supposeχα(g) = χβ(g) for all g∈G. Then for each simple
representationσ of G overk,

I(σ,α) =
1
‖G‖ ∑

g∈G

χσ(g−1)χα(g)

=
1
‖G‖ ∑

g∈G

χσ(g−1)χβ(g)

= I(σ,β).

It follows that σ occurs the same number of times inα andβ. Since this is true
for all simple representationsσ,

α = β.

J

Proposition 8.5 Characters areclass functions,ie

g′ ∼ g =⇒ χα(g′) = χα(g).

Remark: Recall that we writeg′ ∼ g to mean thatg′,g are conjugate,ie there
exists anx∈G such that

g′ = xgx−1.

Proof I If
g′ = xgx−1

then (since a representationg 7→ A(g) is a homomorphism)

A(g′) = A(x)A(g)A(x−1)
= A(x)A(g)A(x)−1.

It follows from the basic property of the trace that

χα(g′) = trA(g′) = trA(g) = χα(g).

J
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Proposition 8.6 Simple characters are orthogonal, ie ifα,β are distinct simple
representations of G over k then

〈χα,χβ〉= 0.

Proof I This is just a restatement of the fact that

I(α,β) = 0.

J

Whenk = C we can be a little more precise.

Proposition 8.7 The simple characters of G overC form an orthonormal set, ie

〈χα,χβ〉=
{

1 if α = β,
0 otherwise.

Proof I Again, this is simply a restatement of the result for the intertwining num-
ber. J

Theorem 8.2 The group G has at most s simple represenations over k, where s is
the number of classes in G.

Proof I The class functions onG form a vector space

X ⊂C(G,k).

Lemma 8.2 dimX = s.

Proof of LemmaB Suppose the conjugacy classes areC1, . . . ,Cn. Let ci(g) denote

thecharacteristic functionof Ci , ie

ci(g) =
{

1 if g∈Ci ,
0 otherwise

Then the functions
ci(g) (1≤ i ≤ s)

form a basis for the class functions onG. C

Lemma 8.3 Mutually orthogonal vectors (with respect to a positive-definite form)
are necessarily linearly independent.
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Proof of LemmaB Supposev1, . . . ,vr are mutually orthogonal:

〈vi ,v j〉= 0 if i 6= j.

Suppose
λ1v1 + · · ·+λrvr = 0.

Taking the inner product ofvi with this relation,

λ1〈vi ,v1〉+ · · ·+λr〈vi ,vr〉= 0 =⇒ λi = 0.

Since this is true for alli, the vectorsv1, . . . ,vr must be linearly independent. C

Now consider the simple characters ofG overk. They are mutually orthogo-
nal, by the last Proposition; and so they are linearly independent, by the Lemma.
But they belong to the spaceX of class functions. Hence their number cannot
exceed the dimension of this space, which by Lemma 1 iss. J

Remark: We shall see that whenk = C, the number of simple representations
is actuallyequal tothe number of classes. This is equivalent, by the reasoning
above, to the statement thatthe characters span the space of class functions.

We shall establish this result (in later Chapters) in two different ways — one
using induced representations, and one based on the representation theory of prod-
uct groups.

Example: Since characters are class functions, it is only necessary to compute
their values for 1 representative from each class. Thecharacter tableof a group
G overk tabulates the values of the simple representations on the various classes.
By convention, if the scalar fieldk is not specified it is understood that we are
speaking of representations overC.

As an illustration, let us take the groupS3. The 6 elements divide into 3
classes, corresponding to the 3 cylic types:

13 e

21 (bc),(ac),(ab)

3 (abc),(acb)

It follows thatS3 has at most 3 simple characters overC. Since we already know
3, namely the 2 1-dimensional representations 1,ε and the 2-dimensional repre-
sentationα, we have the full panoply.

We draw up the character table as follows:

class [13] [21] [3]
size 1 3 2
1 1 1 1
ε 1 −1 1
α 2 0 −1
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Let us verify that the simple characters form an orthonormal set:

I(1,1) =
1
6
(1·1·1+3·1·1+2·1·1) = 1

I(1,ε) =
1
6
(1·1·1+3·1·−1+2·1·1) = 0

I(1,α) =
1
6
(1·1·2+3·1·0+2·1·−1) = 0

I(ε,ε) =
1
6
(1·1·1+3·−1·−1+2·1·1) = 1

I(ε,α) =
1
6
(1·1·2+3·−1·0+2·1·−1) = 0

I(α,α) =
1
6
(1·2·2+3·0·0+2·−1·−1) = 1

It is very easy to compute the character of a permutational representation, that
is, a representation arising from the action of the groupG on the finite setX.
Recall that this is the representation in the function-spaceC(X,k) given by

(g f)(x) = f (g−1x).

Proposition 8.8 Supposeα is the permutational representation of G arising from
the action of G on the finite set X. Then

χal pha(g) = ‖{x : gx= x}‖,

ie χ(g) is equal to the number of elements of X left fixed by g.

Proof I Let cx(t) denote the characteristic function of the 1-point subset{x}, ie

cx(t) =
{

1 if t = x,
0 otherwise.

The‖X‖ functionscx(t) form a basis for the vector spaceC(X,k); and the action
of g∈G on this basis is given by

gcx = cgx,

since
gcx(t) = cx(g−1t) = 1⇐⇒ g−1t = x⇐⇒ t = gx.

It follows that with respect to this basis

g 7→ A(g),
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whereA = A(g) is the matrix with entries

Axy =
{

1 if x = gy,
0 otherwise.

In particular

Axx =
{

1 if x = gx,
0 otherwise.

Hence
χal pha(g) = trA = ∑

x
Axx = ‖{x : gx= x}‖.

J

Example:Consider the action of the groupS3 on X = {a,b,c}, Let us denote the
resulting representation byρ. We only need to computeχρ(g) for 3 values ofg,
namely 1 representative of each class.

We know that
χρ(e) = dimρ = ‖X‖= 3.

The transposition(bc) (for example) has just 1 fixed point, namelya. Hence

χρ(bc) = 1.

On the other hand, the 3-cycle(abc) has no fixed points, so

χρ(abc) = 0.

Let us add this character to our table:

class [13] [21] [3]
size 1 3 2
1 1 1 1
ε 1 −1 1
α 2 0 −1
ρ 3 1 0

We know thatρ is some integral combination of the simple characters, say

ρ = r ·1+s· ε+ t ·α,

wherer,s, t ∈ N. These ‘coefficients’r,s, t are unique, since the simple characters
are linearly independent.
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It would be easy to determine them by observation. But let us compute them
from the character ofρ. Thus

r = I(1,ρ) =
1
6
(1·1·3+3·1·1+2·1·0) = 1

s= I(ε,ρ) =
1
6
(1·1·3+3·−1·1+2·1·0) = 0

t = I(α,ρ) =
1
6
(1·2·3+3·0·1+2·−1·0) = 0

Thus
ρ = 1+α.



Chapter 9

The regular representation

The groupG acts on itself in 3 ways:

• By left multiplication:(g,x) 7→ gx

• By right multiplication:(g,x) 7→ xg−1

• By inner automorphism:(g,x) 7→ gxg−1

The first action leads to theregular representation defined below. The second
action also leads to the regular representation, as we shall see. The third action
leads to theadjoint representation, which we shall consider later.

Definition 9.1 Theregular representationreg of the group G over k is the permu-
tational representation defined by the action

(g,x) 7→ gx

of G on itself.

Proposition 9.1 The character of the regular representation is given by

χreg(g) =
{

1 if g = e,
0 otherwise.

Proof I We have to determine, for eachg∈G, the number of elementsx∈G left
fixed byg, ie satisfying

gx= x.

But
gx= x =⇒ g = e.

Thus no elementg 6= e leaves any element fixed; whileg= e leaves every element
fixed. J
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Proposition 9.2 The permutational representation defined by right multiplication

(g,x) 7→ xg−1

is equivalent to the regular representation.

Proof I No elementg 6= e leaves any element fixed; whileg = e leaves every
element fixed:

xg−1 = x⇐⇒ g = e.

Thus this representation has the same character as the regular representation; and
so it is equal (that is, equivalent) to it. J

Alternative proofI In fact it is readily verified that the representation defined by
right multiplication is thedual reg∗ of the regular representation. But the regular
representation is self-dual, since its character is real.J

Proposition 9.3 Supposeα is a representation of G over k. Then

I(α, reg) = dimα.

Proof I Plugging the result for the character ofreg above into the formula for the
intertwining number,

I(α, reg) =
1
‖G‖ ∑

g∈G

χα(g−1)χreg(g)

=
1
‖G‖
‖G‖χα(e)

= dimα.

J

This result shows thatevery simple representation occurs in the regular repre-
sentation, sinceI(σ, reg) > 0. Whenk = C we can be more precise.

Proposition 9.4 Each simple representationσ of G overC occurs justdimσ times
in the regular representationreg of G overC:

reg = ∑
σ

(dimσ)sigma,

where the sum extends over all simple representationsσ of G overC.
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Proof I We know thatreg, as a semisimple representation, is expressible in the
form

reg = ∑
σ

eσσ (eσ ∈ N).

Taking the intertwining number of a particular simple representationσ with each
side,

I(σ, reg) = eσI(σ,σ) = eσ

= dimσ,

by the Proposition. J

Theorem 9.1 The dimensions of the simple representationsσ1, . . . ,σr of G over
C satisfy the relation

dim2σ1 + · · ·+dim2σr = ‖G‖.

Proof I This follows at once on taking the dimensions on each side of the identity

reg = ∑
σ

(dimσ)sigma.

J

Example:ConsiderS5. We have

‖S5‖= 120;

while S5 has 7 classes:

[15], [213], [221], [312], [32], [41], [5].

ThusS5 has at most 7 simple representations overC.
Let us review the information on these representations that we already have:

1. S5 has just 2 1-dimensional representations, 1 andε;

2. The natural 5-dimensional representationρ of S5 splits into 2 parts:

ρ = 1+α,

whereα is a simple 4-dimensional representation ofS5;

3. If σ is a simple representation ofS5 of odd dimension thenεσ 6= σ;
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4. More generally, ifσ is a simple representation ofS5 with σ([213]) 6= 0 then
εσ 6= σ;

We can apply this last result toα. For

χα([213]) = χρ([213])−1

= 3−1

= 2.

Hence
εα 6= α.

Thus we have found 4 of the 7 (or fewer) simple representations ofS5: 1,ε,α,εα.
Our dimensional equation reads

120= 12 +12 +42 +42 +a2 +b2 +c2,

wherea,b,c∈N, with a,b,c 6= 1. (We are allowing for the fact thatS5 might have
< 7 simple representations.) In other words,

a2 +b2 +c2 = 86.

It follows that
a2 +b2 +c2≡ 6 (mod 8).

Now
n2≡ 0,1, or 4 (mod 8)

according asn≡ 0 (mod 4), or n is odd, orn≡ 2 (mod 4). The only way to
get 6 is as 4+1+1. In other words, 2 ofa,b,c must be odd, and the other must
be≡ 2 (mod 4). (In particulara,b,c 6= 0. SoS5 must in fact have 7 simple
representations.)

By (3) above, the 2 odd dimensions must be equal: saya = b. Thus

2a2 +c2 = 86.

Evidentlya = 3 or 5. Checking, the only solution is

a = b = 5,c = 6.

We conclude thatS5 has 7 simple representations, of dimensions

1,1,4,4,5,5,6.



Chapter 10

Induced Representations

Each representation of a group defines a representation of a subgroup, by
restriction; that much is obvious. More subtly, each representation of the
subgroup defines a representation of the full group, by a process calledin-
duction. This provides the most powerful tool we have for constructing
group representations.

Definition 10.1 Suppose H is a subgroup of G; and supposeα is a representation
of G in V. Then we denote byαH the representation of H in the same space V
defined by restricting the group action from G to H. We callαH therestrictionof
α to H.

Proposition 10.1 1. (α+β)H = αH +βH

2. (αβ)H = αHβH

3. (α∗)H = (αH)∗

4. 1H = 1

5. dimαH = dimα

6. χαH (h) = χα(h)

Example:We can learn much about the representations ofG by considering their
restrictions to subgroupsH ⊂ G. But induced representations give us the same
information—and more—much more easily, as we shall see; so the following
example is of more intellectual interest than practical value.

Let us see what we can discover about the simple characters ofS4 (over C)
from the character table forS3. Let’s assume we know—as we shall prove later

GpReps-I–1
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in this chapter—that the number of simple characters ofS4 is equal to the num-
ber of classes, 5. Let’s suppose too that we knowS4 has just 2 1-dimensional
representations, 1 andε. Let γ be one of the 3 other simple representations ofS4.

Let
γS3 = a1+bε+cα (a,b,c∈ N).

By the Proposition above, if̄h⊂ ḡ (whereh̄ is a class inH andḡ a class inG) then

χγ(ḡ) = χγH (h̄).

So we know some of the values ofχγ:

Class [14] [212] [22] [31] [4]
size 1 6 3 8 6
1 1 1 1 1 1
ε 1 −1 1 1 −1
γ a+b+2c a−b x a+b−c y

We have found nothing aboutχ([22]) andχ([4]), since these 2 classes don’t inter-
sectS3. However, if we call the valuesx andy as shown, then the 2 equations

I(1,γ) = 0, I(ε,γ) = 1

give

15a+3b−6c+3x+6y = 0

3a+15b−6c+3x+6y = 0

Setting
s= a+b, t = a−b,

for simplicity, these yield

x =−3s+2t, y =−t.

The table now reads

Class [14] [212] [22] [31] [4]
size 1 6 3 8 6
1 1 1 1 1 1
ε 1 −1 1 1 −1
γ s+2c t −3s+2c s−c −t

Sinceγ is—by hypothesis—simple,

I(γ,γ) = 1.
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Thus
24= (s+2c)2 +6t2 +3(−3s+2c)2 +8(s−c)2 +6t2.

On simplification this becomes

2 = 3s2−4sc+2c2 + t2

= s2 +2(s−c)2 + t2.

Noting thats, t,c are all integral, and thats,c≥ 0, we see that there are just 3
solutions to this diophantine equation:

(a,b,c) = (1,0,1), (0,1,1), (0,0,1).

