Chapter 1

Group Representations

Definition 1.1 A representatiort of a group G in a vector space V over K is
defined by a homomorphism

a:G— GL(V).
Thedegreeof the representation is the dimension of the vector space:

dega = dimy V.

Remarks:

1. Recall thaGL (V)—the general linear group orf—is the group of invert-
ible linear maps :V — V.

2. We shall be concerned almost exclusively with representatiofisitef de-
gree that is, infinite-dimensionalector spaces; and these will almost al-
ways be vector spaces ov@ror C. Therefore, to avoid repetition, let us
agree to use the term ‘representation’ to meggresentation of finite de-
gree overR or C, unless the contrary is explicitly stated.

Furthermore, in this first Part we shall be concerned almost exclusively with
finite groups; so let us also agree that the term ‘group’ will méaite
group,unless the contrary is stated.

3. Suppos€ey,...,en} is a basis folV. Then each linear map: V — V is
defined (with respect to this basis) by ms n-matrix T.

Explicitly, _
tej =3 Tje;
|
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or in terms of coordinates,

X1 X1
— T
Xn Xn

Thus a representation Vi can be defined by a homomorphism
a:G— GL(nk),

whereGL (n,k) denotes the group of non-singutax n-matrices ovek. In
other wordsq is defined by giving matrice&(g) for eachg € G, satisfying
the conditions

A(gh) = A(g)A(h)
for all g,h € G; and also
Ale)=1.

. There is another way of looking at representations which perhaps has greater
intuitive content.

Recall that a group is said &cton the seKX if we have a map
Gx X — X:(g,X) — gx
satisfying

(@) (gh)x) = g(hx),
(b) ex=x.

Now suppose&X =V is a vector space. Then we can say Baicts linearly
onV if in addition

(¢) g(u+v) =gu+gy,
(d) g(pv) = p(gv).
Each representatiam of G in V defines a linear action @& onV, by
gv=a(g)v,

and every such action arises from a representation in this way.

Thus the notions ofepresentatiorandlinear actionare completely equiv-
alent. We can use whichever we find more convenient in a given case.
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5. There are 2 other ways of looking at group representations, completely
equivalent to the definition but expressing slightly different points of view.

Firstly, we may speak of the vector spaée with the action ofG on it.

as aG-space. For those familiar with category theory, this would be the
categorical approach. Representation theory, from this point of view, is the
study of the category db-spaces an-maps, where &-map

t:U—=V

from oneG-space to another is a linear map preserving the actidb, o
satisfying
t(gu) =g(tu) (geGueU).

6. Secondly, and finally, mathematical physicists often speak—strikingly—of
the vector spac¥ carryingthe representation.

Examples:

1. Recall that the dihedral groupy is the symmetry group of a squaA&8CD

Figure 1.1: The natural representatiorlof

(Figure[1.1). Let us take coordinat@s, Oy as shown through the cent@
of the square. Then

2 .3
Ds={err“r°c,d,h,v},

wherer is the rotation aboud throughtt/2 (sendingA to B), whilec,d, h,v
are the reflections iAC, BD, Ox, Oy respectively.
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By definition a symmetryg € D4 is an isometry of the plang? sending the
square into itself. Evidentlg must send into itself, and so gives rise to a
linear map
A(g) : R? — R?.

The map

g— A(g) € GL(2R)
defines a 2-dimensional representatmof D4 overR. We may describe
this as thenatural 2-dimensional representation Df,.

(Evidently the symmetry grou@ of any bounded subs&c E" will have
a similar ‘natural’ representation iR".)

The representatiop is given in matrix terms by

e (1O (0 -1y 5 (-1 0) 5 (0 1
0 1) 1 0)° 0 -1) ’

C»—>Old»—>o_1hH10V»—>_0
1 0/’ -1 0)’ 0 -1)° 0o 1)

For example, the rotationis given by

()~()=G 9)6)

Each group relation is represented in a corresponding matrix equation, eg

cd—r2 — 01 o -1y (-1 O
N 10/\-1 0o0) \0O -1/°
The representatiop is faithful, ie the homomorphism defining it is injec-
tive. Thus a relation holds iD,4 if and only if the corresponding matrix

equation is true. However, representations are not necessarily faithful, and
the implication is only one way.

Every finite-dimensional representation can be expressed in matrix form in
this way, after choosing a basis for the vector space carrying the representa-
tion. However, while such matrix representations are reassuringly concrete,
they are impractical except in the lowest dimensions. Better just to keep at
the back of one’s mind that a representatonld be expressed in this way.

2. Supposé&s acts on the seX:

(9,X) — gx.
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Let
C(X) =C(X,k)

denote the space of maps
f:X—k

ThenG acts linearly orC(X)—and so defines a representatpaf G—by
gf(x) = f(g ).
(We needy 1! rather tharg on the right to satisfy the rule
g(hf) = (gh)f.
It is fortunate that the relation
(gh)~*=h""g™

enables us to correct the order reversal. We shall often have occasion to
take advantage of this, particularly when dealing—as here—with spaces of
functions.)

Now suppose thaX is finite; say
X={X1,..., %}

Then
degp =n= | X,

the number of elements K. For the functions
[ lifx=y,
&) = { 0 otherwise.

(ie the characteristic functions of the 1-point subsets) form a bas¥{ ¥6y.
Also

ga( = egX,

?
|

since

(g%
ifgix=y
if g~ x#y
if x=gy

if X # gy

g8/(x)

1
0
1
0
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Thus
g+— P(g)

whereP = P(g) is the matrix with entries

py—{ Lity=o
X 0 otherwise.

Notice thatP is apermutation matrixie there is just one 1 in each row and
column, all other entries being 0. We call a representation that arises from
the action of a group on a set in this wapermutational representation

As an illustration, consider the natural action$§8) on the set{a,b,c}.
This yields a 3-dimensional representatmaf S(3), under which

0 01 010
(abg— |1 0 Of, (ab— (21 0 O
010 001

(These 2 instances actually define the representation, &bogand (ab)
generates(3).)

. A 1-dimensionafrepresentatiom of a groupG overk =R or C is just a
homomorphism
a:G—k*,

wherek* denotes the multiplicative group on the k&t{0}. For
GL(1,k) =k*,

since we can identify the  1-matrix [x] with its single entryx.

We call the 1-dimensional representation defined by the identity homomor-
phism

g—1
(for all g € G) thetrivial representatiorof G, and denote it by 1.

In a 1-dimensional representation, each group element is represented by a
number. Since these numbers commute, the study of 1-dimensional repre-
sentations is much simpler than those of higher dimension.

In general, when investigating the representations of a g&wpe start by
determining all its 1-dimensional representations.

Recall that 2 elementg h € G are said to beonjugateif

h=xgx?!
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for some third element € G. Suppose is a 1-dimensional representation
of G. Then

ath) = axoa(g)ax?)
= axa(gax) !
= a(gaxa(x) !
= a(g),

since the numbers(x),a(g) commute. It follows that a 1-dimensional
representatiors constant on each conjugacy class of G.

Consider the groufss. This has 3 classes (we shall usually abbreviate ‘con-
jugacy class’ taclasy:

{1}, {(abo), (ach)}, {(bc),(ca), (ab)}.

Let us write
s= (abc), t = (bc).

Then (assuming = C)

$=1 = a(s®=1=a(s) =L woruw?
t?=1 — a(s)?=1=a(t)=+1L

But
It follows that

from which we deduce that
a(s) =1

It follows thatS; has just 2 1-dimensional representations: the trivial repre-
sentation
l:g—1,

and theparity representation

) 1 ifgiseven
S'QH{ ~1 ifgisodd

. The corresponding result is true for all the symmetric gr&ggor n > 2);
S, has just 2 1-dimensional representations, the trivial representation 1 and
the parity representatian

To see this, let us recall 2 facts ab@yt
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(a) The transpositioms= (Xxy) generate § ie each permutatiog € S, is
expressible (not uniquely) as a product of transpositions

g=TiTr.

(b) The transpositions are all conjugate.
(This is a particular case of the general fact that 2 permutatioBg in
are conjugate if and only if they are of the sanylic type ie they
have the same number of cycles of each length.)

It follows from (1) that a 1-dimensional representatiorSpfis completely
determined by its values on the transpositions. It follows from (2) that the
representation is constant on the transpositions. Finally, since each transpo-
sition T satisfiest? = 1 it follows that this constant value i51. Thus there

can only be 2 1-dimensional representation§gfthe first takes the value

1 on the transpositions, and so is 1 everywhere; the second takes the value
-1 on the transpositions, and takes the vdlué)" on the permutation

g=T1-"Ty.

ThusS, has just 2 1-dimensional representations; the trivial representation
1 and the parity representatien

. Let’s look again at the dihedral groujy, ie the symmetry group of the
squareABCD. Letr denote the rotation throughy2, takingA into B; and
let c denote the reflection IAC.

It is readily verified that andc generateD,, ie each elemeng € Dy is
expressible as word in r andc (eg g = r2cr). This follows for example
from Lagrange’s Theorem. The subgroup generated d&xydc contains at
least the 5 elementsr2,r3,c, and so must be the whole group. (We shall
sometimes denote the identity element in a group by 1, while at other times
we shall usesorl.)

It is also easy to see thaandc satisfy the relations
=1 ¢%=1rc=crs.

In fact these ardefining relationgor Dy, ie every relation betweanandc
can be derived from these 3.

We can express this in the form

Dy=(rc:r*=c*=1rc=crd).
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Now suppose is a 1-dimensional representation®f. Then we must have

From the last relation
a(r)y?2=1.

Thus there are just 4 possibilities

a(r) =41, a(c) = +1.

It is readily verified that all 4 of these satisfy the 3 defining relationssfor
andt. It follows that each defines a homomorphism

a:.:Dg4— k*.
We conclude thaD4 has just 4 1-dimensional representations.

. We look now at some examples from chemistry and physics. It should be
emphasized, firstly that the theory is completely independent of these ex-
amples, which can safely be ignored; and secondly,wiesdre not on oath
when speaking of physicdt would be inappropriate to delve too deeply
here into the physical basis for the examples we give.

H

Figure 1.2: The methane molecule

First let us look at the methane molecule £HIn its stable state the 4
hydrogen atoms are situated at the vertices of a regular tetrahedron, with
the single carbon atom at its centroid (Figure 1.2).

The molecule evidently has symmetry grdg being invariant under per-
mutations of the 4 hydrogen atoms.

Now suppose the molecule is vibrating about this stable position. We sup-
pose that the carbon atom at the centroid remains fixed. (We shall return to
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this point later.) Thus the configuration of the molecule at any moment is
defined by the displacement of the 4 hydrogen atoms, say

X = (Xi]_,Xiz,Xi3) (I =1, 27 374)
Since the centroid remains fixed,

inj =0 (j=1,2,3).
[

This reduces the original 12 degrees of freedom to 9.

Now let us assume further that ta@gular momentum also remains 0, ie
the molecule is not slowly rotating. This imposes a further 3 conditions on
the x;j, leaving 6 degrees of freedom for the 12 ‘coordinates’ Mathe-
matically, the coordinates are constrained to lie in a 6-dimensional space.
In other words we can find 6 ‘generalized coordinatgs...,gs — chosen

so thatgy = g2 = - - - = g = 0 at the point of equilibrium — such that each

of thex;; is expressible in terms of thog:

Xij = Xij (01, ---,06)-

The motion of the molecule is governed by the Euler-Lagrange equations

d oK\ _ oV
dt \ dgk N 00k

whereK is the kinetic energy of the system, awdits potential energy.
(These equations were developed for precisely this purpose, to express the
motion of a system whose configuration is defined by generalized coordi-
nates.)

The kinetic energy of the system is given in terms of the nmass the
hydrogen atom by

K=-mY %3
AR
On substituting
_ Oxij 0Xij
Xij a—ql(h—f-" +a—q6qe7
we see that

whereK is a positive-definite quadratic form. Although the coefficients of
this quadratic form are actually functions of,...,gs, we may suppose
them constant since we are dealing with small vibrations.
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The potential energy of the system, which we may take to have minimal
value O at the stable position, is given to second order by some positive-
definite quadratic forn@ in the gx:

V=0Q(qL,...,06) +- ..

While we could explicitly choose the coordinatgs and determine the ki-
netic energ\K, the potential energy fori® evidently depends on the forces
holding the molecule together. Fortunately, we can say a great deal about the
vibrational modes of the molecule without knowing anything about these
forces.

Since these 2 forms are positive-definite, we can simultaneously diagonalize
them, ie we can find new generalized coordinaies. ., zs such that

V=R o

The Euler-Lagrange equations now give

2i:_("')izzi (|:1776)

Thus the motion is made up of 6 independent harmonic oscillations, with
frequenciesoy, . . ., We.