These must yield the 3 missing characters.
We have determined the character table ofS4 without constructing—even

implicitly—the corresponding representations. This has an interesting parallel in
recent mathematical history. One of the great achievements of the last 25 years has
beenthe determination of all finite simple groups, ie groups possessing no proper
normal (or self-conjugate) subgroups. The last link in the chain was the deter-
mination of theexceptionalsimple groups, ie those not belonging to the known
infinite families (such as the family of alternating groupsAn for n≥ 5). Finally,
all was known except for the largest exceptional group—the so-calledmammoth
group. The character table of this group had been determined several years before
it was established that a group did indeed exist with this table.

As we remarked earlier, the technique above isnot recommended for serious
character hunting. The method of choice must be induced representations, our
next topic.

SupposeV is a vector space. Then we denote byC(G,V) theG-space of maps
f : G→V, with the action ofG defined by

(g f)(x) = f (g−1x)

(This extends our earlier definition ofC(G,k).)

Definition 10.2 Suppose H is a subgroup of G; and supposeα is a representation
of H in U. Then we define the induced representationαG of G as follows. Let

V = {F ∈C(G,U) : F(gh) = h−1F(g) for all g ∈G,h∈ H}.

Then V is a G-subspace of C(G,U); and αG is the representation of G in this
subspace.
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Remark:ThatV is a G-subspace follows from the fact that we are acting onG
with G andH from opposite sides (G on the left,H on the right); and their actions
therefore commute:

(gx)h = g(xh).

Thus ifF ∈V then

(gF)(xh) = F(g−1xh)
= h−1F(g−1x)
= h−1((gF)(x)),

ie gF ∈V.
This definition is too cumbersome to be of much practical use. The following

result offers an alternative, and usually more convenient, starting point.

Lemma 10.1 Suppose e= g1,g2, ...,gr are representatives of the cosets of H in
G, ie

G = g1H ∪g2H ∪ ...∪grH.

Then there exists an H-subspace U′ ⊂V such that

(a) U′ is isomorphic to U as an H-space,

(b) V = g1U ′
L

g2U ′
L

...
L

grU ′.

Moreover the induced representationαG is uniquely characterised by the exis-
tence of such a subspace.

Remarks:

1. After the lemma, we may write

V = g1U
M

g2U
M

...
M

grU.

2. The action ofG onV is implicit in this description ofV. For supposev is in
the ith summand, say

v = giu;

and supposeggi is in the jth coset, say

ggi = g jh.

Thengv is in the jth summand:

gv= ggiu = g j(hu).
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3. The difficulty of taking this result as the definition ofαG lies in the awk-
wardness of showing that the resulting representation does not depend on
the choice of coset-representatives.

Proof I To eachu∈U let us associate the functionu′ = u′(g) ∈C(G,U) by

u′(g) =
{

gu if g∈ H
0 otherwise

Then it is readily verified that

(a) u′ ∈V, ie u′(gh) = h−1u′(g) for all h∈ H.

(b) If u 7→ u′ thenhu 7→ hu′.

Thus the mapu 7→ u′ sets up anH-isomorphism betweenU and anH-subspace
U ′ ⊂V.

SupposeF ∈V. From the definition ofV,

F(gh) = h−1F(g).

It follows that the values ofF on any cosetgiH are completely determined by its
value at one pointgi . ThusF is completely determined by itsr values

u1 = F(e),u2 = F(g2), ...,ur = F(gr).

Let us write
F ←→ (u1,u2, ...,ur).

Then it is readily verified that

u′←→ (u,0, ...,0);

and more generally
giu
′←→ (0, ..,u, ..,0),

ie the functiongiu′ vanishes on all except theith cosetgiH, and takes the valueu
atgi .

It follows that
F = g1u′1 +g2u′2 + . . .+gru

′
r

since the 2 functions take the same values at ther pointsgi . Moreover the argu-
ment shows that this expression forF ∈V as a sum of functions in the subspaces
U ′ = g1U ′,g2U ′, ...,grU ′, respectively, is unique: so that

V = g1U
′Mg2U

′M ...
M

grU
′.
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Finally this uniquely characterises the representationαG, since the action of
G onV is completely determined by the action ofH onU , as we saw in Remark
1 above. J

Example:Supposeα is the representation ofS3 in U = C2 given by

(abc) 7→
(

ω 0
0 ω−1

)
(ab) 7→

(
0 1
1 0

)
Let us consider the representation ofS4 induced byα (where we identifyS3 with
the subgroup ofS4 leavingd fixed).

First we must choose representatives of theS3-cosets inS4. The nicest way to
choose coset representatives ofH in G is to find—if we can—a subgroupT ⊂ G
transverseto H, ie such that

1. T ∩H = {e}

2. ‖T‖ ‖H‖= ‖G‖.

It is readily verified that these 2 conditions imply that each elementg ∈ G is
uniquelyexpressible in the form

g = th (t ∈ T,h∈ H)

It follows that the elements ofT represent the cosetsgH of H in G.
In the present case we could takeT to be the subgroup generated by a 4-cycle:

say
{e,(abcd),(ac)(bd),(adcb)}.

Or we could take

T = V4 = {e,(ab)(cd),(ac)(bd),(ad)(bc)}

(the Viergruppe). Let’s make the latter choice; the fact thatT is normal (self-
conjugate) inG should simplify the calculations. We have

S4 = S3∪ (ab)(cd)S3∪ (ac)(bd)S3∪ (ad)(bc)S3;

and soαG is the represention in the 8-dimensional vector space

V = U
M

(ab)(cd)U
M

(ac)(bd)U
M

(ad)(bc)U.

As basis for this space we may take

e1 = e, e2 = f , e3 = (ab)(cd)e, e4 = (ab)(cd) f ,
e5 = (ac)(bd)e, e6 = (ac)(bd) f , e7 = (ad)(cb)e, e8 = (ad)(bc) f ,
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wheree= (1,0), f = (0,1).
To simplify our calculations, recall that ifg,x∈ Sn, and

x = (a1a2 . . .ar)(b1b2 . . .bs) . . .

in cyclic notation, then

gxg−1 = (ga1,ga2, . . . ,gar)(gb1,gb2, . . . ,gbs) . . . ,

since, for example,
(gxg−1)(ga1) = gxa1 = ga2.

(This is how we show that 2 elements ofSn are conjugate if and only if they are
of the same type.) In our case, supposeh∈ S3, t ∈V4. Then

hth−1 ∈V4

sinceV4 is normal. In other words,

ht = sh,

wheres∈V4.
Now let’s determine the matrix representing(ab). By the result above, we

have

(ab) · (ab)(cd) = (ab)(cd) · (ab)
(ab) · (ac)(bd) = (bc)(ad) · (ab)
(ab) · (ad)(bc) = (bd)(ac) · (ab).

Thus

(ab)e6 = (ab) · (ac)(bd) f

= (ad)(bc) · (ab) f

= (ad)(bc)e
= e7.

In fact

(ab)e1 = e2, (ab)e2 = e1,

(ab)e3 = e4, (ab)e4 = e3,

(ab)e5 = e8, (ab)e6 = e7,

(ab)e7 = e6, (ab)e8 = e5.
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Hence

(ab) 7→



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


It is not hard to see that(ab) and(abcd) generateS4. So the representation

αS4 will be completely determined—in principle, at least—if we establish the
matrix representing(abcd). We see now that it was easier to detemine the matrix
representing(ab), because(ab) ∈ S3. But the general case is not difficult. Notice
that

(abcd) = (ad)(bc) · (ac)

It follows that (for example)

(abcd) · (ac)(bd) = (ad)(bc) · (ac) · (ac)(bd)
= (ad)(bc) · (ac)(bd) · (ac)
= (ab)(cd) · (ac).

Now (ac) = (abc)(ab); so underα,

(ac) 7→
(

0 ω
ω−1 0

)
We see that, for example,

(abcd)e5 = (abcd) · (ac)(bd)e
= (ab)(cd) · (ac)e
= (ab)(cd)ω−1 f

= ω−1e2.

We leave it to the reader to complete this calculation of the matrix representing
(abcd).

Clearly this is too time-consuming a hobby to pursue.

It is evident that
h∼ h′ in H =⇒ h∼ h′ in G

In other words, each class̄h in H lies in a unique class ¯g in G:

h̄⊂ ḡ.
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Or, to put it the other way round, each class ¯g in G splitsinto classesh1, . . . ,hr in
H:

ḡ∩H = h1∪·· ·∪hr .

Theorem 10.1 Suppose H is a subgroup of G; and supposeβ is a representation
of H. Then

χβG(ḡ) =
‖G‖
‖H‖ ‖ḡ‖ ∑̄

h⊂ḡ

‖h̄‖χβ(h̄),

where the sum runs over those H-classesh̄ contained inḡ.

Proof I Let g1, . . . ,gr be representatives of the cosets ofH in G, so thatβG is the
representation in

V = g1U
M
· · ·

M
grU.

Lemma 10.2 With the notation above

χβG(g) = ∑
i:g−1

i ggi=h∈H

χβ(h),

where the sum extends over those coset-representatives gi for which g−1
i ggi ∈ H.

Proof I Let us extend the functionχβ (which is of course defined onH) to G by
setting

χβ(g) = 0 if g /∈ H,

then our formula can be written:

χβG(g) = ∑
i

χβ(g
−1
i ggi),

with the sum now extending over all coset-representatives.
Supposee1, ...,em is a basis forU . Thengiej (1≤ i ≤ r,1≤ j ≤m) is a basis

for V.
Supposev belongs to theith summand ofV, say

v = giu;

and supposeggi belongs to thejth coset, say

ggi = g jh.

Then
gv= ggiu = g j(hu).
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So
g(giU)⊂ g jU.

Thus the basis elements ingiU cannot contribute toχβG(g) unlessi = j, that is,
unlessggi = gih, ie

g−1
i ggi = h∈ H.

Moreover if this is so then
g(giej) = gi(hej),

ie the m×m matrix defining the action ofg on giU with respect to the basis
gie1, ...,giem is justB(h); so that its contribution toχβG(g) is

χβ(h).

The result follows on adding the contributions from all those summands sent into
themselves byg. J

Lemma 10.3 For each g∈G,

χβG(g) =
1
‖H‖ ∑

g′∈G:g′−1gg′=h∈H

χβ(h)

Proof I Suppose we take a different representative of theith coset, say

g′i = gih.

This will make the same contribution to the sum, since

g′i
−1gg′i = h−1(g−1

i ggi)h;

and
χβ(h

−1h′h) = χβ(h
′).

Thus if we sum over all the elements ofG, we shall get each coset-contribution
just‖H‖ times. J

To return to the proof of the Proposition, we compute how many times each
elementh∈ H occurs in the sum above.

Two elementsg′,g′′ define the same conjugate ofg in G, ie

g′−1gg′ = g′′−1gg′′,

if and only if g′′g′−1 andg commute, ie if and only

g′′N(g) = g′N(g),
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where
N(g) = {x∈G : gx= xg}.

It follows that eachG-conjugateh of g in H will occur just‖N(g)‖ times in the
sum of Corollary 1. Thus if we sum over these elementsh we must multiply by
‖N(g)‖.

The result follows, since

|N(g)‖=
‖G‖
‖ḡ‖

by the same argument, each conjugatex−1gx of g arising from‖N(g)‖ elements
x. J

Examples:

1. Let us look again atαS3→S4. The classes ofS4 andS3 are related as follows:

[14]∩S3 = [13]
[212]∩S3 = [21]
[22]∩S3 = /0
[31]∩S3 = [3]
[4]∩S3 = /0

Hence

χαS4([1
4]) =

24
6·1

χα(13) = 8

χαS4([212]) =
24
6·6

3χα(21) = 0

χαS4([2
2]) = 0

χαS4([31]) =
24
6·8

2χα(3) =−1

χαS4(4) = 0

Class [14] [212] [22] [31] [4]
size 1 6 3 8 6
αS4 8 0 0 −1 0

Since

I(αS4,αS4) =
1
24

(
82 +8·12) = 3,
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αS4 has just 3 distinct simple parts. whose determination is left to the reader.

The relation betweenS4 andS3 is unusual, in thatclasses never split. If ḡ is
a class inS4 thenḡ∩S3 is either a whole class̄h in H, or else is empty. This
is true more generally forSn andSm (m< n), whereSm is identified with the
subgroup ofSn leaving the lastn−m elements fixed. If ¯g is a class inSn,
then

ḡ∩Sm = h̄ or /0.

2. Now let’s look at the cyclic subgroup

C4 = 〈(abcd)〉= {e,(abcd),(ac)(bd),(adcb)}

of S4. SinceC4 is abelian, each element is in a class by itself. Letθ be the
1-dimensional representation ofC4 defined by

(abcd) 7→ i

We have

[14]∩C4 = {e}
[212]∩C4 = /0
[22]∩C4 = {(ac)(bd)}
[31]∩C4 = /0
[4]∩C4 = {(abcd),(adcb)}

Hence

χθS4([1
4]) =

24
4·1

χθ(e) = 6

χθS4([212]) = 0

χθS4([2
2]) =

24
4·3

χθ((ac)(bd)) =−2

χθS4([31]) = 0

χθS4([4]) =
24
4·6

(χθ((abcd))+χθ((adcb)))

= i +(−i) = 0

Class [14] [212] [22] [31] [4]
size 1 6 3 8 6
θS4 6 −2 0 0 0
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Since

I(θS4,θS4) =
1
24

(
62 +6·22) = 3,

θS4 has just 3 distinct simple parts. whose elucidation we again leave to the
reader.

Proposition 10.2 1. (α+α′)G = αG +α′G;

2. (α∗)G = (αG)∗;

3. dimαG = [G : H]dimα.

It is worth noting that permutation representations are a particular case of in-
duced representations.

Lemma 10.4 Suppose G acts transitively on the finite set X. Letα be the corre-
sponding representation of G. Take x∈ X; and let

Sx = {g∈G : gx= x}

be the corresponding stabilizer subgroup. Then

α = 1Sx→G,

ie α is the representation of G obtained by induction from the trivial representation
of Sx.

Remark:The result is easily extended to non-transitive actions. For in that case the
set splits into a number of orbits, on each of whichG acts transitively. On applying
the Proposition to each orbit, we conclude that any permutation representation can
be expressed as a sum of representations, each of which arises by induction from
the trivial representation of some subgroup ofG.

Proof I By Definition 1,
α′ = 1Sx→G

is the representation in the subspace

V ⊂C(G)

consisting of those functionsF : G→ k satisfying

F(gh) = h−1F(g) ∀h∈ Sx.
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But sinceSx acts trivially onk this condition reduces to

F(gh) = F(g),

ie F is constant on each cosetgSx. ThusV can be identified with the space
C(G/Sx,k) of functions on the setG/Sx of Sx-cosets inG.

On the other hand, theG-setsX andG/Sx can be identified, with the element
gx∈ X corresponding to the cosetgSx. Thus

C(G/Sx,k) = C(X,k).

Sinceα is by definition the representation ofG in CX the result follows. J

Proof I (Alternative) By Proposition 2,

χα′(g) = ‖{i : g−1
i ggi ∈ Sx}‖

= ‖{i : ggix = gix}‖
= ‖{y∈ X : gy= y}‖,

since eachy∈ X is uniquely expressible in the formy = gix. But by Proposition
???,

χα(g) = ‖{y∈ X : gy= y}‖.

Thus
χα = χα′,

and so
α = α′ = 1Sx→G.

J

Induced representations are of great practical value. But we end with an ex-
tremely important theoretical application.

Proposition 10.3 The number of simple representations of a finite group G is
equal to the number of conjugacy classes in G.

Proof I Let s denote the number of classes inG. We already know that

• The characters ofG are class functions.

• The simple characters are linearly independent.
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ThusG has at mosts simple characters; and the result will follow if we can show
that every class function is a linear combination of characters.

It suffices for the latter to show that we can find a linear combination of char-
acters taking the value 1 on a given class ¯g, and vanishing on all other classes.

We can extend the formula in the Theorem above to define a map

f (h̄) 7→ f G(ḡ) : X(H,k)→ X(G,k)

from the spaceX(H,k) of class functions on the subgroupH ⊂ G to the space
X(G,k) of class functions onG, by

f G(ḡ) =
‖G‖
‖H‖‖ḡ‖ ∑̄

h⊂ḡ

‖h̄‖ f (h̄).

Evidently this map is linear:

F(h) = a f(h)+bg(h) =⇒ FG(g) = a fG(g)+b fG(g).

Choose anyg∈ ḡ. Let H be the subgroup generated byg. Thus ifg is of order
d,

H = Cd = 〈g〉= {e,g,g2, . . . ,gd−1}.

Let θ denote the 1-dimensional character onH defined by

θ(g) = ω = e2πi/d.

SinceH is abelian, each element is in a class by itself, so all functions onH are
class functions. Thed characters onH are

1,θ,θ2, . . . ,θd−1.

Let f (h) denote the linear combination

f = 1+ω−1θ+ω−2θ2 + · · ·+ω−(d−1)θd−1.

Then

f (hi) =
{

d if i = 1,
0 if i = 0.

,

ie f vanishes off theH-class{g}, but is not identically 0.
It follows that the induced functionf G(g) has the required property; it van-

ishes offḡ, while

f G(ḡ) =
‖G‖d
‖H‖‖ḡ‖

6= 0.
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This proves the result, sincef G is a linear combination of characters:

f G = 1G +ωθG +ω2(θ2)G + · · ·+ω−(d−1)(θd−1)G.

J

Examples:

1. S3 has 3 classes: 13, 21 and 3. So it has 3 simple representations overC, as
of course we already knew: namely 1,ε andα.

2. D(4) has 5 classes:{e}, {s2}, {s,s3}, {c,d} and{h,v}. So it has 5 simple
representations overC. We already know of 4 1-dimensional representa-
tions. In addition the matrices defining the natural 2-dimensional represen-
tation inR2 also define a 2-dimensional complex representation. (We shall
consider this process of complexification more carefully in Chapter ???.)
This representation must be simple, since the matrices do not commute, as
they would if it were the sum of 2 1-dimensional representations. Thus all
the representations ofD4 are accounted for.

Proposition 10.4 (Frobenius’ Reciprocity Theorem) Supposeα is a representa-
tion of G, andβ a representation of H⊂G. Then

IG(α,βG) = IH(αH ,β).

Proof I We have

IG(α,βG) =
1
‖G‖ ∑̄

g
‖ḡ‖χα(ḡ)

‖G‖
‖H‖‖ḡ‖ ∑̄

h⊂ḡ

‖h̄‖χβ(h̄)

=
1
‖H‖ ∑̄

h

‖h̄‖χα(h̄)χβ(h̄)

= IH(αH ,β).

J

This short proof does not explainwhyFrobenius’ Reciprocity Theorem holds.
For that we must take a brief excursion into category theory.

Let CG denote the category ofG-spaces andG-maps. Then restriction and
induction definefunctors

S: CG→ CH , , I : CH → CG.

Now 2 functors
E : C1→ C2, F : C2→ C1
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are said to beadjoint if for any 2 objectsX ∈ C1,Y ∈ C2 there are bijections

MC1(X,FY) = MC2(EX,Y)

which are natural in the sense that given any morphism

f : X→ X′

in C1 the diagram
M (X,FY) ←− M (X′,FY)∥∥∥ ∥∥∥
M (EX,Y) ←− M (EX′,Y)

is commutative, and similarly given any morphism

e : Y→Y′

in C2 the diagram
M (X,FY) −→ M (X,FY′)∥∥∥ ∥∥∥
M (EX,Y) −→ M (EX,Y′)

is commutative.
It’s not difficult to establish—but would take us too far out of our way—that

the induction and restriction functors are adjointin this sense: ifV is aG-space,
andU aH-space, then

homH(VH ,U) = homG(V,UG).

On taking dimensions, this gives Frobenius’ Theorem:

IH(αH ,β) = IG(α,βG).



Chapter 11

Representations of Product Groups

The representations of a product groupG×H can be expressed—in as neat
a way as one could wish—in terms of the representations ofG andH.

Definition 11.1 Supposeα is a representation of G in the vector space U over k,
andβ a representation of H in the vector space V over k. Then we denote byα×β
the representation of the product group G×H in the tensor product U⊗V defined
by

(g,h)∑u⊗v = ∑gu⊗hv.

Lemma 11.1 1. χα×β(g,h) = χα(g)χβ(h)

2. dim(α×β) = dimαdimβ

3. if α andβ are both representations of G then

(α×β)G = αβ,

where the restriction is to the diagonal subgroup

G = {(g,g) : g∈G} ⊂G×G.

Proposition 11.1 The representationα×β of G×H overC is simple if and only
if α andβ are both simple. Moreover, every simple representation of G×H is of
this form.

Proof I

Lemma 11.2 If α1,α2 are representations of G, andβ1,β2 are representations of
H, all over k, then

I(α1×β1,α2×β2) = I(α1,β1)I(α2,β2)

GpReps-I–1
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Proof I We have

I(α1×β1,α2×β2) =
1

|G||H| ∑
(g,h)∈G×H

χα1×β1
(g,h)χα2×β2

(g,h)

=
1

|G||H| ∑
(g,h)∈G×H

χα1(g)χβ1
(h)χα2(g)χβ2

(h)

=
1
|G| ∑g∈G

χα1(g)χα2(g)
1
|G| ∑

h∈H

χβ1
(h)χβ2

(h)

= I(α1,β1)I(α2,β2)

J

Recall that a representationα overC is simple if and only if

I(α,α) = 1.

Thus ifα is a simple representation ofG andβ is a simple representation ofH
(both overC) then

I(α×β,α×β) = I(α,α)I(β,β) = 1;

and thereforeα×β is simple.
Now supposeG hasr classes andH hass classes. ThenG×H hasrs classes,

since
(g,h)∼ (g′,h′)⇐⇒ g∼ g′ andh∼ h′.

But we have just producedrs simple representationsα×β of G×G; so these are
in fact the full complement.

(The lemma shows that these representations are distinct; for

I(α1×β1,α2×β1) = I(α1,α2)I(β1,β2) = 0

unlessα1 = α2 andβ1 = β2.) J

It is useful to give a proof of the last part of the Proposition not using the fun-
damental result that the number of simple representations is equal to the number
of classes; for we can give an alternative proof of this result using product groups.

Proof I (of last part of Proposition). Supposeγ is a representation ofG×H in W
overC.

Consider the restrictionγH of γ to the subgroupH = e×H ⊂G×H. LetV be
a simple part ofWH :

WH = V⊕·· ·
Let

X = homH(V,W)
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be the vector space formed by theH-mapst : V →W. This is non-trivial sinceV
is a subspace ofW.

Now X is aG-space, under the action

(gt)(v) = g(tv)

Let U be a simpleG-subspace ofX. Then

homG(U,X) = homG(U,homH(V,W))
= homG×H(U⊗V,W).

Since this space is non-trivial, there exists aG×H map

θ : U⊗V→W.

But since bothU⊗V andW are simple, we must have

kerθ = 0, imθ = W.

Henceθ is an isomorphism, ie

W = U⊗V.

Thus
γ = α×β,

whereα is the representation ofG in U , andβ is the representation ofH in V.
J

Theorem 11.1 Suppose G has n elements and s classes. Then

1. G has s simple representations overC;

2. if these areσ1, . . . ,σs then

dim2σ1 + · · ·+dim2σs = n.

Proof I Let τ be the permutation representation ofG×G in C(G,k) induced by
the action

(g,h)x = gxh−1

of G×G onG.

Lemma 11.3 The character ofτ is given by

χτ(g,h) =
{
|G|/|ḡ| if g∼ h
0 otherwise
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Proof I Sinceτ is a permutational representation,

χτ(g,h) = |{x : (g,h)x = x}|
= |{x : gxh−1 = x}|
= |{x : x−1gx= h}|.

If g 6∼ h then clearly no suchx exists.
Supposeg∼ h. Then there exists at least onex, sayx0, such that

h = x−1
0 gx0.

Now

x−1gx= h ⇐⇒ x−1gx= x−1
0 gx0

⇐⇒ (xx−1
0 )g = g(xx−1

0 )

⇐⇒ xx−1
0 ∈ Z(g)

⇐⇒ x∈ Z(g)x0.

Thus

χτ(g,h) = |{x : gxh−1 = x|
= |Z(g)|
= |G|/|ḡ|.

J

Lemma 11.4 Suppose G has simple representationsσ1, . . .σs. Then

τ = σ∗1×σ1 + · · ·+σ∗s×σs.

Proof I We know that the simple representations ofG×G areσi×σ j . Thus

τ = ∑
i, j

e(i, j)σi×σ j ,

wheree(i. j) ∈ N.
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To determinee(i, j) we must compute the intertwining number

I(τ,σi×σ j) =
1
|G|2 ∑

g,h

χτ(g,h)χσi×σ j (g,h)

=
1
|G|2 ∑

g,h

χτ(g,h)χσi(g)χσ j (h)

=
1
|G|2 ∑

h∼g

|G|
|ḡ|

χσi(g)χσ j (h)

=
1
|G|

χσi(g)χσ j (g)

=
1
|G|

χσ∗i (g)χσ j (g)

= I(σ∗i ,σ j).

Thus

I(τ,σi×σ j) =
{

1 if σ∗i = σ j

0 otherwise

In other words,σi ×σ j occurs inτ if and only if σ∗i = σ j , and then occurs just
once. J

It follows from this result in particular that the number of simple representa-
tions is equal toI(τ,τ).

Lemma 11.5 I(τ,τ) is equal to the number of classes in G.

Proof I We have

I(τ,τ) =
1
|G|2 ∑

g,h

|χτ(g,h)|2

=
1
|G|2 ∑

g
∑
h∼g

(
|G|
|ḡ|

)2

=
1
|G|2 ∑

g
|ḡ| |G|

2

|ḡ|2

= ∑
g

1
|ḡ|

.

Since each class contributes|ḡ| terms to this sum, each equal to 1/|ḡ|, the sum is
equal to the number of classes.J
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That proves the first part of the Theorem; the number of simple representations
is equal toI(τ,τ), which in turn is equal to the number of classes.

The second part follows at once on taking dimensions in

τ = σ∗1×σ1 + · · ·+σ∗s×σs.

J

Example:We can think of product groups in 2 ways—as a method of constructing
new groups, or as a way of splitting up a given group into factors.

We say thatG = H×K, whereH,K are subgroups ofG, if the map

H×K→G : (h,k) 7→ hk

is an isomorphism.
A necessary and sufficient condition for this— supposingG finite—is that

1. elements ofH andK commute, ie

hk= kh

for all h∈ H,k∈ K; and

2. |G|= |H||K|.

Now consider the symmetry groupG of a cube. This has 48 elements; for
there are 8 vertices, and 6 symmetries leaving a given vertex fixed.

Of these 48 symmetries, half are proper and half improper. The proper sym-
metries form a subgroupP⊂G.

Let Z = {I ,J}, whereJ denotes reflection in the centre of the cube. In factZ
is the centre ofG:

Z = ZG= {z∈G : zg= gzfor all g∈G}.

By the criterion above,
G = Z×P.

Moreover,
P = S4,

as we can see by considering the action of symmetries on the 4 diagonals of the
cube. This defines a homomorphism

Θ : P→ S4.
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Since no symmetry send every diagonal into itself,

kerΘ = {I}.

ThusΘ is injective; and so it is bijective, since

|P|= 24= |S4|.

HenceΘ is an isomorphism.
Thus

G = C2×S4.