As usual when studying harmonic or wave motion, life is easier if we allow
complex solutions (of which the ‘real’ solutions will be the real part). Each
harmonic oscillation then has 1 degree of freedom:

Zj :Cjeiwjt.

The set of all solutions of these equations (ie all possible vibrations of the
system) thus forms a 6-dimensiosalution-space V

So far we have made no use of tBesymmetry of the Ch molecule. But
now we see that this symmetry group acts on the solution spaeéich
thus carries a representatigm,say, ofS;. Explicitly, supposerne & is

a permutation of the 4 H atoms. This permutation is ‘implemented’ by
a unigue spatial isometril. (For example, the permutatiqri23)(4) is
effected by rotation through/B of a revolution about the axis joining the C
atom to the 4th H atom.)

But now if we apply this isometril to any vibrationv(t) we obtain a new
vibrationIv(t). In this way the permutatiortacts on the solution-spave
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In generalthe symmetry group G of the physical configuration will act on
the solution-space V

The fundamental result in the representation theory of a finite g@(gs

we shall establish) is that every representapaf G splits into parts, each
corresponding to a ‘simple’ representationGfEach finite group has a fi-

nite number of such simple representations, which thus serve as the ‘atoms’
out of which every representation &f is constructed. (There is a close
analogy with the Fundamental Theorem of Arithmetic, that every natural
number is uniquely expressible as a product of primes.)

The group% (as we shall find) has 5 simple representations, of dimensions
1,1,2, 3,3. Our 6-dimensional representation must be the ‘sum’ of some of
these.

Itis not hard to see that there is just one 1-dimensional mode (up to a scalar
multiple) corresponding to a ‘pulsing’ of the molecule in which the 4 H
atoms move in and out (in ‘sync’) along the axes joining them to the cen-
tral C atom. (Recall tha®, has just 2 1-dimensional representations: the
trivial representation, under which each permutation leaves everything un-
changed, and the parity representation, in which even permutations leave
things unchanged, while odd permutations reverse them. In our case, the
4 atoms must move in the same way under the trivial representation, while
their motion is reversed under an odd permutation. The latter is impossible.
For by considering the odd permutati¢i®?)(3)(4) we deduce that the first
atom is moving out while the second moves in; while under the action of
the even permutatiofi2)(34) the first and second atoms must move in and
out together.)

We conclude (not rigorously, it should be emphasized!) that
p=1+a+p

where 1 denotes the trivial representatio®gfa is the unique 2-dimensional

representation, anlis one of the two 3-dimensional representations.

Thus without any real work we've deduced quite a lot about the vibrations
of CHa.

Each of these 3 modes has a distinct frequency. To see that, note that our
system — and in fact any similar non-relativistic system — hasa sym-

metry corresponding to the additive grolfp For if (zj(t) : 1< j <6)is

one solution thertz;(t +c)) is also a solution for any constant R.

The simple representations &fare just the 1-dimensional representations

t gt
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(We shall see that the simple representations @laliangroup are always
1-dimensional.) In effect, Fourier analysis — the splitting of a function
or motion into parts corresponding to different frequencies — is just the
representation theory @t.

The actions o, andRR on the solution space commute, giving a represen-
tation of the product groug, x R.

As we shall see, the simple representations of a product géoupl arise
from simple representations GfandH: p = o x 1. In the present case we
must have

p = 1x E(an) +0 x E(oxp) + B x E(ag),

wherew,, wy, w3 are the frequencies of the 3 modes.

If the symmetry is slightly broken, eg by placing the vibrating molecule in
a magnetic field, these ‘degenerate’ frequencies will split, so that 6 frequen-

cies will be seenw, o, why, w4, w3, fy, where eqw, andwy; are close to
w. This is the origin of ‘multiple lines’ in spectroscopy.

The concept obroken symmetryras become one of the corner-stones of
mathematical physics. In ‘grand unified theories’ distinct particles are seen
as identical (like our 4 H atoms) under some large symmetry group, whose
action is ‘broken’ in our actual universe.

. Vibrations of a circular drum. 7P]. Consider a circular elastic membrane.
The motion of the membrane is determined by the function

Z(xyt) (Y <r?

wherezis the height of the point of the drum at positipgy).
Itis not hard to establish that under small vibrations this function will satisfy

the wave equation
T 0%z N 0%z\ 0%z
2 "oy ) Paz
whereT is the tension of the membrane apdits mass per unit area. This

may be written
Pz P2\ 10%
ox2  0y2) c2ot2’

wherec = (T /p)¥/2 is thespeedof the wave motion.

The configuration ha®(2) symmetry, wher®©(2) is the group of 2-dimensional
isometries leaving the cent@fixed, consisting of the rotations abdband
the reflections in lines througd.
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Although this group is not finite, it isompact As we shall see, the repre-
sentation theory of compact groups is essentially identical to the finite the-
ory; the main difference being that a compact group has a countable infinity
of simple representations.

For example, the grouP(2) has the trivial representation 1, and an infinity
of representationB(1),R(2),..., each of dimension 2.

The circular drum has corresponding modé§0),M(1),M(2),..., each
with its characteristic frequency. As in our last example, after taking time
symmetry into account, the solution-space carries a represengpatibtine
product grougO(2) x R, which splits into

1x E(o) +R(1) x E(wn) +R(2) x E(wp) + -

. In the last example but one, we considered the 4 hydrogen atoms in the
methane molecule as particles, or solid balls. But now let us consider a
single hydrogen atom, consisting of an electron moving in the field of a
massive central proton.

According to classical non-relativistic quantum mechan®sthe state of
the electron (and so of the atom) is determined twase functionp(x,y, z t),
whose evolution is determined I8chibdinger’s equation

oy

HereH is thehamiltonian operatorgiven by

m?
HY = —Z—mD W+V(r)y,

wheremis the mass of the electrovi(t) is its potential energy; is Planck’s
constant, and

P Y oy
20 —
0%y + Y + 57

~ 0x2
Thus Schrodinger’s equation reads, in full,

oY R (0%Y oAy 0%\ €
" = <6x2+0y2 622)_Tw'

ot~ 2m

The essential point is that this idiaear differential equation, whose solu-
tions therefore form a vector space, gwution-space

We regard the central proton as fixedat(A more accurate account might
takeO to be the centre of mass of the system.) The system is invariant under
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the orthogonal grou@®(3), consisting of all isometries — that is, distance-
preserving transformations — which lea@dixed. Thus the solution space
carries a representation of the compact groyp).

This group is a product-group:
O(3) = SO(3) x Cy,

whereC; = {I,J} (J denoting reflection if®), while SO(3) is the subgroup
of orientation-preserving isometries. In fact, each such isometry is a rotation
about some axis, sBO(3) is group of rotations in 3 dimensions.

The rotation grougsO(3) has simple representatioBg, D1, D, ... of di-
mensions 13,5,.... To each of these correspondmadeof the hydrogen
atom, with a particular frequeneyand corresponding energy le\ek hw.

These energy levels are seen in the spectroscope, although the spectral lines
of hydrogen actually correspondddferencesetween energy levels, since
they arise from photons given off when the energy level changes.

This idea — considering the space of atomic wave functions as a representa-
tion of SO(3) gave the first explanation of the periodic table of the elements,
proposed many years before by Mendeleev on purely empirical grojhds [

The discussion above ignores g@nof the electron. In fact representation
theory hints strongly at the existence of spin, since the ‘double-covering’
SU(2) of SO(3) adds the ‘spin representationsy ,, D3/, ... of dimen-
sions 24,... to the sequence above, as we shall see.

Finally, it is worth noting that quantum theory (as also electrodynamics) are
linear theories, where the Principle of Superposition rules. Thus the appli-
cation of representation theory is exact, and not an approximation restricted
to small vibrations, as in classical mechanical systems like the methane
molecule, or the drum.

. The classification of elementary particles.?].[ Consider an elementary
particleE, eg an electron, in relativistic quantum theory. The possible states
of E again correspond to the points of a vector spdceViore precisely,
they correspond to the points of tipeojective space f/) formed by the
rays or 1-dimensional subspaces,\6f For the wave functiong andpy
correspond to the same statetof

The state spacé is now acted on by thBoinca€ group E1,3) formed by
the isometries of Minkowski space-time. It follows thatcarries a repre-
sentation oE(1, 3).
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Each elementary particle corresponds to a simple representation of the
Poincate group E1,3). This group is not compact. It is howeverLie
group and — as we shall see — a different approach to representation the-
ory, based othie algebras allows much of the theory to be extended to this
case.

A last remark. One might suppose, from its reliance on linearity, that rep-
resentation theory would have nole to play in curved space-time. But

that is far from true. Even if the underlying topological space is curved, the
vector and tensdiieldson such a space preserve their linear structure. (So
one can, for example, superpose vector fields on a sphere.) Thus represen-
tation theory can still be applied; and in fact, the so-cafjadge theories
introduced in the search for a unified ‘theory of everything’ are of precisely
this kind.
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Exercises

All representations are over, unless the contrary is stated.
In Exercises 01-11 determine all 1-dimensional representations of the given group.

1xCo 2 % C3 3 Cp 4 5 Dy 5 D3
6 sk Dpy 7 s Qg 8wk Ay 9 sk Ap 10+ Z
11 %ok Do = (1,8: 2 = 1,rsr =5)

SupposeG is a group; and supposgh € G. The elemenfg,h] = ghgth~1is
called thecommutatorof g andh. The subgroufs’ = [G, G] is generated by all
commutators irG is called the commutator subgroup,d®rived groupof G.

12 s+ Show thatG’ lies in the kernel of any 1-dimensional representapaf G,
ie p(g) acts trivially ifg e G'.

13 s+ Show thatG' is a normal subgroup db, and thatG/G' is abelian. Show
moreover that iK is a normal subgroup db thenG/K is abelian if and only if
G’ c K. [In other words,G' is the smallest normal subgroup such tBgG’ is
abelian.)

14 » Show that the 1-dimensional representation$sdbrm an abelian group
G* under multiplication. [Nb: this notatio®* is normally only used whe® is
abelian.]

15« Show thatC;;, = C,,.
16 ==« Show that for any 2 groups, H

(GxH)"=G"xH".

17 s By using the Structure Theorem on Finite Abelian Groups (stating that
each such group is expressible as a product of cyclic groups) or otherwise, show
that

for any finite abelian group.

18« Suppos® : G — H is a homomorphism of groups. Then each representation
a of H defines a representati@u of G.

19« Show that the 1-dimensional representation&afnd ofG/G’ are in one-
one correspondence.

In Exercises 20—24 determine the derived gr@Jpf the given groufs.

20 0k Cp 21 sk Dy 22 % 7 23 skik Doo
24 s Qg 25w S 26 w6 Ag 27 sk An



Chapter 2

Equivalent Representations

Every mathematical theory starts from some notion of equivalence—an agree-
ment not to distinguish between objects that ‘look the same’ in some sense.

Definition 2.1 Supposen, 3 are two representations of G in the vector spaces
U,V over k. We say that and 3 are equivalentand we writea = 3, if U and V
are isomorphic G-spaces.

In other words, we can find a linear map
t:U—V
which preserves the action & ie

t(gu) =g(tu) forallge G,ueU.

Remarks:
1. Suppose& andf3 are given in matrix form:
a:g—A(Q), B:g— B(g).

If a =3, thenU andV are isomorphic, and so in particular dom= dimf3,
ie the matriceg\(g) andB(g) are of the same size.

Suppose the linear mapU — V is given by the matridP. Then the condi-
tiont(gu) = g(tu) gives

B(g) = PA(g)P !

for eachg € G. This is the condition in matrix terms for two representations
to be equivalent.

GpReps-I-1
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2. Recall that twan x n matricesS T are said to besimilar if there exists a
non-singular (invertible) matrif such that

T=PSP™

A necessary condition for this is thAtB have the same eigenvalues. For
the characteristic equations of two similar matrices are identical:

det(PSP*—Al) = detPde(S—Al)detP*
= defS—Al).

3. In general this condition is necessary but not sufficient. For example, the

matrices
10 11
0 1)’ 01
have the same eigenvalues 1,1, but are not similar. (No matrix is similar to

the identity matrix exceptl itself.)

However, there is one important case, or particular relevance to us, where
the converse is true. Let us recall a result from linear algebra.

An nx n complex matrix A is diagonalisable if and only if it satisfies a
separable polynomial equation, ie one without repeated roots.

It is easy to see that A is diagonalisable then it satisfies a separable equa-

tion. For if
A1

A2

thenA satisfies the separable equation

m(X) = (X—A1)(X—Az)---=0.