In theory this allows us to dtermine the character table ofG from that ofS4.
However, to make use of this table we must know how the classes ofC2×S4 are
to be interpreted geometrically. This is described in the following table.

class inC2×P size order geometricaldescription
{I}×14 1 1 identity
{J}×14 1 1 reflection in centre
{I}×212 6 2 half-turn about axis joining centres of op-

posite edges
{J}×212 6 2 relflection in plane through opposite

edges
{I}×22 3 2 rotation about axis parallel to edge

throughπ
{J}×22 3 2 relflection in central plane parallel to face
{I}×31 8 3 rotation about diagonal through±π

3
{J}×31 8 6 screw reflection about diagonal
{I}×4 6 4 rotation about axis parallel to edge

through±π
2

{J}×4 6 4 screw reflection about axis parallel to
edge

The character table ofC2×S4 id readily derived from that ofS4. We denote
the non-trivial character ofC2 (J 7→ −1) by η.
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Class I ×14 J×14 I ×212 J×212 I ×22 J×22 I ×31 J×31 I ×4 J×4
1×1 1 1 1 1 1 1 1 1 1 1
η×1 1 −1 1 −1 1 −1 1 −1 1 −1
1× ε 1 1 −1 −1 1 1 1 1 −1 −1
η× ε 1 −1 −1 1 1 −1 1 −1 −1 1
1×α 2 2 0 0 2 2 −1 −1 0 0
η×α 2 −2 0 0 2 −2 −1 1 0 0
1×β 3 3 1 1 −1 −1 0 0 −1 −1
η×β 3 −3 1 −1 −1 1 0 0 −1 1
1× εβ 3 3 −1 −1 −1 −1 0 0 1 1
η× εβ 3 −3 −1 1 −1 1 0 0 1 −1

Now supposeπ is the 6-dimensional permutational representation ofG in-
duced by its action on the 6 faces of the cube. Its character is readily determined:

Class I ×14 J×14 I ×212 J×212 I ×22 J×22 I ×31 J×31 I ×4 J×4
π 6 0 0 2 2 4 0 0 2 0

For example, to determineχπ({J}×4) we note that an element of this class
is a rotation about an axis parallel to an edge followed by reflection in the centre.
This will send each of the 4 faces parallel to the edge into an adjacent face, and
will swap the other 2 faces. Thus it will leave no face fixed; and so

χπ({J}×4) = 0.

We have

I(π,1×1) =
1
48

(1·1·6+6·2·1+3·2·1+3·4·1+6·2·1) = 1

(as we knew it would be, since the action is transitive). Similarly,

I(π,η×1) =
1
48

(1·1·6−6·2·1+3·2·1−3·4·1+6·2·1) = 0,

I(π,1× ε) =
1
48

(1·1·6−6·2·1+3·2·1+3·4·1−6·2·1) = 0,

I(π,η× ε) =
1
48

(1·1·6+6·2·1+3·2·1−3·4·1−6·2·1) = 0.

It is clear at this point that the remaining simple parts ofπ must be of dimensions
2 and 3. Thusπ contains either 1×α or η×α. In fact

I(π,1×α) =
1
48

(1·6·2+3·2·2+3·4·2) = 1.
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The remaining part drops out by subtraction; and we find that

π = 1×1+1×α+η× εβ.



Chapter 12

Exterior Products

12.1 The exterior products of a vector space

SupposeV is a vector space. Recall that itsrth exterior product∧rV is a vector
space, spanned by elements of the form

v1∧·· ·∧vr (v1, . . . ,vr ∈V),

where
vπ1∧·· ·∧vπr = ε(π)v1∧·· ·∧vr

for any permutationπ ∈ Sr .
This implies in particular that any product containing a repeated element van-

ishes:
· · ·∧v∧·· ·∧v∧·· ·= 0.

(We are assuming here that the characteristic of the scalar fieldk is not 2. In fact
we shall only be concerned with the casesk = R or C.)

The exterior product∧rV could be defined rigorously as the quotient-space

∧rV = V⊗r/X,

whereX is the subspace ofV⊗r spanned by all elements of the form

vπ1∧ . . .vπr − ε(π)v1∧·· ·∧vr ,

wherev1, . . . ,vr ∈V,π ∈ Sr , andε denotes the parity representation ofSr .
Supposee1, . . . ,en is a basis forV. Then

ei1∧ei2∧·· ·∧eir (i1 < i2 < · · ·< ir)

GpReps-I–1
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is a basis for∧rV. (Note that there is one basis element corresponding to each
subset of{e1, . . . ,en} containingr elements.) It follows that if dimV = n then

∧rV = 0 if r > n;

while if r ≤ n then

dim∧rV =
(

n
r

)
.

Now supposeT : V→V is a linear map. Then we can define a linear map

∧rT : ∧rV→∧rV

by
(∧rT)(v1∧·· ·∧vr) = (Tv1)∧·· ·∧ (Tvr).

(To see that this action is properly defined, it is sufficient to see that it sends the
subspaceX ⊂V⊗n described above into itself; and that follows at once since

(∧rT)(vπ1∧·· ·∧vπr )−ε(π)v1∧. . .vr =(Tvπ1)∧·· ·∧(Tvπr )−ε(π)(Tv1)∧·· ·∧(Tvr)

is again one of the spanning elements ofX.)
In the caser = n, ∧nV is 1-dimensional, with the basis element

e1∧·· ·∧en;

and
∧nT = (detT)I .

This is in fact the “true” definition of the determinant.
Although we shall not make use of this, the spaces∧rV can be combined to

form theexterior algebra∧V of V

∧V =
M
∧rV,

with the “wedge multiplication”

∧ : ∧rV×∧sV→∧r+sV

defined by

(u1∧·· ·∧ur)∧ (v1∧·· ·∧vs) = u1∧·· ·∧ur ∧v1∧·· ·∧vs,

extended to∧V by linearity.
Observe that ifa∈ ∧rV,b∈ ∧sV then

b∧a = (−1)rsa∧b.

In particular the elements of even order form acommutativesubalgebra of∧V.
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12.2 The exterior products of a group representa-
tion

Definition 12.1 Supposeα is a representation of G in V. Then we denote by∧rα
the representation of G in∧rV defined by

g(v1∧·· ·∧vr) = (gv1)∧·· ·∧ (gvr).

In other words,g acts through the linear map∧r (α(g)).

Proposition 12.1 Suppose g∈G has eigenvaluesλ1, . . . ,λn in the representation
α. Then the character of∧rα is the rth symmetric sum of theλ’s, ie

χ∧r α(g) = ∑
i1<i2<···<ir

λi1λi2 . . .λir .

Proof I Let us suppose thatk = C. We know thatα(g) can be diagonalised, ie we
can find a basise1, . . . ,en of the representation-spaceV such that

gei = λiei (i = 1, . . . ,n).

But now

gei1∧ei2∧·· ·∧eir = λi1λi2 . . .λi1ei1∧ei2∧·· ·∧eir ,

from which the result follows, since these products form a basis for∧rV. J

12.3 Symmetric polynomials

We usually denote the symmetric product in the Proposition above by

∑λ1 . . .λr .

It is an example of asymmetric polynomialin λ1, . . . ,λn.
More generally, supposeA is a commutative ring, with 1. (In fact we shall

only be interested in the ringsZ andQ.) As usual,A[x1, . . . ,xn] denotes the ring
of polynomials inx1, . . . ,xn with coefficients inA.

The symmetric groupSn acts on this ring, by permutation of the variables:

(πP)(x1, . . . ,xn) = P
(

xπ−1(1), . . . ,xπ−1(n)

)
(π ∈ Sn).
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The polynomialP(x1, . . . ,xn) is said to besymmetricif it is left invariant by this ac-
tion of Sn. The symmetric polynomials evidently form asub-ringof A[x1, . . . ,xn],
which we shall denote byΣn(A).

Then polynomials

a1 = ∑xi , a2 = ∑
i1<i2

xi1xi2, . . . ,an = x1 · · ·xn

are symmetric; as are

s1 = ∑xi , s2 = ∑x2
i , ;s3 = ∑x3

i , . . . .

Proposition 12.2 The ringΣZ(n) is freely generated overZ by a1, . . . ,an, ie the
map

p(x1, . . . ,xn) 7→ p(a1, . . . ,an) : Z[x1, . . . ,xn]→ Σn(Z)

is a ring-isomorphism.

Proof I We have to show that

1. Every symmetric polynomialP(x1, . . . ,xn) over Z (ie with integer coeffi-
cients) is expressible as a polynomial ina1, . . . ,an overZ:

P(x1, . . . ,xn) = p(a1, . . . ,an).

This will show that the map is surjective.

2. The map is injective, ie

p(a1, . . . ,an)≡ 0 =⇒ p≡ 0.

1. Any polynomial is a linear combination ofmonomials xe1
1 · · ·xen

n . We order
the monomials first by degree, with higher degree first, and then within each
degreelexicographically, eg if n = 2 then

1 < x2 < x1 < x2
2 < x1x2 < x2

1 < x3
2 < · · · .

Theleading termin p(x1, . . . ,xn) is the non-zero termcxe1
1 · · ·xen

n containing
the greatest monomial in this ordering.

Now suppose the polynomialP(x1, . . . ,xn) is symmetric. Evidentlye1 ≥
e2≥ ·· ·≥en in the leading term. For if saye1 < e2 then the termcxe2

1 xe1
2 · · ·xen

n
— which must also appear inP(x1, . . . ,xn).

J

Corollary 12.1 The ringΣQ(n) is freely generated overQ by a1, . . . ,an,

Proposition 12.3 The ringΣQ(n) is freely generated overQ by s1, . . . ,sn,

Proof I J
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12.4 Newton’s formula

It follows from the Propositions above that the power-sumssn are expressible in
terms of the symmetric productsan, and vice versa. More precisely, there exist
polynomialsSn(x1, . . . ,xn) andAn(x1, . . . ,xn) such that

sn = Sn(a1, . . . , n), an = An(a1, . . . , n),

with the coefficients ofSn integral and those ofAn rational. Newton’s formula
allows these polynomials to be determined recursively.

Let

f (t) = (1−x1t) · · ·(1−xnt)

= 1−a1t +a2t
2−·· ·+(−1)nant

n.

Then

f ′(t)
f (t)

= f rac−x11−x1t + · · ·+ f rac−xn1−xnt

=−s1−s2t−s3t
2−·· · .

Thus

−a1+2a2t−3a3t
2+· · ·+(−1)nnant

n−1 =(1−a1t+a2t
2−·· ·+(−1)nant

n)(−s1−s2t−s3t
2−·· ·).

Equating coefficients,

a1 = s1

2a2 = s1a1−s2

3a3 = s1a2−s2a1 +s3

. . .

rar = s1ar −s2ar−1 + · · ·+(−1)r−1sr

. . .

Evidently these equations allow us to expresss1,s2,s3, . . . successively in
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terms ofa1,a2,a3, . . . , or vice versa:

s1 = a1

s2 = a2
1−2a2

s3 = a3
1−3a1a2 +3a3

. . .

a1 = s1

2a2 = s2
1−s2

6a3 = s3
1−3s1s2 +2s3

. . .

12.5 Plethysm

There is another way of looking at the exterior product — as a particular case of
theplethysmoperator on the representation-ringR(G).

SupposeV is a vector space over a fieldk of characteristic 0. (We shall only
be interested in the casesk = Ror C.) Then the symmetric groupSn acts on the
tensor productV⊗n by permutation of the factors:

π(v1⊗·· ·⊗vn) = vπ−11⊗·· ·⊗vπ−1n.

ThusV⊗n carries a representation ofSn. As we know this splits into components
VΣ corresponding to the simple representationsΣ of Sn:

V⊗n = VΣ1⊕·· ·⊕VΣs,

whereΣ1, . . . ,Σs are the simple representations ofSn. (We shall find it convenient
to use superfixes rather than suffixes for objects corresponding to representations
of Sn.)

We are particularly interested in the components corresponding to the 2 1-
dimensional representations ofSn: the trivial representation 1n and the parity rep-
resentationεn, and we shall write

VP = V1n, VN = Vεn.

We also useP andN to denote the operations ofsymmetrisationandskew-
symmetrisationonV⊗n; that is, the linear maps

P,N : V⊗n→V⊗n
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defined by

P(v1⊗·· ·⊗vn) =
1
n! ∑

π∈Sn

π(v1⊗·· ·⊗vn),

N(v1⊗·· ·⊗vn) =
1
n! ∑

π∈Sn

ε(π)π(v1⊗·· ·⊗vn).

Supposeπ ∈ Sn. Regardingπ as a mapV⊗n→V⊗n, we have

πP = P = Pπ, πN = ε(π)N = Nπ.

It follows that
{P2 = P, N2 = N,

ie P andN are bothprojectionsonto subspaces ofV⊗n.
We say thatx∈V⊗n is symmetricif

πx = x

for all π ∈ Sn; and we say thatx is skew-symmetricif

πx = ε(π)x

for all π. It follows at once from the relationsπP= P,πN = εN thatx is symmetric
if and only if

Px= x;

while x is skew-symmetric if and only if

Nx= x.

ThusP is a projection onto the symmetric elements inV⊗n, andN is a projection
onto the skew-symmetric elements.

To see the connection with the exterior product∧nV, recall that we could
define the latter by

∧nV = V⊗n/X,

whereX ⊂V⊗n is the subspace spanned by elements of the form

πx− ε(π)x.

It is easy to see thatNx = 0 for such an elementx; while conversely, for any
x∈V⊗n

x−Nx=
1
n! ∑

π∈Sn

ε(π)(ε(π)x−πxs)

∈ X
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It follows that
X = kerN;

and so (sinceN is a projection)

∧nV = V/X ∼= imN = VN;

that is, the nth exterior product of V can be identified with theε-component of
V⊗n.

Now suppose thatV carries a representationα of some groupG. ThenG acts
onV⊗n through the representationαn.

Proposition 12.4 Supposeα is a represenation of G in V. Then the actions of G
and Sn on V⊗n commute.

For each simple representationΣ of Sn, the component VΣ of V⊗n is stable
under G, and so carries a representationαΣ of G. Thus

αn = αΣ1 + · · ·+αΣs,

whereΣ1, . . . ,Σs are the simple representations of Sn.

Proof I We have

πg(v1⊗·· ·⊗vn) = π(gv1⊗·· ·⊗gvn)
= (gvπ−11⊗·· ·⊗gvπ−1n)
= gπ(v1⊗·· ·⊗vn).

J

Since the actions ofG and Sn on V⊗n commute, they combine to define a
representation of the product groupG×Sn on this space.

Corollary 12.2 The representation of G×Sn on V⊗n is given by

αΣ1×Σ1 + · · ·+αΣs×Σs.

Supposeg ∈ G (or more accurately,α(g)) has eigenvaluesλ1, . . . ,λd. We
know that the character of

∧nα = αεn

is thenth symmetric product of theλi :

χ∧nα(g) = an(λ1, . . . ,λd).
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Proposition 12.5 To each simple representationΣ of Sn there corresponds a unique
symmetric function SΣ of degree n such that for any representationα of G, and for
any g∈G with eigenvaluesλ1, . . . ,λd,

χ∧nα(g) = SΣ(λ1, . . . ,λd).

Proof I We begin by establishing an important result which should perhaps have
been proved when we discussed the splitting of aG-spaceV into components

V = Vσ1⊕·· ·⊕Vσs

corresponding to the simple representationsσ1, . . . ,σs of G.

Lemma 12.1 The projection Pσ onto theσ-component of V is given by

Pσ =
dimσ
‖G‖ ∑

g∈G

χσ(g−1)g.

Proof of LemmaB Supposeα is a representation ofG in V. Then the formula

above defines a linear map
P : V→V.

Supposeh∈G. Then (writingd for dimσ)

hPh−1 =
d
‖G‖∑

g
χσ(g−1)hgh−1

=
d
‖G‖∑

g′
χσ(h−1g′−1h)g′

=
d
‖G‖∑

g′
χσ(g′−1)g′

= P.

Now supposeα is simple. By Schur’s Lemma, the only linear transformations
commuting with allα(g) are multiples of the identity. Thus

P = ρI

for someρ ∈ C. Taking traces,

d
‖G‖∑

g
χσ(g−1)χα(g) = ρd.
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It follows that

ρ =

{
1 α = σ
0 α 6= σ

C In other words,

P =

{
I α = σ
0 α 6= σ

It follows thatP acts as the identity on all simpleG-subspaces carrying the repre-
sentationσ, and as 0 on all simple subspaces carrying a representationσ′ 6= σ. In
particular,P = I onVσ andP = 0 onVσ′ for all σ′ 6= σ. In other words,P is the
projection onto the componentVσ.

J



Chapter 13

Real Representations

Representation theory overC is much simpler than representation theory
overR. For that reason, we usuallycomplexifyreal representations—extend
the scalars fromR toC—just as we do with polynomial equations. But at the
end of the day we must determine if the representations—or solutions—that
we have obtained are in fact real.

SupposeU is a vector space overR. Then we can define a vector spaceV =
CU overC by “extension of scalars”. More precisely,

V = C⊗R U.

In practical terms,
V = U⊕ iU ,

ie each elementv∈V is uniquely expressible in the form

v = u1 + iu2 (u1,u2 ∈U).

If e1, . . . ,en is a basis forU overR, then it is also a basis forV overC. In particular,

dimCV = dimRU.

On the other hand, supposeV is a vector space overC. Then we can define
a vector spaceU = RV overR by “forgetting” scalar multiplication by non-reals.
Thus the elements ofU are precisely the same as those ofV. If e1, . . . ,en is a basis
for V overV, thene1, ie1,e2, ie2, . . . ,en, ien is a basis forU overR. In particular,

dimRU = 2dimCV.

Now supposeG acts on the vector spaceU overR. ThenG also acts onCU ,
by

g(u1 + iu2) = (gu1)+ i(gu2).

GpReps-I–1
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On the other hand, supposeG acts on the vector spaceV overC. ThenG also acts
onRV by the same rule

(g,v) 7→ gv.

Definition 13.1 1. Supposeβ is a real representation of G in U. Then we
denote byCβ the complex representation of G in the vector space

CU = U⊕ iU

derived from U by extending the scalars fromR to C.

2. Supposeα is a complex representation of G in V. Then we denote byRα
the real representation of G in the vector spaceRV derived from V by “for-
getting” scalar multiplication by non-reals.

Remarks:

1. Supposeβ is described in matrix terms, by choosing a basis forU and giving
the matricesB(g) representingβ(g) with respect to this basis. Then we can
take the same basis forCU , and the same matrices to representCβ(g). Thus
from the matrix point of view,β andCβ appear the same. The essential
difference is thatCβ may split even ifβ is simple, ie we may be able to find
a complex matrixP such that

PB(g)P−1 =
(

C(g) 0
0 D(g)

)
for all g∈G, although no real matrixP has this property.

2. Supposeα is described in matrix form, by choosing a basise1,e2, . . . ,en for
V, and giving the matricesA(g) representingα(g) with respect to this basis.
Then we can take the 2n elementse1, ie1,e2, ie2, . . . ,en, ien as a basis forRV;
and the matrix representingRα(g) with respect to this basis can be derived
from the matrixA = A(g) representingα(g) as follows. By definition,

ger = ∑
s

Asres.

Let
Ar,s = Xr,s+ iYr,s,

whereXr,s,Yr,s∈ R. Then

ger = Xsres+Ysries

g(ier) = −Ysres+Xsries
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Thus the entryArs is replaced inRα(g) by the 2×2-matrix(
Xr,s −Yr,s

Yr,s Xr,s

)
Proposition 13.1 1. C(β+β′) = Cβ+Cβ′

2. C(ββ′) = (Cβ)(Cβ′)

3. C(β∗) = (Cβ)∗

4. C1 = 1

5. dimCβ = dimβ

6. χCβ(g) = χβ(g)

7. I(Cβ,Cβ′) = I(β,β′)

8. R(α+α′) = Rα+Rα′

9. R(α∗) = (Rα)∗

10. dimRα = 2dimα

11. χRα(g) = 2ℜχα(g) = χα(g)+χα(g−1)

12. RCβ = 2β

13. CRα = α+α∗

Proof I All is immediate except (perhaps) parts (11) and (13).
11. Supposeα(g) is represented by then×n matrix

A = X + iY,

whereX,Y are real. Then—as we saw above—the entryArs is replaced inRα(g)
by the 2×2 matrix (

Xr,s −Yr,s

Yr,s Xr,s

)
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Thus

trRα(g) = 2∑
r

Xrr

= 2ℜ(∑
r

Arr )

= 2ℜ trα(g)
= 2ℜχα(g)
= χα(g)+χα(g−1)

since
χ(g) = χ(g−1).

13. This now follows on taking characters, since

χCRα(g) = χRα(g)
= χα(g)+χα(g−1)
= χα(g)+χα∗(g)

Since this holds for allg,
CRα = α+α∗.

J

Lemma 13.1 Given a representationα of G overC there exists at most one real
representationβ of G overR such that

α = Cβ.

Proof I By Proposition 1,

Cβ = Cβ′ =⇒ χCβ(g) = χCβ′(g)
=⇒ χβ(g) = χβ′(g)
=⇒ β = β′.

J

Definition 13.2 A representationα of G overC is said to be real ifα = Cβ for
some representationβ overR.

Remarks:
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1. In matrix termsα is real if we can find a complex matrixP such that the
matrices

PB(g)P−1

are real for allg∈G.

2. Sinceβ is uniquely determined byα in this case, one can to some extent
confuse the two (as indeed in speaking ofα as real), although eg if dis-
cussing simplicity it must be made clear whether the reference is toα or to
β.

Lemma 13.2 Consider the following 3 properties of the representationα overC:

1. α is real

2. χα is real, ieχα(g) ∈ R for all g ∈G

3. α = α∗

We have
(1) =⇒ (2)⇐⇒ (3).

Proof I (1) =⇒ (2): If α = Cβ then

χα(g) = χβ(g).

But the trace of a real matrix is necessarily real.
(2)⇐⇒ (3): If χα is real then

χα(g) = χα(g) = χα∗(g)

for all g∈G. Hence
α = α∗.

J

Problems involving representations overR often arise in classical physics,
since the spaces there are normally real, eg those given by the electric and mag-
netic fields, or the vibrations of a system. The best way of tackling such a problem
is usually to complexify, ie to extend the scalars fromR to C. This allows the pow-
erful techniques developed in the earlier chapters to be applied. But at the end of
the day it may be necessary to determine whether or not the representations that
arise are real. The Lemma above gives a necessary condition: ifα is real then
its character must be real. But this condition is not sufficient; and our aim in the
rest of the Chapter is to find necessary and sufficient conditions for reality, of as
practical a nature as possible.
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Definition 13.3 Supposeα is a simple representation overC. Then we say thatα
is strictly complexif χα is not real; and we say thatα is quaternionicif χα is real,
but α itself is not real.

Thus the simple representations ofG over C fall into 3 mutually exclusive
classes:

R real: α = Cβ

C strictly complex:χα not real

H quaternionic:χα real butα not real

Lemma 13.3 Supposeα is a simple representation overC. Then

1. If α is real,Rα = 2β, whereβ is a simple representation overR;

2. if α is strictly complex or quaternionic,Rα = β is a simple representation
overR.

In particular, if χα is not real thenRα must be simple.

Proof I If α is real, sayα = Cβ, then by Proposition 1

Rα = RCβ = 2β.

Conversely, supposeRα splits, say

Rα = β+β′.

Then by Proposition 1,

α+α∗ = CRα = Cβ+Cβ′.

But sinceα andα∗ are simple, this implies (by the unique factorisation theorem)
that

α = Cβ or α = Cβ′.

In either caseα is real. J

This gives a (not very practical) way of distinguishing between the 3 classes:

R: α real⇐⇒ χα real andRα splits

C: α quaternionic⇐⇒ χα real andRα simple

H: α strictly complex⇐⇒ χα not real (=⇒ Rα simple)
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The next Proposition shows that the classification of simple representations
over C into 3 classes leads to a similar classification of simple representations
overR.

Proposition 13.2 Supposeβ is a simple representation overR. Then there are 3
(mutually exclusive) possibilities:

R: Cβ = α is simple

C: Cβ = α+α∗,

H: Cβ = 2α, with α simple withα (andα∗) simple, andα 6= α∗

In case (R), α is real and
I(β,β) = 1.

In case (C), α is strictly complex and

I(β,β) = 2.

In case (H), α is quaternionic and

I(β,β) = 4.

Proof I Since
RCβ = 2β,

Cβ cannot split into more than 2 parts. Thus there are 3 possibilities:

1. Cβ = α is simple

2. Cβ = 2α, with α simple

3. Cβ = α+α′, with α, α′ simple andα 6= α′

Since
I(β,β) = I(Cβ,Cβ)

by Proposition 1, the values ofI(β,β) in the 3 cases follow at once. Thus it only
remains to show thatα is in the class specified in each case, and thatα′ = α∗ in
case (3).

In case (1),α is real by definition.
In case (2),

2χα(g) = χ2α(g) = χβ(g)
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is real for allg∈G. Henceχα(g) is real, and soα is either real or quaternionic. If
α were real, sayα = Cβ′, we should have

Cβ = 2Cβ′

which would imply that
β = 2β′

by Proposition 2. Henceα is quaternionic.
In case (3)

2β = RCβ = Rα+Rα′.

Hence
Rα = β = Rα′.

But then
α+α′ = Cβ = α+α∗.

Hence
α′ = α∗.

Finally, sinceα∗ = α′ 6= α, α is strictly complex. J

Proposition 5 gives a practical criterion for determining which of the 3 classes
a simple representationβ overR belongs to, namely by computingI(β,β) from
χβ. Unfortunately, the question that more often arises is: which class does a given
simple representationα overC belong to? and this is more difficult to determine.

Lemma 13.4 Supposeα is a simple representation of G overC in V . Then

R: if α is real,there exists an invariant symmetric (quadratic) form on V, unique
up to a scalar multiple—but there is no invariant skew-symmetric form on
V;

C: if α is complex, there is no invariant bilinear form on V.

H: if α is quaternionic, there exists an invariant skew-symmetric form on V,
unique up to a scalar multiple—but there is no invariant symmetric form
on V;

Proof I A bilinear form onV is a linear map

V⊗V→ C,

ie an element of
(V⊗V)∗ = V∗⊗V∗.
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Thus the space of bilinear maps carries the representation(α∗)2 of G. Hence the
invariant bilinear maps form a space of dimension

I(1,(α∗)2) = I(1,α∗α∗) = I(α,α∗)

Sinceα andα∗ are simple, this is 0 or 1 according asα = α∗ or not, ie according
as α is either real or quaternionic, or strictly complex. In other words, ifα is
complex there is no invariant bilinear form; while ifα is real or quaternionic there
is an invariant bilinear form onV, sayF(u,v), unique up to a scalar multiple.

Now any bilinear form can be split into a symmetric (or quadratic) part and a
skew-symmetric part; say

F(u,v) = Q(u,v)+S(u,v),

where

Q(u,v) =
1
2

(F(u,v)+F(v,u)) , S(u,v) =
1
2

(F(u,v)−F(v,u))

But it is easy to see that ifF is invariant then so areQ andS. SinceF is the only
invariant bilinear form onV, it follows that either

F = Q or F = S,

ie F is either symmetric or skew-symmetric. It remains to show that the former
occurs in the real case, the latter in the quaternionic case.

Supposeα is real, sayα = Cβ, whereβ is a representation in the real vector
spaceU . We know thatU carries an invariant symmetric form (in fact a positive-
definite one), sayQ(u,u′). But this defines an invariant symmetric formCQ on
V = CU by extension of scalars. So ifα is real,V carries an invariant symmetric
form.

Finally, supposeα is quaternionic. ThenV carries either a symmetric or a
skew-symmetric invariant form (but not both). Suppose the former; sayQ(v,v′) is
invariant. By Proposition 3,β = Rα is simple. Hence there exists a real invariant
positive-definite symmetric form onRV; and this is the only invariant symmetric
form onRV, up to a scalar multiple. But the real part ofQ(v,v′) is also an invariant
form onRV; and it is certainly not positive-definite, since

ℜQ(iv, iv) =−ℜQ(v,v).

This contradiction shows thatV cannot carry an invariant symmetric form. We
conclude that it must carry an invariant skew-symmetric form.J

We deduce from this Proposition the following more practical criterion for
reality.
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Proposition 13.3 Supposeα is a simple representation overC. Then

1
|G| ∑g∈G

χα(g2) =


1 if α is real
0 if α is strictly complex
−1 if α is quaternionic

Proof I Every bilinear form has a unique expression as the sum of its symmetric
and skew-symmetric parts. In other words, the space of bilinear forms is the direct
sum of the spaces of symmetric and of skew-symmetric forms; say

V∗⊗V∗ = VQ⊕VS.