The converse is less obvious. Suppgsstisfies the polynomial equation
P(X) = (X=A1)---(Xx=Ar) =0

with A1, ..., A; distinct. Consider the expression off(x) as a sum of par-

tial fractions: L a a
—_— 1 .o .
p(x)_x—)\ljL +x—)\r'
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Multiplying across,

1=aQ1(X) +--- +aQr(x),

where

Q09 =[0x-y) = s
J# !

Substitutingx = A,

l =a1Q1(A) + - +a Qr (A).

Applying each side to the vectorc V,

v = aQi(AV+---+aQr(AV
= Vi+---+W,

say. The vectoy; is an eigenvector ol with eigenvalue\;, since

(A=Ai)Vvi = gp(A)v=0.

Thus every vector is expressible as a sum of eigenvectors. In other words
the eigenvectors oh span the space.

But that is precisely the condition f&k to be diagonalisable. For we can
find a basis fo consisting of eigenvectors, and with respect to this basis
A will be diagonal.

. It is important to note that while each matAxg) is diagonalisablesepa-
rately, we cannot in general diagonalise all theg) simultaneously That
would imply that theA(g) commutedwhich is certainly not the case in
general.

. However, we can show th#tAj,Ay,... is a set of commuting matrices
then they can be diagonalised simultaneously if and only if they can be
diagonalised separately.

To see this, supposeis an eigenvalue od;. Let
E={v:Aiv=Av}
be the corresponding eigenspace. Thdn stable under all th4y, since

ve E= A;(Av) = AAV=NAV— AVEE.
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Thus we have reduced the problem to the simultaneous diagonalisation of
the restrictions ofy, Az, ... to the eigenspaces @f. A simple inductive
argument on the degree of tAeyields the result.

In our case, this means that we can diagonalise some (or all) of our repre-
sentation matrices

A<gl)7A(92)7 s
if and only it these matrices commute.
This is perhaps best seen as a result on the representations of abelian groups,
which we shall meet later.
6. Tosummarise, two representati@ng are certainlynotequivalentifA(g), B(g)
have different eigenvalues for soge& G.

Suppose to the contrary thAfg),B(g) have the same eigenvalues for all
g € G. Then as we have seen

A(9) ~ B(9)
for all g, ie
B(g) = P(9)A(9)P(9)
for some invertible matri®(g).

Remarkably, we shall see that if this is so forg# G, then in facto andf3
are equivalent. In other words, if such a mati¢g) exists for allg then we
can find a matri¥? independent of guch that

B(g) = PA(g)P*
forallge G.
7. Supposé ~ B, ie
B=PAP L

We can interpret this as meaning thatnd B represent the same linear
transformation, under the change of basis define.by

Thus we can think of two equivalent representations as being, if effect, the
samerepresentation looked at from two points of view, that is, taking two
different bases for the representation-space.

Example:Let us look again at the natural 2-dimensional real representatan
the symmetry grouf, of the squareABCD. Recall that when we took coordi-
nates with respect to axé&x, Oy bisectingDA, AB, p took the matrix form

S'_>0—1 c|—>01
1 0 1 0)’
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wheresis the rotation through a right-angle (sendtp B), andcis the reflection
in AC.
Now suppose we choose instead the 228sOB. Then we obtain the equiv-

alent representation
sH<O —1> }_)(1 0 )
1 0 0 -1/
We observe that has the same eigenvaluesl, in both cases.
Since we have identified equivalent representations, it makes sense to ask for
all the representations of a given group G of dimensiorsay. What we have
to do in such a case is to give a list@fdimensional representations, prove that
everyd-dimensional representation is equivalent to one of them, and show also
that no two of the representations are equivalent.
It isn’t at all obvious that the number of such representations is finite, even
after we have identified equivalent representations. We shall see later that this is
so: a finite group G has only a finite number of representations of each dimension.

Example:Let us find all the 2-dimensional representations dverf
S=(st: S =t2= 1,St:t82>,

that is, all 2-dimensional representatiansto equivalence
Supposean is a representation di3) in the 2-dimensional vector spate
Consider the eigenvectors afThere are 2 possibilities:

1. s has an eigenvect@ with eigenvalue\ # 1. Sinces® = 1, it follows that
A =1, ieA =woruw’.

Now let f =te. Then
sf = ste=tse = \te = A\?f.

Thusf is also an eigenvector sf although now with eigenvecta?.

Sinceeand f are eigenvectors corresponding to different eigenvalues, they
must be linearly independent, and therefore span (and in fact form a basis
for) V:

V= (e f).

Sincese= Ae, sf = A%f, we see thas is represented with respect to this

basis by the matrix
- A O
0 A )



GpReps-1-6

On the other hande= f, tf =t%e= e, and so

t»—>01
1 0)/)°

The 2 casea = w, w? give the representations

) w 0 i 0 1\
@ s=low ) "1 0)
. « 0 0 1),
B. S|—>( 0 (x))’ t|—>(l O)’

In fact these 2 representations are equivalent,

GZB’

since one is got from the other by the swapping the basis elenetits:
f,e.

. The alternative possibility is that both eigenvalues afe equal to 1. In
that case, sinceis diagonalisable, it follows that

S— | = 10
~\0 1

with respect to some basis. But then it follows that this remains the case
with respect to every basisis always represented by the matrix

In particular,sis always diagonal. So if we diagonalise-as we know we
can—then we will simultaneously diagonalisandc, and so too all the

elements 0Dg.
S 10 t— A0
0 1)’ 0 u/°

Then it is evident that

Suppose

S— 1 t—A

and
Ss—1Lt—u

will define two 1-dimensional representations®f But we know these
representations; there are just 2 of them. In combination, these will give 4
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2-dimensional representations & However, two of these will be equiv-
alent. The 1-dimensional representations 1 armgive the 2-dimensional
representation

s»—>10 t»—>lo
0 1)’ o -1/

(Later we shall denote this representation by €, and call it thesumof 1
ande.)

On the other hand; and 1 in the opposite order give the representation

S'_)lo t|—>_10
0 1)’ o 1)/

This is equivalent to the previous case, one being taken into the other by the
change of coordinatds,y) — (y,x). (In other wordsg+1=1+¢.)

We see from this that we obtain just 3 2-dimensional representatia®s of
in this way (in the notation above they will bet11, 1+ € ande + €).

Adding the single 2-dimensional representation from the first case, we con-
clude thatSs has just 4 2-dimensional representations.

It is easy to see that no 2 of these 4 representations are equivalent, by consid-
ering the eigenvalues sfandc in the 4 cases.
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Exercises

All representations are over, unless the contrary is stated.

In Exercises 01-15 determine all 2-dimensional representations (up to equiva-
lence) of the given group.

1% Co 2 % C3 3+ Cy 4 s Dy 5 sk Dy
6 s« Dg 7 s Dpy 8wk S3 9 sk §y 10 weeer §,
11 s Ag 12 sebkr An 13kx Qg 14+ Z 15 skt Do

16 ==+ Show that a real matriA € Mat (n,R) is diagonalisable oveR if and only
if its minimal polynomial has distinct roots, all of which are real.

17 s+ Show that a rational matrid € Mat(n,Q) is diagonalisable ove® if and
only if its minimal polynomial has distinct roots, all of which are rational.

18 If 2 real matricesA, B € Mat (n,R) are similar overC, are they necessarily
similar overR, ie can we find a matri® € GL (n,R) such thaB = PAP~1?

19« If 2 rational matriced\, B € Mat (n,Q) are similar overC, are they neces-
sarily similar overQ?

200 If 2 integral matrice\, B € Mat (n, Z) are similar overC, are they neces-
sarily similar overZ, ie can we find an integral matriR € GL (n,Z) with integral
inverse, such tha = PAP~1?

The matrixA € Mat(n,k) is said to besemisimpléf its minimal polynomial has
distinct roots. It is said to brilpotentif A" = 0 for somer > 0.

21+« Show that a matriA € Mat (n,k) cannot be both semisimple and nilpotent,
unlessA = 0.

22w« Show that a polynomigb(x) has distinct roots if and only if
ged(p(x), p'(x)) = 1.
23 #=x Show that every matrid € Mat (n, C) is uniquely expressible in the form
A=S+N,
whereSis semisimpleN is nilpotent, and
SN=NS

(We call S and N the semisimple and nilpotent parts of A.)

24 =+« Show thatSandN are expressible as polynomialsAn
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25w Suppose the matri® € Mat (n,C) commutes with all matrices that com-
mute withA, ie
AX=XA=— BX=XB.

Show thatB is expressible as a polynomial A



Chapter 3

Simple Representations

Definition 3.1 The representation of G in the vector space V over Kk is said to
besimpleif no proper subspace of V is stable under G.

In other wordsg is simple if it has the following property: Ifl is a subspace
of V such that
geGueU =gueU

then eithet =0 oruU =V.

Proposition 3.1 1. A 1-dimensional representation over k is necessarily sim-
ple.

2. Ifais a simple representation of G over k then

dima < [|G].

Proof » (1) is evident since a 1-dimensional space has no proper subspaces, stable
or otherwise.
For (2), suppose is a simple representation &in V. Take anw #0inV,
and consider the set of allansforms gwfV. LetU be the subspace spanned by
these:
U=(gv:geG).

Eachg € G permutes the transforms @f since
g(hv) = (gh)v.

It follows thatg senddJ into itself. ThusU is stable unde6. Sincea is simple,
by hypothesis,
V=U.

GpReps-I-1
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But sinceU is spanned by thgG|| transforms of,
dimV = dimU < ||G|.

<

Remark:This result can be greatly improved, as we shall sek 4fC—the case
of greatest interest to us—then we shall prove that

dima < ||G| 2

for any simple representatian
We may as well announce now the full result. Supp@sis a finite group.
Then we shall show (in due course) that

1. The number of simple representationsodverC is equal to the numbexr
of conjugacy classes G;

2. The dimensions of the simple representations. ., o5 of G overC satisfy
the relation
dim?0; 4 --- +dim?0s = ||G||.

3. The dimension each simple representatipdivides the order of the group:

dima; | |G-

Of course we cannot use these results in any proof; and in fact we will not
even use them in examples. But at least they provide a useful check on our work.

Examples:

1. The first stage in studying the representation theory of a g@igpto de-
termine the simple representationgaf

Let us agree henceforth to adopt the convention that if the scalar field k is
not explicitly mentioned, then we may take it that K.

We normally start our search for simple representations by listing the 1-
dimensional representations. In this case we know $atas just 2 1-
dimensional representations, the trivial representation 1, and the parity rep-
resentatiorz.

Now suppose thatr is a simple representation & of dimension> 1.
Recall that
S=(st:$=t>=1 /;st=ts),

wheres= (abc), /;t = (ab).
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Let e be an eigenvector &f Thus

se= Ae,
where
S=1—=N=1=—=X=1, w, orw’
Let
f =te
Then

sf = ste=tse= A’te = \?f.
Thusf is also an eigenvector af but with eigenvalué?.

Now consider the subspace
U=(ef)

spanned by andf. ThenU is stable undes andt, and so undegs. For
se=\e, sf=A%f te=f, tf =t’e=e
It follows, sincea is simple, that
V =U.

So we have shown, in particular, that the simple representatiofis @dn
only have dimension 1 or 2.

Let us consider the 3 possible values Xor

(a) A = w. In this case the representation takes the matrix form
s w O o 01
0 o )’ 10)
(b) A = w?. In this case the representation takes the matrix form
- W 0 (01
0 w)’ 1 0)°

But this is the same representation as the fishce the coordinate
swap(x,y) — (y,X) takes one into the other.
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(c) A =1. Inthis case
se=¢ sf=f—=—sv=vforallveV.

In other wordss acts as the identity o¥. It follows thats is repre-
sented by the matrikwith respect tanybasis oiV.

(More generally, igy € G is represented by a scalar multipeof the
identity with respect to one basis, then it is representeglbwith
respect to every basis; because

P(pHPt=opl,

if you like.)
So in this case we can turntpleavingsto ‘look after itself’. Lete be
an eigenvector df. Then the 1-dimensional space

U={(e)
is stable undegs, since
se=eg /;te=+te

Sincea is simple, it follows thay = U, ieV is 1-dimensional, con-
trary to hypothesis.

We conclude tha$s has just 3 simple representations
1, e anda,

of dimensions 1, 1 and 2, given by

. Now let us determine the simple representations (&Yyeaf the quaternion
group

Qg=(st:s* =1 =12 st=ts),
wheres=i, /;t = j. (Itis best to forget at this point that one of the elements
of Qg is called—1, and another, since otherwise we shall fall into endless
confusion.)
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We know thatQg has four 1-dimensional representations, given by

S—+1 t— +1.

Supposean is a simple representation §fg in V, of dimension> 1. Lete
be an eigenvector af

se= \e,
where
S=1=A=214i
Let
te=f.
Then

sf = ste=tse = A3te = A3f.

So as in the previous exampleijs also an eigenvector sf but with eigen-
valueA®,

Again, as in that example, the subspace
U={(ef)
is stable undeQg, since
se=Ae, sf=A3f, te=f, tf =t?e=s’e=M\%e

SoV =U, and{e, f} is a basis foN. With respect to this basis our repre-
sentation takes the form

SH}\O tHOAZ
0 A3 ) 1 0 )

whereA = £1, +£i.
If A = 1 this representation is not simple, since the 1-dimensional subspace

((1,1))

is stable unde@sg. (This is the same argument as before. Every vector is an
eigenvector ok, so we can find a simultaneous eigenvector by taking any
eigenvector of.)

The same argument holdsXf= —1, sinces is represented by with re-
spect to one basis, and so also with respect to any basis. Again, the subspace

(L,D)
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is stable undeQg, contradicting our assumption that the representation is
simple, and of dimensior 1.

We are left with the cases= +i. In fact these are equivalent. FOAI= —i,
thenf is ans-eigenvector with eigenvalue® = i. So takingf in place ofe
we may assume that=i.

We conclude thag has just 5 simple representations, of dimensions 1,1,1,1,2,

given by

s—1/it—1
s—1/it— -1
S——1/it—1
s——1/it— -1

() (23)

We end by considering a very important cagkelian(or commutative) groups.

Q © < T P

Proposition 3.2 A simple representation of a finite abelian group o@eis nec-
essarily 1-dimensional.

Proof » Suppose € A. LetA be an eigenvalue &, and let
E(A\)={veV:av=Av}.

be the corresponding eigenspace.
ThenE(A) is stable under AFor
be Ave E(A) = a(bv) = (ab)v= (ba)v=b(av) = b(Av) = A(bv)
= bveE(A).

ThusE(A) is stable undeb, and so undef. But sinceV is simple, by hypothesis,

it follows that
EN) =V.

In other wordsa acts as a scalar multiple of the identity:
a=Al.

It follows thateverysubspace 0¥ is stable undea. Since that is true for each
ac A, we conclude that every subspacé/af stable undeA. Therefore, since
is simple,V has no proper subspaces. But that is only true iNdim1l. <
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Example:Consider the group
D,={l,ab,c:a?=b*=c?>=1, bc=cb=a, ca=ac=b, ab=ca=c}.

This has just four 1-dimensional representations, as shown in the following table.

1 a b ¢
111 1 1 1
pir 1 -1 -1
vil -1 1 -1
pi1 -1 -1 1
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Exercises

In Exercises 01-10 determine all simple representations of the given group over
C.

1+ Co 2% C3 3+ Cy 4 s Do 5 s Dy

6 sk Dg 7 w0k Dy 8 S 9 sk Ay 10 seeeex Qg
In Exercises 11-20 determine all simple representations of the given group over
R.

11+ Cy 12 50+ Cg 135 Cy 14 5+ Dy 15 sk Dy

16 sk Dsg 17 sk Dpy 18 srkk S3 19 sorbir Ay 20 k¢ Qg

In Exercises 21-25 determine all simple representations of the given group over
the rational®.

21 500k Cpy 22wk Dpy 23 k¢ S3 24 s Qg 25 sk Ag



Chapter 4

The Arithmetic of Representations

4.1 Addition

Representations can be added and multiplied, like numbers; and the usual
laws of arithmetic hold. There is even a conjugacy operation, analogous to
complex conjugation.

Definition 4.1 Supposen, 3 are representations of G in the vector space®/U
over k. Theru + 3 is the representation of G in @V defined by the action

g(udv) =gudgv.

Remarks:

1. Recall that) @V is the cartesian product &f andV, where however we
write u@ v rather than(u,v). The structure of a vector space is defined on
this set in the natural way.

2. Note thato + 3 is only defined whem, 3 are representations of tlsame
groupG over thesamescalar fieldk.

3. Suppose@, 3 are given in matrix form

a:g—A(9), B:g— B(g).

Thena + 3 is the representation
Al@ O
gH( 0 B(g))

GpReps-I-1
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Example: Let us look again at the 2-dimensional representatiang, ys of S3
overC defined in Chapter 2

ViiS w 0 e 10,y2:sH w 0 e 1 0 7
0 o 01 0 w 0 -1

s w 0 s -1 0
¥3- 0 )’ 0o -1)°
We see now that
VYi=1+1 vy2=1+¢€ y3=¢€+E¢,

where 1 is the trivial 1-dimensional representatio®gffande is the 1-dimensional
parity representation
s—1 t— -1

(We can safely write + 1= 2,4 & = 2¢.)

Proposition 4.1 1. dim(a + ) = dima +dimp;
2. B+a=a+p;

3.a+(B+y) =(a+B)+Y.

Proof » These are all immediate. For example, the second part follows from the
natural isomorphism

VU —UEPV :vau—usv.

4.2 Multiplication

Definition 4.2 Supposean, 3 are representations of G in the vector spaced/U
over k. Theruf is the representation of G in ®V defined by the action

gULOVI+ -+ U V) =gl ®gV1 +--- gl D gV

Remarks:
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1. Thetensor product URV of 2 vector spaced andV may be unfamiliar.
Each element dl ®V is expressible as a finite sum

Up ®@Vi+---+ U @ Vr.
If U has basigey,...,en} andV has basig f1, ..., fn} then themnelements
gxf; (i=1....mj=1..,n)
form a basis fotJ @V. In particular
dim(U ®V) = dimU dimV.

(It is a common mistake to suppose that every elemetdt@fV is express-
ible in the formu® v. That is not so; the general element requires a finite
sum.)

Formally, the tensor product is defined as the set of formal sums
Ul ®@Vy+ -+ U @V,

where 2 sums define the same element if one can be derived from the other
by applying the rules

(U14+U2) QV=U1 @V+U2 @V, UR (V1+V2) = UR V] +UR V2, (PU) QV=U®X (pV).
The structure of a vector space is defined on this set in the natural way.

2. As witha + 3, af is only defined whe,  are representations of the same
groupG over the same scalar fiekd

3. Itis importantotto writea x (3 for a3, as we shall attach a different mean-
ing toa x (3 later.

4. Suppose, 3 are given in matrix form
a:g—A(g), B:g—B(9)
Thenaf is the representation
aB:g— A(g) ® B(g).

But what do we mean by the tensor prod8¢ei T of 2 square matriceS T?
If S=sj is anmx m-matrix, andT = ti is ann x n-matrix, thenS® T is
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themnx mnmatrix whose rows and columns are indexed by the gaiks
where 1<i <m,1 <k < n, with matrix entries

(ST ki) = SjTk-

To write out this matrixS® T we must order the index-pairs. Let us settle
for the ‘lexicographic order’

(1,1),(1,2),...,(L,n),(2,2),...,(2,0),...,(M1),...,(m,n).

(In fact the orderingloes not mattefor our purposes. For if we choose a
different ordering of the rows, then we shall have to make the same change
in the ordering of the columns; and this double change simply corresponds

to a change of basis in the underlying vector space, leading to a similar
matrix toS® T.)

Example:Consider the 2-dimensional representatoof S3 overC
a:S— ® 0 {— 01
' 0 )’ 10

We shall determine the 4-dimensional representatide: aa. (The notatiorn?
causes no problems.) We have

avis=1 g , U ?0 10
e (5@ )®(6 @) - (16)®(10)

It is simply (!) a matter of working out these 2 tensor products. In fact

ww w0 0w 0.0
w0®w0 | w0 w«? 0.0 0
0 o 0 o - Ow 0.0 wWw -0

0.0 0-? W0 o o
@ 000
_ 0 100
- 0 01 0}
0 00 w
while
0001
01 01 0010
(1o>®(10)_ 0100}
1000
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We can simplify this by the change of coordinategy, z t) — (y,zt,x). This will
give the equivalent representation (which we may still denote)y

100 O 0100
O(l3,3H01oo t|_>1000
' 00w 0 |’ 0001

00 0 o 0010

But now we see that this splits into 2 2-dimensional representations, the second of
which isa itself:
a®=p+a,

wheref is the representation

) 10 01
B.SH(O 1), t|—>(l 0)

The representatiofd can be split further. That is evident if we note that since
sis represented bl;, we can diagonalisewithout affectings. Sincet has eigen-
values+1, this must yield the representation

) 10 1 O
B.Sf—><o 1), tr—>(0 _1)

Concretely, the change of coordinatesy) — (x+Y,x—Yy) brings this about.)
Thus
B=1+e,

and so
a’=1+¢e+a0.

(We hasten to add that this kind of matrix manipulation is not an essential part
of representation theory! We shall rapidly develop techniques which will enable
us to dispense with matrices altogether.)

Proposition 4.2 1. dim(ap) = dimadimf;
2. Ba =ap;
3. a(By) = (@By;
4. a(B+y) =aB+ay,
5. la=a.



4.3. DUALITY GpReps-1-6

All these results, again, are immediate consequences of ‘canonical isomor-
phisms’ which it would be tedious to write out explicitly.

We have seen that the representations oferk can be added and multiplied.
They almost form a ring—only subtraction is missing. In fact if we introduce
‘virtual representationgt — 3 (wherea, 3 are representations) then we will indeed
obtain a ring

R(G) = R(G,k),

therepresentation-ringpf G overk. (By convention ifk is omitted then we assume
thatk=C.)
We shall see later that

atp=aty=Pp=v.

It follows that nothing is lost in passing from representationR(B); if o = B in
R(G) thena = B in ‘real life’.

4.3 Duality

Definition 4.3 Suppose = is a representation of G in the vector space V over
k. Thena* is the representation of G in the dual vector spacedé¢fined by the
action
(gm(V)=m(g V) (9€G, meV*, veV)
Remarks:
1. Recall that the dual vector spaééis the space of linear functionals

mV —k

To any basiqey,...,ey} of V there corresponds a dual baéis, ..., T} of
V*, where
() = 1 ifi=]
i) =1 0 otherwise
2. Suppos@ is given in matrix form
a:g— Ag).

Thena* is the representation

g— (Al@) 1),
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whereT’ denotes the transpose Bf Notice the mysterious way in which
the inverse and transpose, each of which is ‘contravariant’, ie

(R§*=s'T! (RY'=SR,
combine to give the required property

(RO™Y) =R (s

Example:Considera™, wherea is the 2-dimensional representationSfover C
considered above. By the rule abowé,is given by

ot s W 0 (L (01
’ 0 w)’ 1 0)°
It is easy to see that swapping the coordinates;) — (Y, X), gives

=a

Many of the representations we shall meet will share this property of self-conjugacy.

Proposition 4.3 1. dim(a*) = dima;
2. (a")" =aq;
3. (a+B)* =a*+p*.
4. (ap)* =a*p*.
5 1"=1

Summary: We have defined the representation Rf®) of a groupG, and
shown that it carries an operatian— o* analogous to complex conjugation.



Chapter 5

Semisimple Representations

Definition 5.1 The represenation of G is said to besemisimpléf it is express-
ible as a sum of simple representations:

Example:Consider the permutation representatosf g in k. (It doesn’t matter
for the following argument ik =R or C.)
Recall that

9(X1,%2,X3) = (Xg-11,Xg-12,Xg-13)-

We have seen th&P has 2 proper stable subspaces:
U={xX):xek}, W={(x1,X2,X3):X1+X2+X3=0}.

U has dimension 1, with bas{$1,1,1) }; W has dimension 2, with bas{$1,—1,0),(—1,0,1)}.
Evidently
unv =0.

Recall that a surtd +V of vector subspaces is direct,
U+Vv=UgaV,
if (and only if)U NV = 0. So it follows here, by considering dimensions, that
k¥ =UPpw.
The representation du is the trivial representation 1. Thus
p=1+aq,

whereaq is the representation & in W.

GpReps-I-1
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We can see that is simple as follows. Suppodé C W is stable undess,
whereV # 0. Take any element=£ 0 inV: say

v=(X,y,2) (X+y+z=0).
The coefficientx,y,z cannot all be equal. Suppose y. Then
(12)v = (y,x,2) € V;

and so
V— (12)\/: (X—y,y—X,O> = (X_y)<17_170) EV'

Hence
(1,-1,0) e V.

It follows that
(-1,0,1) = (132)(1,—-1,0) e V

also. But these 2 elements generate W; hence
V=W.