Moreover, each of these subspaces is stable underG; so the representation(α∗)2

in the space of bilinear forms splits in the same way; say

(α∗)2 = αQ +αS,

whereαQ is the representation ofG in the spaceVQ of symmetric forms on V, and
αS is the representation in the spaceVS of skew-symmetric forms.

Now the dimensions of the spaces of invariant symmetric and skew-symmetric
space are

I(1,αQ) andI(1,αS),

respectively. Thus Proposition 6 can be reworded as follows:

R: If α is real then
I(1,αQ) = 1 andI(1,αS) = 0.

C: If α is complex then

I(1,αQ) = 0 andI(1,αS) = 0.

H: If α is quaternionic then

I(1,αQ) = 0 andI(1,αS) = 1.

Thus all (!) we have to do is to compute these 2 intertwining numbers. In fact
it suffices to find one of them, since

I(1,αQ)+ I(1,αS) = I(1,(α∗)2) = I(α,α∗)

which we already know to be 1 ifα is real or quaternionic, and 0 ifα is complex.
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To computeI(1,αQ), choose a basise1, ...,en for V; and let the corresponding
coordinates bex1, ...,xn. Then then(n+1)/2 quadratic forms

x2
i (1≤ i ≤ n), 2xix j (1≤ i < j ≤ n)

form a basis forVQ. Let gi j denote the matrix defined byα(g). Thus if v =
(x1, ...,xn) ∈V, then the coordinates ofgvare

(gv)i = ∑
j

gi j x j .

Hence
g(x2

i ) = ∑
j,k

gi j x jgikxk.

In particular, the coefficient ofx2
i in this (which is all we need to know for the

trace) isg2
ii . Similarly, the coefficient of 2xix j in g(2xix j) is

gii g j j +gi j g ji .

We conclude that

χαQ(g) = ∑
i

g2
ii + ∑

i, j:i< j
(gii g j j +gi j g ji ).

But
χα(g) = ∑

i
gii , χα(g2) = ∑

i, j
gi j g ji .

Thus

χαQ(g) =
1
2

(
χα(g)2 +χα(g2)

)
.

Since

I(1,αQ) =
1
|G| ∑g∈G

χα[2](g),

it follows that

2I(1,αQ) =
1
|G| ∑g∈G

(
χα(g))2 +χα(g2)

)
.

But
1
|G|∑g

χα(g)2 = I(α,α∗).

Thus

2I(1,αQ) = I(α,α∗)+
1
|G|∑g

χα(g2).

The result follows, sinceI(α,α∗) = 1 in the real and quaternionic cases, and 0 in
the complex case. J
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13.1 The endomorphism algebra of a representation

There is another way of looking at the classification of simple representations
over C into real, quaternionic and essentially complex — and one that justifies
that termquaternionic.

Recall that an associative algebra over a fieldk is defined by giving a vector
spaceA overk, together with a map

A×A→ A,

which we denote by(a,b) 7→ ab, and which is both bilinear and associative. The
element 1∈ A is said to be a unity element if 1·a = a ·1 = a for all a∈ A. We
shall use the termalgebrato mean ‘associative algebra with 1’.

Proposition 13.4 If α is a representation of the group G in the vector space V
over k then the G-maps t: V→V, form an algebra over k of dimension I(α,α).

Proof I TheG-maps certainly form a vector space overk of dimension

I(α,α) = dimhomG(V,V).

Moreover, composition of maps defines a multiplication which is both bilinear
and associative. J

A G-mapV→V is often called anendomorphismof theG-spaceV.

Definition 13.4 We denote the algebra of G-maps byEnd(()α).

An algebraA is said to be a division-algebra or skew-field (the two terms are
used interchangeably) if each non-zero elementa∈ A has an inverseb:

ab= 1 = ba.

Proposition 13.5 If α is a simple representation of G thenEnd(α) is a division-
algebra.

Proof I Supposet : V → V is a non-zeroG-map. It is readily verified that kert
and imt are both stable underG. Sinceα is simple, it follows that

kert = 0 orV, im t = 0 orV.

Thus if t 6= 0,
kert = 0, im t = V,
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ie t is injective and surjective. It follows thatt is bijective and so invertible; and it
is a straightforward matter to verify thatt−1 is also aG-map. J

The most familiar example of a non-commutative division-algebra is furnished
by the algebra of quaternionsH Recall thatH is a 4-dimensional algebra overR
with basis 1, i, j,k, so that each quaternionq ∈ H is uniquely expressible in the
form

q = t +xi+y j +zk,

wheret,x,y,z∈ R. Multiplication of quaternions is defined by the familiar rules

i2 = j2 = k2 =−1,

i j = k =− ji , jk = i =−k j, ki = j =−ik,

extended toH by bilinearity, eg

(i +2 j)(1−k) = i− ik +2 j−2 jk =−i +3 j.

It is a straightforward matter to verify that this multiplication isassociative—
in effect one has to verify that

x(yz) = (xy)z

in the 33 = 27 casesx,y,z∈ {i, j,k}. If we observe that the multiplication rules
are invariant under the cyclic permutationi 7→ j 7→ k 7→ i then the number of cases
is reduced to 9, since we may assume eg thatx = i.

There is a conjugacy operation onH analogous to complex conjugation, with

q̄ = t−xi−y j−zk.

It is readily verified that
q1q2 = q2q1

(eg by considering the 9 casesq1,q2 ∈ {i, j,k} and applying bilinearity).
Also

q̄q= t2 +x2 +y2 +z2.

We define|q| to be the positive square-root of this, so that

|q|2 = t2 +x2 +y2 +z2.

Evidently
|q|= 0⇐⇒ q = 0.

It follows thatevery non-zero quaternion q has an inversenamely

q−1 =
q̄
|q|2

.
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Thus the quaternions form askew-fieldor division algebra. (The two terms are
interchangeable.)

The quaternions have a certain uniqueness, as we shall see.

Proposition 13.6 The only finite-dimensional division algebra overC is C itself.

Proof I If A is an algebra overk then we can identifyλ ∈ k with the element
λ ·1∈ A. Thusk can be identified with a subalgebra ofA: k⊂ A.

SupposeA is a finite-dimensional division-algebra overC; and supposeA 6= C.
Let a∈ A\C.

If dim A = n then thenn+ 1 elements 1,a,a2, . . . ,an must be linearly depen-
dent, iea satisfies a polynomial equation of degree≤ n.

Let m(x) be the minimal polynomial ofa, ie the monic polynomial of minimal
degree satisfied bya. Thenm(x) must be irreducible; for ifm(x) = f (x)g(x) then

m(a) = 0 =⇒ f (a)g(a) = 0 =⇒ f (a) = 0 org(a) = 0,

contradicting the minimality ofm(x).
But every polynomial overC factorises completely into linear factors, by the

Fundamental Theorem of Algebra. It follows thatm(x) = x−c, and soa = c∈C.
We conclude thatA = C. J

Proposition 13.7 The only finite-dimensional division algebras overR are R, C
and the quaternionsH.

Proof I SupposeA is a finite-dimensional division algebra overR; and suppose
A 6= R. Let a∈ A\R.

As above,a satisfies a polynomial equation overR; and ifm(x) is the minimal
such polynomial, thenm(x) is irreducible. But an irreducible polynomialm(x)
overR is necessarily linear or quadratic. In effect, ifα ∈ C is a root ofm(x) then
so isᾱ; and

(x−α)(x− ᾱ)

is a polynomial overR satisfied bya.
If m(x) is linear thena∈ R. So

m(x) = x2 +2bx+c,

where
d = b2−ac< 0,

since otherwisem(x) could be factorised overR. Let d =−e2. Then

i =
a+b

e
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satisfies
i2 =−1.

It follows that the elements

{x+yi : x,y∈ R}

form a subalgebra ofA which we can identify withC.
If A = C we are done; otherwise consider the linear map

t : x 7→ ixi−1 =−ixi : A→ A.

Evidently
t2 = 1.

It follows that
A = E1⊕E−1,

whereE1,E−1 are the 1− and−1−eigenspaces oft, ie

E1 = {a∈ A : ai = ia}, E−1 = {a∈ A : ai =−ia}.

(Explicitly,

a =
1
2
(a+ ta)+

1
2
(a− ta),

anda+ ta∈ E1,a− ta∈ E−1.)
EvidentlyC∈E1. We show that in factE1 = C. For supposea∈E1\C. Since

ai = ia it follows thataz= za for all z∈ C. Consider the subalgebraB generated
by C anda, ie the set of elements expressible as polynomials

c0 +c1a+ · · ·+cra
r (ci ∈ C).

Evidently B is a commutative sub-algebra ofA. Moreover it is a division-
algebra, ie the inverse of every non-zero elementb∈ B lies in B. For suppose the
minimal polynomial ofb is

m(x) = xr +a1xr−1 + · · ·+ar .

Thenar 6= 0 sincem(x) is irreducible; and so

b−1 =− 1
ar

(
br−1 +a1br−2 + · · ·+ar−1

)
∈ B.

SinceC⊂ B, we can regardB as a division-algebra overC; and so from above
B = C. Hence

E1 = C.
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If A = C we are done; otherwiseE−1 6= 0. Leta∈ E−1,a 6= 0.
Then

E−1 = aE1 = aC.

For if z commutes withi thenazanti-commutes withi; henceaE1 ⊂ E−1. Con-
versely,a−1 anti-commutes withi; so if a′ also anti-commutes withi thenz =
a−1a′ commutes withi, ie a′ = az∈ aE1.

From the definition ofE−1,

ai =−ia.

It follows that
az= z̄a

for all z= x+yi ∈ C.
In particular, ifz∈ C then

z∈ R⇐⇒ az= za.

Evidentlya2 commutes withi, and so

a2 ∈ C.

In fact, since
a·a2 = a3 = a2 ·a,

it follows that
a2 ∈ R.

Thus
a2 =±d2,

whered ∈ R.
If a2 = d2 then(a−d)(a+d) = 0 and so (since we are in a division-algebra)

a = ±d, contradicting our assumption thata 6= C. Hencea2 = −d2. Thus if we
set

j =
a
d

then
j2 =−1;

while sincej ∈ E−1,
ji =−i j .

Finally, on setting
k = i j =− ji

it is readily verified thati, j,k satisfy Hamilton’s identities, so that

A = H.

J
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13.2 Application to simple representations

If α is a simple representation overC thenI(α,α) = 1 and so End(α) = C. Thus
Proposition 13.6 tells us nothing new; in effect it is a re-statement of Schur’s
Lemma.

But we do learn something new if we consider simple representations over
R. First we note that the intertwining number is invariant under extension of the
scalars.

Proposition 13.8 Supposeβ1,β2 are representations of G overR. Then

I(Cβ1,Cβ2) = I(β1,β2).

Proof I Since
χCβ(g) = χβ(g),

this follows at once from our formula for the intertwining number:

I(β1,β2) =
1
‖G‖ ∑

g∈G

χβ1
(g)χβ2

(g).

But it is also easy to establish directly. If we think in terms of matrices,
I(β1,β2) is the dimension of the space of matricesX satisfying the linear equations

XB1(g) = B2(g)X

for all g∈ G. Now the Proposition follows from the fact that if we have a set of
equations over the fieldk, and ifk⊂ K (ie k is a subfield ofK) then the dimension
of the solution-space overK is equal to the dimension of the solution-space over
k. J

Now we can complete our classification of simple representations ofG over
R.

Proposition 13.9 Supposeβ is a simple representation of the finite group G over
R. Then

1. If β is essentially real, ieCβ is simple, then

I(β,β) = 1

and

End(β) = R;
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2. If β is quaternionic, ieCβ = 2α, then

I(β,β) = 4

and

End(β) = H;

3. If β is essentially complex, ieCβ = α+α∗, whereα∗ 6= α, then

I(β,β) = 2

and

End(β) = C;

Proof I If Cβ is simple then

I(β,β) = I(Cβ,Cβ) = 1 =⇒ End(β) = R.

Similarly, if Cβ = 2α then

I(β,β) = I(2α,2α) = 4 =⇒ End(β) = H.

Finally, if Cβ = α+α∗ then

I(β,β) = I(α+α∗,α+α∗) = 2 =⇒ End(β) = C.

In effect, End(β) is completely determined by its dimension, since there is just
one division-algebra of each dimension 1,2,4.J

These results refer to representations overR; but we shall see next that they
have a bearing on representations overC.

13.3 Representations over the quaternionsH
Although vector spaces are normally defined over acommutativefield k, the ba-
sic concepts of linear algebra carry over unchanged if we allowk to be a non-
commutative orskewfield, The most familiar skew-field is provided by thequater-
nionsH.

If we look at the definitions (and basic properties) ofvector spaceandsub-
space, linear independenceanddependence, spanning set, basisanddimension,
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we see that none of them make use of the commutativity ofk; so all extend to the
non-commutative case.

Thus a vector space overH is defined by giving an additive groupW together
with a map

H×W→W,

which we denote by(q,w) 7→ qw, and which satisfies the rules

1. q(w1 +w2) = qw1 +qw2,

2. (q1 +q2w) = q1w+q2w,

3. q1(q2w) = (q1q2)w,

4. 1w = w.

An n-dimensional vector space overH can be identified in the usual way with the
space ofn− tuplesof quaternionsHn.

The concept of a linear mapt : W1→W2 of vector spaces overH also goes
over unchanged:t is linear if

t(qw) = qt(w)

for all q∈H,w∈W.
But we need to take a little care when representing such maps by matrices. For

simplicity we restrict the discussion to linear mapst : W→W, since this is the
only kind we shall meet. Note that we cannot define a linear mapt : Hn→Hn in
the usual way, by

w 7→ Tw,

ie

w′r = ∑
s

Trsws,

whereT is ann×n matrix with quaternionic entries. For in general

Trs(qws) 6= q(Trsws),

so the map is not linear.
In effect, the matrix must act on the right:

w′ = (q′1, . . . ,q
′
n) = (q1, . . . ,qn)T.