So we have shown th#lY is a simpleSs-space, whence the corresponding repre-
sentatior is simple.
We conclude that the representation

p=1+a

is a sum of simple representations, and so is semisimple.
It is easy to see thal andW are the only subspaces ki stable undes,
apart from 0 and the whole space. So it is evident that the splitliagV is
unique. In general this is not so; in fact we shall show later that there is a unique
split into simple subspaces if and only if the representations corresponding to
these subspaces are distinct. (So in this case the split is unique becausg 1
However the simple representations that appeaunique. This fact, which we
shall prove in the next chapter, is the foundation stone of representation theory.
Most of the time we do not need to look behind a representation at the un-
derlying representation-space. But sometimes we do; and the following results
should help to clarify the structure of semisimple representation-spaces.

Proposition 5.1 Suppose V is a sum (not necessarily direct) of simple subspaces:
V=8++§.

ThenV is semisimple.
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Proof » Since$S is simple,

SNS=0o0rS.
In the former case
S+S=9P;
in the latter cas& C S; and so
S+ =S
Repeating the argument wi + S in place ofS;, andSs in place ofS,
(SS+S)NS=00rS;,

sinceSs is simple. In the former case
S+9+S=(S+9)PSs:
in the latter cas& C S+ S and so
S+2+3=9+S
Combining this with the previous step
S+S9+S=SPsPsosPpSsosPHsors.
Continuing in this style, at thigh step, sincé& is simple,
Si+-+§=(Si++S-1)PSorSi+--+51.
We conclude, finally, that
V=8S+ +5=5 S,

where{S,,...,S.} isasubsetofS;,...,.S}. <«

Remark: The subse{S;,...,S.} depends in general on tleeder in which we
takeS,,...,S. In particular, sinc&; = S;, we can always specify that aoyeof
S,. .., S appears in the direct sum.

Proposition 5.2 The following 2 properties of the G-space V are equivalent:

1. V is semisimple;
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2. each stable subspace JV has at least one complementary stable sub-
space W, ie
V=Ugw.

Proof » Suppose first that is semisimple, say

V:S!I_@"'@Sr-

Let us follow the proof of the preceding proposition, but starting Withather
than$S;. Thus our first step is to note that sinGgis simple,

U+S=Usoru.

Continuing as before, we conclude that

V-UDs B Ps.

from which the result follows, with

Wzsl@...@ss‘

Now suppose that condition (2) holds. Sin¢es finite-dimensional, we can
find a stable subspa& of minimal dimension. Evidently; is simple; and by
our hypothesis

V=SPHw.
Now let us find a stable subspaBgof W; of minimal dimension. As before,
this subspace is simple; and

SNSCSNW =0,
so that
S+S=S5PS

Applying the hypothesis again to this space, we can find a stable complement

Wo:
V=SPSPHw.
Continuing in this way, sinc¥ is finite-dimensional we must conclude with
an expression fov as a direct sum of simple subspaces:

V = SLEBEBS
HenceV is semisimple. «

Remark: This Proposition gives an alternative definition of semisimplicityis
semisimple if every stable subspacel¥ posseses a complementary stable sub-
space W This alternative definition allows us to extend the concept of semisim-
plicity to infinite-dimensional representations.
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Exercises

In Exercises 0115 calculag® for the given matrixX:

1. Show that angommutingset of diagonalisable matrices can be simultane-
ously diagonalised. Hence show that any representation of a finite abelian

group
2. Show that for alh the natural representatignof S, in k" is semisimple.
3. If T € GL(n,k) then the map
Z— GL(n,k) :m—TM
defines a representatiarof the infinite abelian groug.
Show that ifk = C thent is semisimple if and only i is semisimple.
4. Prove the same result whka- R.

5. Suppos& = GF(2) ={0,1}, the finite field with 2 elements. Show that the
representation af; = {e g} given by

(11
9 01

IS not semisimple.



Chapter 6

Every Representation of a Finite
Group is Semisimple

Theorem 6.1 (Maschke’s Theorem) Suppoges a representation of the finite
group G over k, where ¥ R or C. Thena is semisimple.

Proof » Suppose is a representation ovi. We take the alternative definition of
semisimplicity: every stable subspdde” V must have a stable complem&hit

Our idea is to construct an invariant positive-definite fdtrmonV. (By ‘form’
we mean herguadratic formif k=R, or hermitian formif k= C.) Then we can
takeW to be theorthogonal complemerf U with respect to this form:

W=U!={veV:P(uv)=0forallucU}.

We can construct such a form by takiagy positive-definite formQ, and
averagingit over the group:

P(U,v) = ﬁg;qg“’ av).

(It's not really necessary to divide by the order of the group; we do it because the
idea of ‘averaging over the group’ occurs in other contexts.)
It is easy to see that the resulting form is invariant:

1
P(gugv) = @hGZGQ(hQLLhQV)
_ 1 > Q(hu,hv)

@ heG
= P(u,v)

GpReps-I-1
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sincehgruns over the group dsdoes so.
Itis a straightforward matter to verify thatkfis invariant andU is stable then
so isU+. Writing (u,V) for P(u,v),

geGweUt = (uw)=0vuecU
= (gu,gw) = (u,w) =0Vue U
—  (u,gw) = (g(g tu),w) =0vueU
— gweU™t.

<

Examples:

1. Consider the representation 8f in R3. There is an obvious invariant
quadratic form—as is often the case—namely

X2 4 X5+ X3
But as an exercise in averaging, let us take the positive-definite form

Q(X1,X2,X3) = 2X2 — 2X1X2 + 3X5 + X3.

Then
Q(e(x1,%2,X3)) Q(X1,X2,X3) = 2XC — 2X1 X2+ 3X5 + X3
Q((23)(x1,%2,X3)) = Q(x1,X3,%2) = 2& — 2X1X3+ 3 +3
Q((13)(x1,%2,X3)) = Q(X3,X2,X1) = 234 — 2X3Xz + 33 34
Q((12)(x1,%2,X3)) = Q(X2,X1,X3) = 2X3 — 2XoX1 + 3X8 + %3
Q((123)(x1,%2,%3)) = Q(xXa,X1,X2) = 2X3 — 2x3X1 + 3X2 + X3
Q((132)(x1, %2, %)) = Q(Xe,Xg,X1) = 265 — 2xpXg + 3 + X
Adding, and dividing by 6,
2. 2, w2 2
P(x1,%2,X3) = 2(X{+X5+X5) — 3 (XoX3 + X1X3 + X1X2)

7 1
_ é(x§+x§+x§) —é(x1+xz+x3)2.

The corresponding inner product is given by

1
X2Y3+X3Y2 +X3y1 +X1Y3+X1Y2 + Xoy1)

((X1,%2,%3), (Y1,Y2,¥3)) = 2(X1y1+X2Y2+X3y3) — :3,(
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To see how this is used, let
U={(XxX):xeR}.

EvidentlyU is stable. Its orthogonal complement with respect to the form
above is

Ut = {(xg,%,%3): ((1,1,1), (X1, %2, %3)) = O}
= {(X1,%2,X3) : g(x1+x2+x3) =0}

= {(X1,%2,%3) 1 X1+ X2+ X3 = O},

which is just the complement we found before. This is not surprising since—
as we observed earlietd-andU - are the only proper stable subspaces of
R3,

. For an example using hermitian forms, consider the simple representation
of D4 overC defined by

- i 0 s 01
0 —i )’ 10/
Again, there is an obvious invariant hermitian form, namely

X6 4 X5 = XixXq + XoXa.

But this will not give us much exercise.
The general hermitian form of? is

axx+byy+cxy+cyx (a,beR, ceC)

Let us take
Q(X,Y) = 2XX-+ Yy —iXy+iyx

Note that
D4 = {e 55,5 t,ts 1 ts3).

For these 8 elements are certainly distinct, eg

L=t —=1ts=1—5=t.
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Now
Qe(xy)) = Q(Xy) = 2Xx+yy—ixy-+iyx,
Q(s(x,Y)) = Q(ix,—iy) = 2xXX+yy+ixy—iyx,
Q(S(xY) = Q(—X—Y)=2XX+yy—iXy+iyx
QS(XY) = Q=ix,iy) = 2%+ yy+ixy—iyx
Qt(xy)) = Q(¥:X) = Xx+2yy+ixy—iyx
Q(ts(x,y)) = Q(iy,—ix) = XX+ 2yy—ixy+iyx,
Q(I(xY)) = Q(—Y,—X) = XX+ 2yy+iXy—iyx,
Q(ts’(xy)) = Q(—iy,iX) = XX+ 2yy— iXy+iyx

Averaging,

T
~—~~
x
=
Il

£ Y 9 DaQg(x.y)
3_
= E(XX+W)

It is no coincidence that we have ended up with a scalar multip|g|of-
ly|2. For it is easy to see thatsimple Gspace carries aniqueinvariant
hermitian form, up to a scalar multiple. Suppd3€ were 2 such forms.
Let A be an eigenvalue @ with respect td?, ie a solution of

defA—AB) =0,
whereA, B are the matrices d® Q. Then the corresponding eigenspace
E={v:Av=2ABv}
would be stable undes.

The alternative proof of Maschke’s Theory below may be preferred by the
algebraically-minded. It has the advantage of extending to scalar fields other than
R andC. Against that, it lacks the intuitive appeal of the earlier proof.

Alternative proofs Recall that a projectiop:V — V is a linear map satisfying

the relation
p’=p
(ie pisidempotent
If pis a projection then so is2 p:

(1-p)2=1-2p+p>=1-2p+p=1—p.
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The projectiong p, 1 — p) define a splitting oV into a direct sum

V =impHim(1-p).
Note that
VEIMp<= pv=\V.

Note also that
im(1— p) = kerp,

since
v=(1-p)w= pv=(p— p)w=0,

while
pv=0=v=(1—p)v

Thus the splitting can equally well be written
V =impE&Dkerp.
Conversely, every splitting
V=Ugpw
arises from a projectiop in this way: if
v=u+w (ueU,weW)

then we set
pv = u.

(Although the projectiorp is often referred to as ‘the projection ortB it
depends ofV as well adJ. In general there are an infinity of projections obtp
corresponding to the infinity of complemems When there is a positive-definite
form onV—quadratic or hermitian, according ks= R or C—then one of these
projections is distinguished: namely the ‘orthogonal projection’ corresponding to
the splitting

vV=Ugput.

But we are not assuming the existence of such a form at the moment.)
Now supposéJ is a stable subspace ¥f Choose any complementary sub-

spacan:
V=Upw.
In generaWVv will not be stable unde®. Our task is to find a stable complementary

subspac&\p:
V=UPW =UPW.
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Let p be the projection ontd with complemenW. We know thatJ is stable
underG, ie
geG,ueU =gueU.

Thus
g€ G,u= pv= pgu= gu= pgpv=gpv

Since this holds for aN € V,
pPgp=gp

for all g € G. Conversely, if this is so thed = im p is stable.
By the same argumenty = im(1— p) will be stable if and only if

(1-pog(l-p) =9(1-p)
for all g € G. This reduces to
pPgp= pg
BothU andW are stable if and only if
gp=pg

For in that case

pgp= p(gp) = p(pg) = p°g = pg= gp.
Now
gp= pg<= g ‘pg=p.

In other wordsp defines a splitting into stable subspaces if and only if it is invari-
ant undelG.
In general, we can construct an invariant element by averagingGJeet us

therefore set 1
P=—-% g 'pg
6] &

This will certainly be invariant undes:
gPg = = %g‘lh‘lphg
G| &

_ 1 ~1ha-L

1
— hflphfl
1G] 2
- P
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sincehgruns ovelG ash does so.
What is less obvious is th&t is a projection and in fact a projection ontd.
To see that, note that

ueU = gueU = p(gu) = gu.
Hence by addition

ueU — Pu=u.

Conversely,
veV — pgve U = gpgve U.

So by addition
veV = PveU.

These 2 results imply th& = P, and thalP projects ontdJ. <
Remarks:

1. We can show directly th&t is a projection, as follows:

1 _ _
P? = HGHZZQ 'pgh tph
= |G||2%g‘lgh‘ ph
— _~_Shlph
HGHZQ,Z

1
= — S hlph
HGH;

= P

Two projectionsp, g project onto the same (first) subspace if

ap=1p, pg=2a.

So to prove thaP projects onto the same subspateas p, we must show
thatPp= p andpP = P. These follow in much the same way:

Pp = g pgp
HGH 2

_ -1
= HGH 2.9 9P
= P,
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2. Both proofs of Maschke’s Theorem rely on the same idea: obtaining an
invariant element (in the first proof, an invariant form; in the second, and
invariant projection) by averaging over transforms of a non-invariant ele-
ment.

In general, itV is aG-space (in other words, we have a representatida of
in V) then the invariant elements form a subspace

Ve ={veV:gv=wgeG}.

The averaging operation defines a projectiol aintoV ©:
1
Vi —— ) gVv.
&2

ClearlyVC is a stable subspace Wf Thus ifV is simple, eithe® =0
or V€ =V. In the first case, all averages vanish. In the second case, the
representation iN is trivial, and sov must be 1-dimensional.

3. Itis worth noting that our alternative proof works in any scalar figlgro-
vided||G|| # 0 in k. Thus it even works over the finite fie@F(p"), unless

PG

Of course we are not considering suctodular representationgas rep-
resentations over finite fields are known); but our argument shows that
semisimplicity still holds unless the characterigtiaf the scalar field di-
vides the order of the group.



Chapter 7

Uniqueness and the Intertwining
Number

Definition 7.1 Suppose, 3 are representations of G over k in the vector spaces
U,V respectively. Thitertwining numbet (a,3) is defined to be the dimension
of the space of G-mapst —V,

|(a,B) = dimhonf (U, V).

Remarks:
1. AG-mapt:U — V is alinear map which preserves the actiorcof
t(gu) =g(tu) (ge G,ueG).
TheseG-maps evidently form a vector space oker

2. The intertwining number will remain somewhat abstract until we give a
formula for it (in terms of characters) in Chapter . But intuitivé(y, )
measures how much the representatmsfshave in common.

3. The intertwining number of finite-dimensional representations is certainly
finite, as the following result shows.

Proposition 7.1 We have

I(a,B) < dimadimf.

Proof » The space ho(W,V) of all linear maps :U — V has dimension ditd dimV,
since we can represent each such map bynam-matrix, wherem= dimU,n =
dimV.

GpReps-I-1
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The result follows, since
hom®(U,V)  hom(U,V).
<

Proposition 7.2 Suppose, [3 are simplerepresentations over k. Then

0 ifa#p,
'(“’B>:{ >1 ifa=p.

Proof » Suppose, 3 are representations W, V, respectively; and suppose
t:U—-V
is aG-map. Then the subspaces
ket ={ueU :tu=0}and imt={veV:Jue U, tu=v}
are both stable und&. Thus

uckert = tu=0
= t(gu)=g(tu)=0
= gue€Ekern,

while

veimt — v=tu
— t(gu) =g(tu) =gv
= gveimt.

But sinceU andV are both simple, by hypothesis, it follows that
kert =0o0orU, imt=0orV.
Now ket =U =—=t=0,andint=0=1t=0. Soift #0,
ket =0, imt=V.

But in this case is anisomorphisnof G-spaces, and so = 3.

On the other hand, ift = 3 then (by the definition of equivalent representa-
tions) there exists &-isomorphig : U — V, and sd (a,f) > 1. «

Whenk = C we can be more precise.
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Proposition 7.3 If a is a simple representation ovérthen

l(a,0) =1

Proof » Supposé/ carries the representation We have to show that
dimhonf(V,V) = 1.

Since the identity map IV — V is certainly aG-map, we have to show that every
G-mapt : V — Vis a scalar multiplep1 of the identity.
Let A be an eigenvector af Then the corresponding eigenspace

E=EQA)={veV:itv=Av}
is stable unde6. For
ge G, ve E=t(gv) = g(tv) =Agv—gve E.
Sincea is simple, this implies theE =V, ie
t=AL

<
Proposition 7.4 Suppose, 3,y are representations over k. Then

L (o +B,y) =1(a,y) +1(B,Y);

2. (0, B+y) = (0, B) +1(a,y);

3. I(aB,y) = 1(a,By).

Proof » Supposen, 3,y are representations ld,V,W respectively. The first 2
results are immediate, arising from the more-or-less self-evident isomorphisms

homU V,W) = homU,W)&5homV,W)
homU,VEPW) = homU,V)EPhomU,W).
Take the first. This expresses the fact that a linear map
t:Upv —-w
can be defined by giving 2 linear maps

t1:U—-W, to:V-W.
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In factt; is the restriction ot toU C U @V, andt; the restriction ot toV C
UV, and
t(ud V) =tiudtov.

In much the same way, the second result expresses the fact that a linear map
t:U—VvEpw
can be defined by giving 2 linear maps
t1:U—=V,tb:U—->W.

In fact
t1 =mt, th=Tnt,

wherert, Tk are the projections df @V ontoV, W respectively; and

tu=tudtou.

The third result, although following from a similar ‘natural equivalence

hom(U R)V,W) = homU,V*RW),

where
V* =hom(V, k),

is rather more difficult to establish.
We can divide the task in two. First, there is a natural equivalence

hom(U, hom(V,W)) = hom(U (X)V,W).

For this, note that there is a 1-1 correspondence betlivessar mapsh: URV —
W andbilinear maps
B:UxV —>W.

(This is sometimes taken as the definitionlbQV.) So we have to show how
such a bilinear map(u, V) gives rise to a linear map

t:U — hom(V,W).

But that is evident:
t(u)(v) = B(u,v).

It is a straightforward matter to verify that every such linear mapises in this
way from a unique bilinear mal.
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It remains to show that
hom(V,W) = V*&Q)W.
For this, note first that both sides are ‘additive functorahinie

homV,Wi EPWe) = hom(V,Ws) EHhom(V, W),
VIRQWEPW) = (VF QW) PV QW)

This allows us to reduce the problem, by expres¥ihgs a sum of 1-dimensional
subspaces, to the case whéfés 1-dimensional. In that case, we may take= k;
so the result to be proved is

hom(V, k) = V*X)k.

But there is a natural isomorphism

URk=U
for every vector spadd. So our result reduces to the tautology=V*.

It's a straightforward (if tedious) matter to verify that these isomorphisms are
all compatible with the actions of the gro@ In particular theG-invariant ele-
ments on each side correspond:

hom®(UEDV,W) = hon(U,W)Phom®(V,w),
hon®(U,VEPW) = hon®(U,V)EPhonf(U,W),
hom®(U&)V,W) = honf(U,V*R)W).

The 3 results follow on taking the dimensions of each side

Theorem 7.1 The expression for a semisimple representaticas a sum of sim-
ple parts
=01+ +0;

is unique up to order.

Proof » Supposeao is a simple representation & overk. We can use the inter-
twining number to compute the number of timessay, thao occurs amongst the
o;. For

[(o,0) = I(0,01)+---+1(0,0()
= ml(o,0),
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since only those summands for whigh= o will contribute to the sum. Thus

_I(o,q)
|(0,0)"

It follows thato will occur the same numbeaentimes in every expression for
as a sum of simple parts. Hence two such expressions can only differ in the order
of their summands. «

Although the expression

a=01+--+0r
for the representatioa is unique, the corresponding splitting

V=UPH - Pu

of the representation-space is not in general unique. It's perfectly possible for 2
different expressions for as a direct sum of simplé-subspaces to give rise to
thesameexpression foo: say

Vzul@...@ur, Vzwl@...@wr

whereU; andW both carry the representatian.

For example, consider the trivial representatos 1+ 1 of a groupG in the
2-dimensional spac¥ = k?. Every subspace df is stable undef; so if we
chooseany 2 different 1-dimensional subspadgsV C V, we will have

V=Upw.

However, the splitting oV into isotypic components unique, as we shall
see.

Definition 7.2 The representation, and the underlying representation-space V,
are said to basotypicof typeo, whereo is a simple representation, if

ao=e0=0+---+0.
In other wordsg is the only simple representation appearingin

Proposition 7.5 Suppose V is a G-space.
1. IfV isisotypic of typ@ then so is every G-subspaced)V.
2. IfU,W CV are isotypic of type then so is U+ W..
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Proof » These results follow easily from the Uniqueness Theorem. But it is useful
to give an independent proof, since we can use this to construct an alternative
proof of the Uniqueness Theorem.

Lemma 7.1 Suppose
V=Up+---+U
is an expression for the G-space V as a sum of simple spaces; and suppose the
subspace UZ V is also simple. Then U is isomorphic (as a G-space) to one of the
summands:
U=y,

for somei.

Proof of Lemma- We know that

V:Uil@”'@uit

for some subsefV;, ,...,U;,} C {U1,...,Ur}. Thus we may assume that the sum

is direct:
V=UipH --Pu.

For each, consider the composition
U—-V-=U,

where the second map is the projection/obnto its componerit;. SinceU and
U; are both simple, this map is either an isomorphism, or else O.
But it cannot be O for ali. For suppose € U,u # 0. We can express as a
sum
u=u@d---au (el

Not all theu; vanish. Nowu — u; under the compositiod — V — U;. Thus one
(at least) of these compositions#s0. HencdJ = U; for somel. <

Turning to the first part of the Proposition,Uf C V, whereV is o-isotypic,
then each simple summandWfmust be of types, by the Lemma. It follows that
U is alsoo-isotypic.

For the second part, d andW are botho-isotypic, therlJ +W is a sum (not
necessarily direct) of simple subspaegsf typeo:

U+W =Xy +-+X%.

U+W:><|1@@><lta

where{X,,..., X} are some of th&y, ..., X;. In particularU +W is o-isotypic.
<

But then
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Corollary 7.1 Suppose is a simple representation of G over k, Then each G-
space V over k possesses a maxigraotypic subspacegywhich contains every
othero-isotypic subspace.

Definition 7.3 This subspaces called thec-component of V.

Proposition 7.6 Every semimsimple G-space V is the direct sum of its isotypic

components:
V=Vo, P PVo.

Proof » If we take an expression f&f as a direct sum of simple subspaces, and
combine those that are isomorphic, we will obtain an expressiovi s a direct
sum of isotypic spaces of different types, each of which will be contained in the
corresponding isotypic component. It follows that

V=Vg, + - +Vg,.

We have to show that this sum is direct.
It is sufficient to show that

Vo, +--+Voi 4) ﬂVcri =0

fori=2,....r.
Suppose not. Then we can find a simple subspace

U CVO'ia U CV01+"'+V0i71.

By the Lemma to the last Propositidd, must be of typeo;, as a subspace bf;.
On the other hand, as a subspac¥qf+ - - +Vg, , it must be of one of the types
01,...,0i_1, by the same Lemma.

This is a contradiction. Hence the sum is direct:

V=V, P - PVo,
<
Corollary 7.2 If the G-space V carries a multiple-free representation
a=01+---+0

(where theg; are distinct) thenV has a unique expression as a direct sum of simple
subspaces.
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Remark:lIt is easy to see that multiplicitgoesgive rise to non-uniqueness. For
suppose
vV=Udu,
whereU is simple. For each € k consider the map
U—udAu:U —-UEPU =V.
The image of this map is a subspace
URA)={udAu:ueU}.

This subspace is isomorphiclth sinceU is simple.
It is readily verified that

UN) #ZUW <= A=p

It follows that
V=UMNPuU®
for anyA, pwith A # L



Chapter 8

The Character of a Representation

Amazingly, all the information about a representation of a grGugan be
encoded in a single function db, the characterof the representation.

Definition 8.1 Suppose is a representation of G over k. Tloharactery = Xq
of a is the functiory : G — k defined by

X(9) =tr(a(g)).

Remarks:

1. Recall that tha@race of ann x n-matrix A is the sum of the diagonal ele-

ments:
trA= Z Aji.

1<i<n

The trace has the following properties:

(@) t(A+B)=trA+trB;
(b) tr(AA) = AtrA.

(c) trAB=1trBA;

(d) trA =trA;

(e) trA* =trA.

HereA’ denotes the transposeAfandA* the conjugate transpose:
A =Aji, A =A;.
The third property is the only one that is not immediate:

trAB= Z(AB)“ = XZAiiji = ZZBjiAij =1trBA
I [ )

GpReps-I-1
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Note that
trABC# trBAC

in general. However the traéginvariant undecyclic permutations, eg

trABC=trBCA=trCAB.

In particular, ifP is invertible (non-singular) then
trPAP 1 = trP~IPA=trA:

similar matrices have the same trace.

It follows from this that we can speak without ambiguity of the trat®fra
linear transformatioh: V — V; for the matrixT representing with respect
to one basis will be changed RT P~ with respect to another basis, where
P is the matrix of the change of basis.

Example:Consider the 2-dimensional representatoof D4 overC given by

e (58) =(22)

Writing X for Xq
x(e) = dima=2
X(S) i—i=0
X($) = tr(_ol _01):—1—1:—2
XS = tr(?)i ? =—i+i=0
Xx(t) = i—i=0

In summary
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Proposition 8.1 1. Xq4p(9) = Xa(9) +Xp(9)
2. Xap(9) = Xa(9)Xp(9)
3. Xa+(9) =Xa(g™)
4. x1(9) =1
5. Xa(€) =dima

Proof » (1) follows from the matrix form

o ( " B(Og) )
for o + .