Supposee1, . . . ,en is a basis forW. In the commutative case we define the
associated matrixT by

tes = ∑
r

Trser .
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Quaternions

The quaternions are the only non-commutative finite-dimensional skew-field
overR.

Definition A.1 Anassociative algebraA over a field k is defined by giving a vector
space over k (which we also denote by A) together with a multiplication on A given
by a map

A×A→ A : (a,b) 7→ ab,

which isbilinearandassociative, ie

1. for each a∈ A the maps

x 7→ ax, x 7→ xa : A→ A

are linear; and

2. for all a,b,c∈ A
a(bc) = (ab)c.

The dimension of A is the dimension of the vector space over k.
The element1∈ A is said to be aunity if

a·1 = a = 1·1

for all a ∈ A.

By convention, the unadorned term ‘algebra’ is reserved for ‘associative alge-
bra’. Non-associative algebras (such as Lie algebras and Jordan algebras) should
be explicitly labelled as such.

If there is a unity 1 the algebra is said to be ‘unitary’ or ‘with 1’. Since we
shall be concerned exclusively with associative algebras with 1, we shall use the
term ‘algebra’ in this sense.

Examples:

GpReps-I–0
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1. The complex numbersC form a 2-dimensional algebra over the realsR.

2. Then×n matrices over a fieldk form ann2-dimensional algebra overk.

If e1, . . . ,en is a basis for then-dimensional algebraA then the multiplication
onA is completely determined by then2 productseiej since

(∑
i

λiei)(∑
j

µjej) = ∑
i, j

(λiµj)eiej .

By the same token, the multiplication is associative if then3 identities

(eiej)ek = ei(ejek)

all hold. If 1 is one of the basis elements the identities involving 1 are trivially
true, leaving(n−1)3 identities to verify.

Definition A.2 The quaternion algebraH is the 4-dimensional algebra overR
with basis1, i, j,k and multiplication defined by

i2 = j2 = k2 =−1,

i j = k =− ji , jk = i =−k j, ki = j =−ik.

We should verify that this multiplication is associative. In principle this means
verifying 33 = 27 identities. However, the rules are evidently invariant under
cyclic permutation ofi, j,k. Thus it is sufficient to consider the 9 triple products
with i in first place, ie

i3, i2 j, i2k, i ji , i j 2, i jk, iki, ik j, ik2.

For example,
(i j )k = k2 =−1, i( jk) = i2 =−1.

We leave the other 8 identities to the reader.
The letterH (for Hamilton) is used for the quaternions becauseQ is already

in use for the rationals.

Definition A.3 Each quaternion

q = t +xi+y j +zk

hasconjugate
q̄ = t−xi−y j−zk.
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Proposition A.1 If
q = t +xi+y j +zk

then
qq̄ = q̄q= t2 +x2 +y2 +z2.

Definition A.4 Thenormq∈H is the positive square root

|q|=
√

qq̄

Evidently
|q|= 0⇐⇒ q = 0.

Proposition A.2 Every quaternion q6= 0 has an inverse,

Proof I Let
q∗ = q̄/|q|2.

Then
qq∗ = 1 = q∗q;

and it follows easily thatq∗ is the only quaternion with this property, since

qr = 1 =⇒ q∗(qr) = qast =⇒ (q∗q)r = q∗ =⇒ r = q∗.

J

Definition A.5 The algebra A is said to be adivision-algebraor skew-fieldif each
non-zero a∈ A has an inverse b:

ab= 1 = ba.

We use the terms ‘division algebra’ and ‘skew field’ interchangeably. There
is an almost universal convention that the unadorned word ‘field’ meanscommu-
tative field. On the other hand, the term skew-field or division-algebra includes
commutative field, unless that is explicitly excluded.

Proposition A.3 The only finite-dimensional division-algebras (or skew-fields)
overR areR, C andH.
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Proof I SupposeA is a finite-dimensional skew-field overR.
If A 6= R then we can find an elementa∈ A\R.
Suppose dimA = n. Then the elements 1,a,a2, . . . ,an are linearly dependent

overR, ie a satisfies a polynomial equation

p(a) = 0,

wherep(x) is a polynomial of degree≤ n overR.
Let m(x) be a polynomial satisfied bya of minimal degree. Note that in a

division-algebra
ab= 0 =⇒ a = 0 orb = 0.

For if a 6= 0 then we can multiply by its inverse:

ab= 0 =⇒ a−1(ab) = 0 =⇒ (a−1a)b = 0 =⇒ b = 0.

It follows that the minimal polynomialm(x) must be irreducible overR, ie it
cannot be expressed as the productm(x) = f (x)g(x) of two polynomials overR
of lower degree; for thenf (a)g(a) = 0 and sof (a) = 0 org(a) = 0.

But an irreducible polynomialm(x) overR is necessarily of degree 1 or 2. For
consider the factorisation ofm(x) overC, say

m(x) = (x−α1) · · ·(x−αr).

Each rootαi is either real, or else one of a conjugate pairα, ᾱ of roots. In the first
case(x−α) is a factor ofm(x), and so ism(x) itself; in the second case the real
quadratic(x−α)(x− ᾱ) is a factor ofm(x), and so again ism(x) itself.

If m(x) is linear thena ∈ R, which we have excluded. Hence each element
a∈ A\R satisfies a quadratic equation without real roots.

Supposea has minimal equation

x2 +2Bx+C = 0 (B,C∈ R),

whereB2−C < 0, say
B2−C =−D2.

Then

(a+B)2 =−D2,

ie (
a+B

D

)2

=−1.
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Setting

i =
a+B

D
we see that

i2 =−1,

andA has a subalgebra〈1, i〉> isomorphic toC.
Two observations: Firstly, this subalgebra is not in general unique;A may have

many subalgebras isomorphic toC. Secondly,A is not in general an algebra over
C; for if z∈ C, a∈ A then in general

az 6= za,

ie

a(z·1) 6= z(a·1).

Lemma A.1 The only finite-dimensional commutative algebras overR are R it-
self andC.

Proof of LemmaB If A 6= R thenA has a subalgebra which we can identify with

C. SinceA is commutative, itcanbe regarded as an algebra overC. Then each
a∈ A satisfies a polynomial equationm(a) = 0 wherem(x) is irreducible overC.
But an irreducible polynomial overC is necessarily linear. Hencea∈ C, and so
A = C. C

Returning to the general case, we have seen that ifA 6= R thenA has a subal-
gebra which we can identify withC. If A = C we are done. If not, leta∈ A\C.

Now consider the mapα : A→ A under which

x 7→ ixi−1 =−ixi.

It is easy to see that
α2 = 1.

It follows thatA is the direct sum of the 1- and−1-eigenspaces ofA:

A = E1⊕E−1.

(Explicitly,

x =
1
2
(x+αx)+

1
2
(x−αx)

for eachx∈ A.)
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We have

E1 = {x∈ A : xi = ix}, E−1 = {x∈ A : xi =−ix},

It follows easily that

E1E1⊂ E1, E1E−1⊂ E−1, E−1E1⊂ E−1, E−1E−1⊂ E1.

In particularE1 is a subalgebra ofA, which evidently containsC. We claim
thatE1 = C. For supposeb∈ E1 \C. Consider the sub-algebraB generated byi
anda. (Sinceb satisfies a quadratic equation overR, B consists of the elements
z+wb, wherez,w∈ C.) EvidentlyB is commutative, sincei,a commute.

Now every subalgebraS⊂ A is in fact a division-algebra. For supposes∈ S
has minimal equation

m(x) = xr +c1xr−1 + · · ·cr

overR. (We know of course that the degreer of m(x) is either 1 or 2, but that is
not relevant here.) Thencr 6= 0 sincem(x) is irreducible, and so

b−1 =−c−1
r (br−1 +c1br−2 + · · ·+cr−1).

Thusb−1 is expressible as a polynomial inb, and so belongs toS.
In particularB is a commutative division-algebra, and so by the LemmaB= C.

HenceE1 = C; the only elements inA that commute withi are the elements ofC.
It follows that if A 6= C thenE−1 6= 0. Leta∈ E−1,a 6= 0.
If b∈ E−1 thenib =−bi, and so

zb= bz̄

for all zinC. In particular, ifz∈ C then

z∈ R⇐⇒ az= za.

Consider the elementa2. We know thata∈ E1 = C. But

a(a2) = (a2)a.

It follows thata2 ∈ R.
Furthermorea2 < 0; for if a2 = λ2 (with λ ∈R) thena=±λ, and in particular

a∈ R, contrary to hypothesis.
Hence

a2 =−λ2

for someλ ∈ R. Let
j = a/λ.
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Then
j2 =−1, ji =−i j .

Set
k = i j .

Then — we leave the verification to the reader —

k2 =−1, ki =−ik = j, jk =−k j = i.

ThusA is isomorphic toH. J

A.1 Linear algebra over H
It is perhaps surprising that the basic concepts of linear algebra all go over to
vector spaces overH.

A vector spaceV over H is defined in the usual way, by giving an additive
groupV together with a scalar multiplication

H×V→V : (q,v) 7→ qv,

such that
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My favourite group — A5

Recall thatSn is the group of permutations ofn objects, andAn is the subgroup
formed by the even permutations. Just half the permutations are even (ifn≥ 2);
for if g0 is odd then the odd permutations are those of the formgg0 with g even.

In particular,
‖A5‖= 5!/2 = 60.

A.1 Dodecahedron and icosahedron

Each of the 5 regular solidsS has a dual̄S whose vertices are the centres of the
faces ofS. Thus the dual of the cube is the octahedron, and the dual of the dodec-
ahedron is the icosahedron, while the regular tetrahedron is self-dual.

EvidentlSandS̄have the same symmetry group.
The symmetry group of the regular tetrahedron isS4, since every permutation

of its vertices can be effected by a symmetry. Just half of these symmetries are
proper. (For ifg0 is an improper symmetry, then the improper symmetries are
those of the formgg0 with g proper.) It follows that the proper symmetry group is
A4, since this is the only subgroup ofS4 of index 2.

It is easy to identify the proper symmetries of the regular tetrahedronABCD:

• the identity elementI ;

• 4 rotations through angle 2π/3 about the axesOA,OB,OC,OD (whereO is
the centroid of the tetrahedron);

• 4 rotations through angle−2π/3 about the same axes;

• 3 rotations through angleπ about the axes joining mid-points of opposite
edges.

GpReps-I–0
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Each of these is a conjugacy class in the proper symmetry group; For example,
if g is the rotation aboutOA through 2π/3 thenxgx−1 is the rotation through the
same angle aboutOX, whereX = x(A).

It is no coincidence that the proper symmetries are all rotations; every proper
symmetry of a bounded figureF in 3 dimensions is a rotation about some axis
through the centroidO of F .

To see this, note that every isometry inn dimensions is expressible as the prod-
uct of at mostn+1 reflections in hyperplanes. Very briefly, suppose the isometry
α takes the simplexP0P1 . . .Pn into Q0Q1 . . .Qn. Then we can takeP0, . . . ,Pn into
Q0, . . . ,Qn by successive reflections. Thus ifP0 6= Q0 let ρ0 be the reflection in the
perpendicular bisector ofP0Q0. (If P0 = Q0 let ρ0 = 1.) SupposeP′1 = ρ0(P1). If
P′1 6= Q1 let ρ1 be the reflection in the perpendicular bisector ofP′1Q1. The essen-
tial point is that this reflection leavesQ0 fixed; for sinceα andρ0 are isometries,

d(Q0,Q1) = d(P0,P1) = d(Q0,P
′
1),

ie Q0 is equidistant fromP′1,Q1, and so lies on their perpendicular bisector.
By the same argument, onceP0, . . . ,Pr−1 have been brought toQ0, . . . ,Qr−1

(by at mostr reflections) the next reflection bringingPr+1 to its final positionQr+1

will leave the firstr points fixed.
The original simplex is taken into its final position by a sequence of at most

n+1 reflections; and it is easy to see that the isometryα. is the product of these
reflections.

Two further observations. Firstly, if the isometryα sends a pointO into it-
self then we can take this as the first point of the simplex; so in this caseα is
expressible as the product of at mostn reflections, all in hyperplanes throughO.

Secondly, reflection in a hyperplane is improper. It follows that a proper isom-
etry can only be the product of an even number of reflections.

Putting these ideas together, we deduce that a proper isometry in 3 dimensions
which leaves a pointO fixed is the product of 2 reflections in planes throughO, ie
a rotation about an axis throughO.

Turning to the symmetry groupG of the cube (and the octahedron), consider
the action ofG on the set of 6 faces. LetF = ABCDbe one face. By Lagrange’s
theorem,

‖G‖= ‖O(F)‖ · ‖S(F)‖ ,

whereO(F) is the orbit ofF andS(F) is its stabilizer subgroup. The orbit consists
of all 6 faces, while the stabilizer is the symmetry group of the squareABCD, since
every symmetry of the square extends to a symmetry of the cube. Hence

S(F) = D4,
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and so
‖G‖= 6·8 = 48.

Thus the proper symmetry groupP of the cube has order 24. It is easy to
identify these symmetries, knowing that they are all rotations:

• the identity elementI ;

• 8 rotations through angle±2π/3 about the 4 diagonals of the cube;

• 6 rotations through angle±π/2 about the axes joining the centres of oppo-
site faces;

• 3 rotations through angleπ about the same axes;

• 6 rotations through angleπ about the axes joining mid-points of opposite
edges.

Each of these is a conjugacy class inP. (Note that rotation through−2π/3 about
the diagonalAC′, for example, is the same as rotation through 2π/3 aboutC′A.)

We can identifyP by considering its action on the set of 4 diagonals of the
cube. This gives a homomorphism

θ : P→ S4.

It is easy to see that kerθ = 1, so thatθ is injective. Since‖P‖= ‖S4‖= 24, it is
bijective, ie

P = S4.

It is left to the reader to identify the conjugacy classes ofP described above with
the conjugacy classes ofS4 defined by permutation type.