(2) follows from the fact that iA is anm x m-matrix andB is ann x n-matrix
then the diagonal elements of the tensor produgtB are just the products

AiBjj (1<i<m 1<j<n)

Thus
tr(A® B) = trAtrB.

(3) If a takes the matrix form
9— A(9)
then its dual is given (with respect to the dual basis) by
g—AQ) T=AlgY.
Hence
Xa-(9) =trA(g) =trA(g") = Xa(g ™).

(4) and (5) are immediate. <

Remark:In effect the character definesiag-homomorphism

X : R(G,k) — C(G,k)

from the representation-ririg(G) = R(G, k) to the ringC(G, k) of functions onG
(with values ink).

Theorem 8.1 Suppose, 3 are representations of G over k. Then

(@) = ﬁg&Xa(g_l)XB(g)-
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Proof » It is sufficient to prove the result when= 1. For on the left-hand side

I(a,) =1(1,a"B);

while on the right-hand side
gém(gl)xs(g) = %xa%g)x;s(g)

= > xa'B(g)
= %xxl(g)a*B(g)-

Thus the result foa, 3 follows from that for 1a*.
We have to show therefore that

(L a) = ﬁg;mg).

By definition, ifa is a representation M,
1(1,a) = dimhonf (k,V).

Now
homk,V) =V,

with the vectorv € V corresponding to the map
A—AV: k— V.
Moreover, the action doB is preserved under this identification; so we may write
hon(k,V) =V©,
whereV® denotes the space Gkinvariant elements of':
Vé={veV:gv=vvge G}

Thus we have to prove that
1
dimV® = =% Xa(9).
6] &

Consider the ‘averaging map’: V — V defined by

1
Vi — qv,
6] &
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that is,

1
n= Wgéa(g)-

It is evident thatnv € VC for all v € V, ie Tiv is invariant undefs. For

1
gv = —— ) ghv
EPX

1
— = %h
16l 2™

heG
= TV,

sinceghruns overG ash does.
On the other hand, if € V© thengv = v for all g and so

Ve S gv=v
PR

It follws that Ttis a projection onto \?.
Lemma 8.1 Suppose pV — V is a projection onto the subspacedJV. Then

trp=dimU.
Proof of Lemma- We know that

V =impokerp.
Letey,...,eqn be a basis formp=U, and leten.1,...,6e, be a basis for kep.

Then
e 1<i<m,
PE=1 o m+1<ilen.

It follows that the matrix ofp with respect to the bases, ..., e, is

1
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with m 1's down the diagonal and O’s elsewhere. Hence
trp=trP=m=dimuU.

<
Applying this to the averaging map

trm= dimvC.

On the other hand, by the linearity of the trace,

1
trm = — S tra(g
[ 2. "o

1
= m %Xa(g)

Thus 1
dimVCe = — ¥ xq(9),
6] 2 Xe(@

as we had to show. «
Proposition 8.2 If k = R,

Xa-(9) = Xa(0™h) = Xa(0).
lfk = C,

Xa+(9) = Xa (9_1) = Xa(9)-

Proof » First suppos& = C. LetA,...,A\, be the eigenvalues of(g). Then

Xa(g) =tra(g) =A1+---+An.

In fact, we can diagonalise(g), ie we can find a basis with respect to which

A 0
g— A(Q) = -
0 An

Now
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and so
Xa(@H=trA@ ) =A714+ FAL
But sinceG is a finite groupg" = e for somen (eg forn = ||G||), and so

MNM=1—=\|=1=\1=)\

for each eigenvaluk;. Hence

Xa(@™Y) =AM+ +An = Xa(9).

The result fork = R follows from this. For ifA is a real matrix satisfying
A" = | then we may regard as a complex matrix, and so deduce by the argument
above that
tr(A™1) =trA.

But sinceAis real, so is tA, and thereforeHence
tr(AY) =trA
<

Corollary 8.1 Suppose, 3 are representations of G over k. Then

1 N
_ ) 1o 296 Xa(@)Xp(9) ifk=R
P { 1G] ZoceXa(@)Xp(9) ifk=C

Definition 8.2 We define the inner product
(uv) (u(g),v(g) € C(G,Kk))

by -

1 .
_J) Taol 2geG (gv(g) ifk=C
<U7V> { 6] ZeecU(@V(g) ifk=R

Proposition 8.3 1. The inner productu, V) is positive-definite.
2. I(G7B) = <XG7X[3>

Proposition 8.4 Two representations are equivalent if and only if their characters
are equal:

a =P <= Xa(9) = Xp(g) forallg € G.
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Proof » If a =3 then
B(g) = PA(g)P*

for someP. Hence
Xp(9) =trB(g) =trA(g) = Xa(9)-

On the other hand, suppoge(g) = xg(g) for all g € G. Then for each simple
representation of G overk,

(o.0) = ﬁg;xc;(g-l)xa(g)

_ 1 1
= HGllgéx"(g )Xp(9)
= I(o,p).

It follows thato occurs the same number of timesarand3. Since this is true
for all simple representatiorns

a=0p.

<

Proposition 8.5 Characters areclass functionsie
g ~ 9= Xa(d) =Xa(9)-

Remark: Recall that we writey’ ~ g to mean thaty’,g are conjugate,ie there
exists arx € G such that
g =xgx L.

Proof » If
g/ _ ngfl

then (since a representatign— A(g) is a homomorphism)

AG) = AXAQAXDY
— AXAGAX)

It follows from the basic property of the trace that

Xa(d) =trA(d) =trA(g) = Xa(9)-
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Proposition 8.6 Simple characters are orthogonal, iedf 3 are distinct simple
representations of G over k then

<X0(aXB> =0.

Proof » This is just a restatement of the fact that

I(a,B) =0.

<
Whenk = C we can be a little more precise.

Proposition 8.7 The simple characters of G ové€rform an orthonormal set, ie

{Xa» Xp) = { 0 otherwise.

Proof » Again, this is simply a restatement of the result for the intertwining num-
ber. «

Theorem 8.2 The group G has at most s simple represenations over k, where s is
the number of classes in G.

Proof » The class functions o form a vector space
X C C(G,k).

Lemma 8.2 dimX =s.

Proof of Lemma- Suppose the conjugacy classes@se . .,C,. Letci(g) denote
the characteristic functiorof G, ie

o~ ) 1 ifgeG,
c.(g)_{ 0 otherwise

Then the functions
ci(g) (1<i<s

form a basis for the class functions G <«

Lemma 8.3 Mutually orthogonal vectors (with respect to a positive-definite form)
are necessarily linearly independent.
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Proof of Lemma- Supposey,...,V, are mutually orthogonal:

(vi,vj) =0if i # .
Suppose

Taking the inner product of with this relation,
A (vi,vi) + -+ A (Vi, v ) =0=-\; = 0.

Since this is true for all, the vectorss, ..., v, must be linearly independent. <

Now consider the simple characters@bverk. They are mutually orthogo-
nal, by the last Proposition; and so they are linearly independent, by the Lemma.
But they belong to the space of class functions. Hence their number cannot
exceed the dimension of this space, which by Lemmasl is«

Remark: We shall see that whek= C, the number of simple representations
is actuallyequal tothe number of classes. This is equivalent, by the reasoning
above, to the statement thithke characters span the space of class functions.

We shall establish this result (in later Chapters) in two different ways — one
using induced representations, and one based on the representation theory of prod-
uct groups.

Example: Since characters are class functions, it is only necessary to compute
their values for 1 representative from each class. diferacter tableof a group
G overk tabulates the values of the simple representations on the various classes.
By convention, if the scalar fielld is not specified it is understood that we are
speaking of representations ov@er

As an illustration, let us take the grod. The 6 elements divide into 3
classes, corresponding to the 3 cylic types:

e
21 (bc), (ac), (ab)

3 (abo), (acbh)

It follows that S has at most 3 simple characters o{erSince we already know
3, namely the 2 1-dimensional representatiorsdnd the 2-dimensional repre-
sentatior, we have the full panoply.

We draw up the character table as follows:

class| [1%] | [21] | [3]
size | 1 3|2
1 11111
€ 1 -1]1
a 2 0 |-1
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Let us verify that the simple characters form an orthonormal set:

1
(3,1 = -(1-1-1+3-1-1+2-1-1) =1
6

I(Le) = 2(1-1-1+3-1-—1+2-1-1) =0

1
I(La) = Z(1:1-2+3.1.042-1--1)=0

6

l(g,e) = é(l-l-l+3-—1-—1+2-1-1):1
1

l(g,0) = 6(1-1-24—3-—1-0—1—2-1-—1):0

1
l(o,0) = =(1.2.24+3.0.0+2-—-1.-1)=1
6

It is very easy to compute the character of a permutational representation, that
is, a representation arising from the action of the gr@ipn the finite setX.
Recall that this is the representation in the function-sgdee k) given by

(9f)(x) = f(g%).

Proposition 8.8 Suppose is the permutational representation of G arising from
the action of G on the finite set X. Then

Xalpha(g) = [[{x: gx=x}|,

ie X(g) is equal to the number of elements of X left fixed by g.

Proof » Let c(t) denote the characteristic function of the 1-point sufsétie

ox(t) = 1 ift=x
X1 0 otherwise.

The||X|| functionsck(t) form a basis for the vector spaCéX, k); and the action
of g € G on this basis is given by

ng = ng;

since
gx(t) =cx(@ ) =1<=g Ut =x=t=0gx

It follows that with respect to this basis

g— A9),
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whereA = A(g) is the matrix with entries

1 ifx=gy,
Axy:{ if x= gy,

0 otherwise.

In particular

A 1 ifx=gx
X7 0 otherwise.
Hence
Xalpha(g) =trA="% A= [[{x:gx=Xx}.
X
|

Example:Consider the action of the groig on X = {a,b,c}, Let us denote the
resulting representation gy, We only need to computg,(g) for 3 values ofg,
namely 1 representative of each class.
We know that
Xp(€) = dimp = ||X| = 3.

The transpositiorfbc) (for example) has just 1 fixed point, namelyHence
Xp(bc) = 1.

On the other hand, the 3-cydlabc) has no fixed points, so
Xp(abc) = 0.

Let us add this character to our table:

class| [1%] | [21] | [3]
size | 1 3 |2
1 1] 11
€ 1 |-1]1
a 2 0 |-1
p 3 1|0

We know thafp is some integral combination of the simple characters, say
p=r-1+s-e+t-a,

wherer,s,t € N. These ‘coefficients, s,t are unique, since the simple characters
are linearly independent.
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It would be easy to determine them by observation. But let us compute them
from the character gb. Thus

r=1(1,p) = %(1-1.3+3.1-1+2-1-0) —1
s=1(g,p) = é(1-1-3+3-—1-1+2-1-0) =0

t=1(a,p) :é(1-2-3+3-0-1+2-—1-0) =0

Thus
p=1+a.



Chapter 9

The regular representation

The groupG acts on itself in 3 ways:
e By left multiplication:(g,X) — gx
e By right multiplication: (g, x) — xg~*
e By inner automorphism(g, x) — gxg !

The first action leads to thregular representation defined below. The second
action also leads to the regular representation, as we shall see. The third action
leads to theadjointrepresentation, which we shall consider later.

Definition 9.1 Theregular representatiameg of the group G over k is the permu-
tational representation defined by the action
(9,X) — gx
of G on itself.
Proposition 9.1 The character of the regular representation is given by

[ 1 ifg=e
Xreg(9) _{ 0 otherwise

Proof » We have to determine, for eagre G, the number of elemenisc G left
fixed byg, ie satisfying
gX=X.
But
gX=X=—g==e

Thus no elemeny # eleaves any element fixed; whige= e leaves every element
fixed. =
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Proposition 9.2 The permutational representation defined by right multiplication

(9,%) —xg*
is equivalent to the regular representation.
Proof » No elementg # e leaves any element fixed; whitp= e leaves every

element fixed:
xg l=x<=g=e

Thus this representation has the same character as the regular representation; and
so itis equal (that is, equivalent) to it. «

Alternative proofs In fact it is readily verified that the representation defined by
right multiplication is thedual reg* of the regular representation. But the regular
representation is self-dual, since its character is read.

Proposition 9.3 Suppose is a representation of G over k. Then

| (a,reg) = dima.

Proof » Plugging the result for the characterrefy above into the formula for the
intertwining number,

I<a7reg) = ||GH %XG Xreg )

= dima.

<
This result shows thagvery simple representation occurs in the regular repre-
sentation sincel (o,reg) > 0. Whenk = C we can be more precise.