ReflectionJ in the centre of the cube is improper, andJ2 = I . Also J ∈ Z(G);
for if X is any vertex of the cube, thenX andJX are diametrically opposite. Hence
so aregX andgJX for any symmetryg, sinceg preserves distances. ThusgJX =
JgX; and since this is true for all verticesX,

gJ = Jg.

It follows that

G = P×{I ,J}
= S4×C2.
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Turning to the dodecahedron (and icosahedron), let us (as before) denote the
symmetry group byG and the proper symmetry group byP. By considering the
action ofG on the 12 faces we deduce that

‖G‖= 12·10= 120,

and so
‖P‖= 60.

Again, it is easy to identify these symmetries, knowing that they are all rotations:

• the identity elementI ;

• 6·2= 12 rotations through angle±2π/5 about the 6 axes joining the centres
of opposite faces;

• 12 rotations through angle±4π/5 about the same axes;

• 15 rotations through angleπ about the axes joining mid-points of opposite
edges;

• 10 ·2 = 20 rotations through angle±2π/3 about the 10 diagonals (joining
opposite vertices).

Each of these is a conjugacy class inP. It is easy to deduce from this that
P is simple. For any normal subgroupN / P must be a union of classes, and
must include the class{I}. Thus‖N‖ must be a sum of numbers chosen from
{12,12,15,20}, plus 1. But no such sum divides 60 (except for 1 and 60 itself).

A.2 Simplicity of An

Proposition A.1 An is generated by 3-cycles.

Proof I We argue by induction onn. Suppose

g = (a1 . . .ar)(b1 . . .bs) · · · ∈ An.

We may suppose by the inductive hypothesis that alln elements occur in these
cycles.

Case 1: There are more than 2 cycles ing. In this case we can divide these cycles
into two parts, each of which is even, and so is expressible as a product of
3-cycles by the inductive hypothesis.
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Case 2: There are 2 cycles ing of odd length. In this case each cycle is express-
ible as a product of 3-cycles.

Case 3: ¿ ¿ David Ames ¿ ¿ David Ames

J

A.3 A5 is the smallest non-abelian simple group

To round off this diversion, let us show that there is no non-abelian group with
order< 60.

We know of course that a group of prime order is cyclic. This, together with a
couple of Lemmas, will eliminate most cases.

Lemma A.1 A group of order pq, where p,q are distinct primes, cannot be simple

Proof of LemmaB Supposep > q. Then

np≡ 1 modp, np | q =⇒ np = 1.

Thus there is one Sylowp-subgroup, which must be normal.C

Lemma A.2 A finite p-group has non-trivial centre.

Proof of LemmaB Suppose

‖G‖= pe.

The elementg∈ G lies in a conjugacy class by itself if and only ifg∈ Z(G),
since

xgx−1 = g⇐⇒ xg= gx.

On the other hand, the number of elements in a conjugacy class divides‖G‖,
since

‖[g]‖ · ‖S(g)‖= ‖G‖ .

In this case, therefore, each class containspf elements for somef < e. In partic-
ular, the number of elements in each class[g] is divisible by p, unlessg∈ Z(G).
It follows that the number of elements inZ(G) is divisible byp, and soZ(G) 6= 1.
C

In particular, the only simplep-group isCp.
Although we shall not use this, one consequence of the last Lemma is of some

interest.
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Corollary A.1 A finite p-group contains subgroups of all poossible orders; that
is, if ‖G‖= pe then G contains subgroups of order pf for 0≤ f ≤ e.

Proof of LemmaB Any subgroup ofZ(G) is normal inG. Take an element of

order p in Z(G). Then〈g〉 = Cp / G. ConsiderG/〈g〉. Any normal subgroup of
this is of the formN/〈g〉 whereN/G. Thus the result follows by induction one.
C

Now let us go through the possible orders from 1–59, omitting those excluded
by the above lemmas.

12 We have
n3≡ 1 mod 3, n3 | 4.

Hence
n3 = 4.

The 4 Sylow 3-subgroups contain 4·2= 8 elements of order 3, leaving only
4 elements for the Sylow 2-subgroups, each containing 4 elements. Hence
there is only one such subgroup, which must therefore be normal.

18 We have
n3≡ 1 mod 3, n3 | 2 =⇒ n3 = 1.

Thus the Sylow 3-subgroup is normal.

(Alternatively, a subgroup of index 2 is necessarily normal.)

20 We have
n5≡ 1 mod 5, n5 | 4 =⇒ n5 = 1.

24 We have
n3≡ 1 mod 3, n3 | 8 =⇒ n3 = 4.

The action ofG on the 4 Sylow 3-subgroups gives a homomorphism

θ : G→ S4,

which must be injective ifG is simple. Hence

G = S4,

which is not simple.

28 We have
n7≡ 1 mod 7, n7 | 4 =⇒ n7 = 1.
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30 We have
n3≡ 1 mod 3, n3 | 10=⇒ n3 = 10.

Thus the Sylow 3-subgroups contain 10·2 = 20 elements of order 3. At the
same time,

n5≡ 1 mod 5, n5 | 6 =⇒ n5 = 6.

Thus the Sylow 5-subgroups contain 6·4= 24 elements of order 5. We have
too many elements!

36 We have
n3≡ 1 mod 3, n3 | 4 =⇒ n3 = 4.

Thus we have a homomorphism

θ : G→ S4,

which must be injective ifG is simple. But that is a contradiction since

‖G‖> ‖S4‖ .

40 We have
n5≡ 1 mod 5, n5 | 8 =⇒ n5 = 1.

42 We have
n7≡ 1 mod 7, n7 | 6 =⇒ n7 = 1.

44 We have
n11≡ 1 mod 11, n11 | 4 =⇒ n11 = 1.

45 We have
n3≡ 1 mod 3, n3 | 5 =⇒ n3 = 1.

48 We have
n3≡ 1 mod 3, n3 | 16=⇒ n3 = 4 or 16.

If n3 = 4 then we have a homomorphism

θ : G→ S4,

which must be injective ifG is simple. But that is impossible since‖G‖ >
‖S4‖.
If n3 = 16 then the 16 Sylow 3-subgroups contain 16·2 = 32 elements of
order 3. This leaves only 16 elements for the Sylow 2-subgroups, each of
which contains 16 elements. Hence there is only one Sylow 2-subgroup,
which is therefore normal.
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50 We have
n5≡ 1 mod 5, n5 | 2 =⇒ n5 = 1.

52 We have
n13≡ 1 mod 13, n13 | 4 =⇒ n13 = 1.

54 We have
n3≡ 1 mod 3, n3 | 2 =⇒ n3 = 1.

56 We have
n7≡ 1 mod 7, n7 | 8 =⇒ n7 = 8.

The 8 Sylow 7-subgroups contain 8· 6 = 48 elements of order 7, leaving
just 8 elements. These are enough for just one Sylow 2-subgroup, which is
therefore normal.



Appendix D

The semisimple and nilpotent parts
of a matrix

D.1 Semisimple matrices

Definition D.1 An n× n-matrix A over a field k is said to besemisimpleif it
satisfies a separable polynomial equation m(x) = 0, ie an equation with distinct
roots.

Recall that a necessary and sufficient condition form(x) to be separable is that

gcd(m(x),m′(x)) = 1,

wherem′(x) is the derivative ofm(x).
Clearly any factor of a separable polynomial is separable. The following result

follows at once from this.

Proposition D.1 The matrix A is semisimple if and only if its minimal polynomial
is separable.

Proposition D.2 The matrix A over k is semisimple if and only if it is diagonalis-
able over the algebraic closurēk of k.

Proof I If a matrix overk is semisimple then it will remain semisimple over
any extensionK of k. For the minimal polynomial overK will be a factor of the
minimal polynomail overk.

It is sufficient therefore to consider matrices over an algebraically closed field
K = k̄; and we already saw (in Chapter 2) that such a matrix is diagonalisable.
J

GpReps-I–1
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D.2 Nilpotent matrices

Definition D.2 An n×n-matrix N is said to benilpotentif

Nr = 0

for some r≥ 1.

Proposition D.3 The matrix A is nilpotent if and only if

trAr = 0

for all r ≥ 1.

D.3 The canonical splitting

Theorem D.1 Suppose A is an n× n-matrix over a field k of characteristic 0.
Then A is uniquely expressible in the form

A = S+N,

where S is semisimple, N is nilpotent, and NS= SN. Moreover, S and N are
expressible as polynomials in A.

Proof I We show first that there are polynomialss(x),n(x) ∈ k[x] such thatS=
s(A) is semisimple,N = n(A) is nilpotent, andA = S+N.

Supposem(x) is the minimal polynomial ofA. We know that there is unique
factorisation of polynomials overk, for any fieldk. Let

m(x) = p1(x)e1 · · · pr(x)er ,

wherep1(x), . . . , pr(x) are distinct irreducible polynomials.
Set

p(x) = p1(x) · · · pr(x).

(In other words, each irreducible factor ofm(x) is taken just once inp(x).) Evi-
dently p(x) is separable; and

p(x) |m(x) | p(x)e,

wheree= maxei .
In particular,

p(A)e = 0,
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ie p(A) is nilpotent. Conversely, supposef (A) is nilpotent for some polynomial
f (x) ∈ k[x]. Then

f (A)r = 0 =⇒m(x) | f (x)r =⇒ p(x) | f (x).

Thus f (A) is nilpotent if and only iff (x) is a multiple ofp(x). In particular,

n(x) = p(x)r(x)

for some polynomialr(x).
Suppose

B = A+N,

whereNA= AN; and suppose the minimal polynomials ofA,B arem(x),m1(x).
Then

m(B) = m(A+N) = m(A)+N f(A,N),

since all terms in the expansion except those inm(A) will contain N as a factor.
But m(A) = 0. Hence

m(B) = N f(A,N);

and so
m(B)e = 0

for somee. It follows that
m(x) |m1(x)e;

and similarly
m1(x) |m(x) f .

In other words,m(x) andm1(x) have the same separable part.
In particular, ifA = S+N as in the theorem thenSmust have minimal poly-

nomial p(x). Thus
p(S) = p(A−N) = 0.

In other words,
p(x−n(x))≡ 0 modm(x).

But as we have seem,n(x) = p(x)r(x). Thus we are looking for a polynomialr(x)
such that

p(x− p(x)r(x))≡ 0 modm(x).

We shall show that we can satisfy the stronger congruence

p(x− p(x)r(x))≡ 0 modp(x)e,

by succesively finding solutions to higher powers ofp(x).
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Evidently r(x) = 0 is a solution fore= 1. Suppose we have a solutionr f (x)
for e= f , ie

p(x− p(x)r f (x)) = p(x) f u(x).

Set
r(x) = r f (x)+ p(x) f−1t(x).

Then we have to solve

p(x− p(x)r f (x)− p(x) f t(x))≡ 0 modp(x) f+1,

ie

p(x) f u(x)− p′(x)p(x) f t(x) mod p(x) f+1,

ie

u(x)≡ p′(x)t(x) mod p(x).

But since gcd(p(x), p′(x)) = 1 we can find polynomialsv(x),w(x) such that

v(x)p(x)+w(x)p′(x) = 1;

and then
t(x) =−u(x)w(x)

will satisfy our congruence.
Accordingly, we have found polynomialsn(x) = p(x)r(x) ands(x) = x−n(x)

such thatS= s(A) is semisimple,N = n(A) is nilpotent, andA = S+N.
To prove uniqueness, suppose we had a second solution

A = S′+N′,

whereN′S′ = S′N′. Then
S′ = S+N′′,

whereN′′ = N−N′.
Now S′ andN′ commute withA = S′+ N′; and so they both commute with

S= s(A) andN = n(A). In particular,N andN′ commute. HenceN′′ = N−N′ is
nilpotent; for ifNe = 0 andN′e

′
= 0 then

N′′e+e′ = 0.

From above,S′ has the same minimal polynomialp(x) asS. Thus

p(S+N′′) = p′(S)N′′+N′′2 f (S,N′′) = 0.
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But p′(S) — again from above — is invertible. For since gcd(p(x), p′(x)) = 1 we
can find polynomialsv(x),w(x) such that

v(x)p(x)+w(x)p′(x) = 1;

and then
w(S)p′(S) = I .

Accordingly,
N′′ = N′′2g(S,N),

and thenN′′ is a multiple ofN′′4, of N′′8, etc. Hence

N′′ = 0,

ie N = N′ andS= S′. J

D.4 The result over finite fields

What goes wrong with the above argument ifk is of finitecharacteristic? There is
only one point where the argument fails;the irreducible factors pi(x) of m(x) may
not be separable.

For example, ifk is a field of characteristicp, anda∈ k does not have apth
root ink, then

f (x) = xp−a

is irreducible, but it is not separable since it factorises into

f (x) = (x−b)p

in an extension field ofk.
Actually, the result still holdsif k is perfect, ie if every elementa ∈ k has a

pth root ink. For in that case an irreducible polynomialf (x) overk is necessarily
separable.

To see this, note thatf ′(x) cannot vanish identically; for suppose

f (x) = xn +a1xn−1 + · · ·+an−1x+an.

Then
f ′(x) = nxn +(n−1)a1xn−1 + · · ·+an−1;

and this can only vanish identically if the only non-xero terms are those involving
powersxpr, ie

f (x) = xmp+apx(m−1)p + · · ·+a0.
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But then, sincek is perfect, there are elementsb1,b2, · · · ∈ k such that

ap = bp
1,a2p = bp

2, . . . ,amp = bp
m;

and so
f (x) = g(x)p,

where
g(x) = xm+b1xm−1 + · · ·+bm.

This is particularly significant, sinceall finite fields are perfect. of perfect
fields are the finite fieldsFpn. For if k is a field of characteristicp the map

x 7→ xp : k→ k

is a ring-homomorphism, since

(x+y)p = xp +yp, (xy)p = xpyp;

and this homomorphism is injective sincexp = 0 =⇒ x = 0. Thus if the field is
finite, the homomorphism is surjective, ie every element is apth power.

Thus our result still holds over the finite fieldk= Fq (whereq is a prime-power,
q = pn): Every n×n-matrix A overFq is uniquely expressible in the form

A = S+N,

with S semisimple, N nilpotent, and NS= SN. Moreover, S and N are expressible
as polynomials in A.
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