Proposition 9.4 Each simple representatianof G overC occurs jusdimo times
in the regular representatioreg of G overC:

reg = Z(dimo)sigma
o

where the sum extends over all simple representatiooisG overC.
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Proof » We know thatreg, as a semisimple representation, is expressible in the
form

reqg= Zeco (eg € N).
e}

Taking the intertwining number of a particular simple representatianth each
side,

|(0,reg) = el (0,0) = &
= dimao,

by the Proposition. «

Theorem 9.1 The dimensions of the simple representations..,o, of G over
C satisfy the relation

dim?01+4 - +dim?o; = ||G||.

Proof » This follows at once on taking the dimensions on each side of the identity
reg= Y (dimo)sigma
2
<
Example:ConsiderSs. We have
1S5/l = 120;
while S; has 7 classes:
[1°), 227, [2°1], (317, [32], [41], [5].

ThusSs has at most 7 simple representations dver
Let us review the information on these representations that we already have:

1. S has just 2 1-dimensional representations, 1@nd
2. The natural 5-dimensional representagoof S splits into 2 parts:
p=1+aq,
wherea is a simple 4-dimensional representatiorsgif

3. If ois a simple representation 8f of odd dimension theeo # o;
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4. More generally, ity is a simple representation 8 with a([213]) # 0 then
€0 # C;

We can apply this last result to. For
Xa([22]) = Xp([22°]) -1

= 3-1
2.

Hence
€ #£d.

Thus we have found 4 of the 7 (or fewer) simple representatiofs df €, a, €a.
Our dimensional equation reads

120= 1+ 12+ A%+ 42+ a°+ b2+ &,

wherea,b,c € N, with a,b,c # 1. (We are allowing for the fact th& might have
< 7 simple representations.) In other words,

a2+ b%+c?=86.

It follows that
a’+b’+c>=6 (mod 8.

Now
n=0,1,or4 (mod 8§

according a1 =0 (mod 4, ornis odd, orn=2 (mod 4). The only way to
get6is as 4 1+ 1. In other words, 2 o&,b,c must be odd, and the other must
be=2 (mod 4. (In particulara,b,c # 0. SoS must in fact have 7 simple
representations.)

By (3) above, the 2 odd dimensions must be equal:asay. Thus

2a% 4 ¢ = 86.
Evidentlya = 3 or 5. Checking, the only solution is
a=b=5c=6.
We conclude tha%s has 7 simple representations, of dimensions

1,1,4,4,5,5,6.



Chapter 10

Induced Representations

Each representation of a group defines a representation of a subgroup, by
restriction; that much is obvious. More subtly, each representation of the
subgroup defines a representation of the full group, by a process aslled
duction This provides the most powerful tool we have for constructing
group representations.

Definition 10.1 Suppose H is a subgroup of G; and suppass a representation
of G in V. Then we denote lmy, the representation of H in the same space V
defined by restricting the group action from G to H. We call therestrictionof

o to H.

Proposition 10.1 1. (a+B)H = aH +BH
2. (aP)n = onPr
3. (a")p = (an)*
4. 14 =1
5. dimay = dima

6. Xan (N) = Xa(h)

Example:We can learn much about the representations by considering their
restrictions to subgroupd C G. But induced representations give us the same
information—and more—much more easily, as we shall see; so the following
example is of more intellectual interest than practical value.

Let us see what we can discover about the simple charact&s(ofer C)
from the character table f&s. Let's assume we know—as we shall prove later

GpReps-1-1



GpReps-1-2

in this chapter—that the number of simple character§,as equal to the num-
ber of classes, 5. Let's suppose too that we kriawhas just 2 1-dimensional
representations, 1 argd Lety be one of the 3 other simple representationS,of
Let
Vs, =al+be+ca (ab,ceN).

By the Proposition above, if C g (wherehis a class itH andga class irG) then
Xy(@) = Xy ().

So we know some of the values .

Class| [1% 217 2] 31 [4

size 1 6 3 8 6
1 1 1 1 1 1
€ 1 -1 1 1 -1
Yy |a+b+2c a—b x a+b-c vy

We have found nothing aboyt[2?]) andx([4]), since these 2 classes don't inter-
sectS;. However, if we call the valuesandy as shown, then the 2 equations

1(1,y) =0, I(e,y) =1
give

15a+3b—-6c+3x+6y = O
3a+15% —-6¢c+3x+6y = O

Setting
s=a+b, t=a-—b,

for simplicity, these yield
X=-3s+2t, y=-—t.

The table now reads

Class| [14 [217] [27] 31 [4]
size 1 6 3 8 6
1 1 1 1 1 1
€ 1 -1 1 1 -1
y |s+2c t —3s+2c s—c -t

Sincey is—by hypothesis—simple,
(y,y) = 1.
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Thus
24 = (s+2¢)2 + 6t2 + 3(—3s5+2¢)? + 8(5—C)2 + 6t°.

On simplification this becomes

2 = 35— 4sc+2¢? +t2
S +2(s—c)?+t2.

Noting thats,t,c are all integral, and that c > 0, we see that there are just 3
solutions to this diophantine equation:

(a,b,c) =(1,0,1), (0,1,1), (0,0,1).

These must yield the 3 missing characters.

We have determined the character tableSpfwithout constructing—even
implicitly—the corresponding representations. This has an interesting parallel in
recent mathematical history. One of the great achievements of the last 25 years has
beenthe determination of all finite simple groupe groups possessing no proper
normal (or self-conjugate) subgroups. The last link in the chain was the deter-
mination of theexceptionalimple groups, ie those not belonging to the known
infinite families (such as the family of alternating grousfor n > 5). Finally,
all was known except for the largest exceptional group—the so-caliedmoth
group. The character table of this group had been determined several years before
it was established that a group did indeed exist with this table.

As we remarked earlier, the technique aboveasrecommended for serious
character hunting. The method of choice must be induced representations, our
next topic.

Supposé/ is a vector space. Then we denotedi¥s,V ) the G-space of maps
f : G —V, with the action ofG defined by

(gh) (0 =f(g™x)
(This extends our earlier definition 6{G, k).)

Definition 10.2 Suppose H is a subgroup of G; and suppass a representation
of H in U. Then we define the induced representatiSrof G as follows. Let

V={F eC(GU):F(ghy=h"tF(g) forallge G,heH}.

Then V is a G-subspace of G,U); and a® is the representation of G in this
subspace.
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Remark: ThatV is a G-subspace follows from the fact that we are acting®n
with G andH from opposite sides3 on the left,H on the right); and their actions
therefore commute:

(9h = g(xh).
Thus ifF €V then
(gF)(xh) = F(g 'xh)
= h™'F(g™x)
h~((gF)(x)),

iegF eV.
This definition is too cumbersome to be of much practical use. The following
result offers an alternative, and usually more convenient, starting point.

Lemma 10.1 Suppose e- 91,02, ...,Qr are representatives of the cosets of H in
G,ie

G=gHUgHU...UgH.
Then there exists an H-subspacedV such that

(a) U’ is isomorphic to U as an H-space,

b)V=gU'@pU'd..DdgU"
Moreover the induced representatiorf? is uniquely characterised by the exis-
tence of such a subspace.
Remarks:

1. After the lemma, we may write

V=gUPaeu..Pau.

2. The action ofc onV is implicit in this description o¥/. For suppose is in
theith summand, say
V=g

and supposgg is in the jth coset, say
gg =gjh.

Thengvis in the jth summand:

gv=ggu=gj(hu).
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3. The difficulty of taking this result as the definition @f lies in the awk-
wardness of showing that the resulting representation does not depend on
the choice of coset-representatives.

Proof » To eachu € U let us associate the functiah= u'(g) € C(G,U) by

) gu ifgeH
u(g)_{ 0 otherwise

Then it is readily verified that
(@) U eV,ied(ghy=h"1tu(g) forallhecH.
(b) If u— U thenhu— hu.

Thus the mapi— U’ sets up amd-isomorphism betwedd and arH-subspace
U’ cV.
Supposd= € V. From the definition o¥/,

F(gh) =h"'F(g).

It follows that the values oF on any cosetjiH are completely determined by its
value at one poing;. ThusF is completely determined by itsvalues

up = F(e)7u2 — F(QZ))'“vur — F(QI’)
Let us write
F—— (u17u27...,ur).

Then it is readily verified that

and more generally
giv «— (0,..,u,..,0),

ie the functiongju’ vanishes on all except thth cosetgiH, and takes the valug
atg;.
It follows that
F =01y + Qo+ ... +0rUy

since the 2 functions take the same values at theintsg;. Moreover the argu-
ment shows that this expression forc V as a sum of functions in the subspaces
U’ =qgiU’,goU’,...,g:U’, respectively, is unique: so that

V=gV Papu'd..fHal"
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Finally this uniquely characterises the representatiBnsince the action of
G onV is completely determined by the actiontdfonU, as we saw in Remark
1 above. «

Example:Suppose is the representation & in U = C? given by

(abc)H((gwol) (ab)»—>((1) (1))

Let us consider the representationSfinduced bya (where we identifySs with
the subgroup o%,; leavingd fixed).

First we must choose representatives of$geosets inS,. The nicest way to
choose coset representativedbin G is to find—if we can—a subgroup C G
transversdo H, ie such that

1. TNH={e}
2. [[T]HIR] =[Gl

It is readily verified that these 2 conditions imply that each elengestG is
uniquelyexpressible in the form

g=th (teT,heH)

It follows that the elements of represent the coseg#i of H in G.
In the present case we could takeo be the subgroup generated by a 4-cycle:
say
{e. (abcd), (ac)(bd), (adch)}.

Or we could take
T =Vs = {e (ab)(cd), (ac)(bd), (ad)(bc)}

(the Viergruppe). Let's make the latter choice; the fact thas normal (self-
conjugate) inG should simplify the calculations. We have

S =S U(ab)(cd)SU (ac)(bd)S U (ad) (be)Ss;
and son© is the represention in the 8-dimensional vector space
V =U @P(ab)(cd)u P (ac)(bd)U P (ad)(bc)U.
As basis for this space we may take

e1=e e="f, e3 = (ab)(cd)e, e, = (ab)(cd
es = (ac)(bd)e, es=(ac)(bd)f, er=(ad)(chle, es
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wheree= (1,0), f = (0,1).
To simplify our calculations, recall that@,x € S,, and

X=(aqd...a)(b1by...bs)...

in cyclic notation, then

ng_1: (galvgazv"'agaf)(gblﬂgbZV"ang)"'a

since, for example,
(9xg 1) (ga1) = gxa = gap.

(This is how we show that 2 elements &f are conjugate if and only if they are
of the same type.) In our case, suppbseSs,t € V4. Then

hth ™t eV,
sinceV, is normal. In other words,
ht = sh

wheres € V,.
Now let's determine the matrix representit@p). By the result above, we
have

(ab)-(ab)(cd) = (ab)(cd)-(ab)
(ab)-(ac)(bd) = (bc)(ad)- (ab)
(ab)-(ad)(bc) = (bd)(ac)- (ab)
Thus
(abjes = (ab)-(ac)(bd)f
= (ad)(bc)-(ab)f
(ad)(bc)e
€.
In fact
(abjer = e, (abjez = e,
(ab)es = &4, (ab)es = e,
(abjes = es, (abjes = e,
(ab)e7 = e, (abjes = es.
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Hence

oNoNolNoNolNol
OO O0OFrOoOoo
OO O0OO0OFr oo
OO OO0 O0OO0o
P OOOOOOo
OFrLrO0OO0OO0OO0OO0o
OO0OOPFrOOoOOoOo

[cNoNoNoNoNol el

000100

It is not hard to see thaib) and (abcd) generates,. So the representation
a will be completely determined—in principle, at least—if we establish the
matrix representingabcd). We see now that it was easier to detemine the matrix
representingab), becauséab) € S;. But the general case is not difficult. Notice

that
(abcd) = (ad)(bg) - (ac)
It follows that (for example)

(abcd) - (ac)(bd) = (ad)(bc)- (ac)- (ac)(bd)
= (ad)(bo) - (ac)(bd) - (ac)
= (ab)(cd)-(ac).

Now (ac) = (abc)(ab); so unden,

@0 h)

We see that, for example,

(abcdes = (abcd)-(ac)(bd)e
= (ab)(cd)- (ac)e
(ab)(cd) w lf

= wle.

We leave it to the reader to complete this calculation of the matrix representing

(abcd).

Clearly this is too time-consuming a hobby to pursue.
It is evident that
h~HinH=h~hinG
In other words, each classin H lies in a unique clasgin G:

cg
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Or, to put it the other way round, each class G splitsinto classesy, ..., h in
H:
gNH =hyU---Uh.

Theorem 10.1 Suppose H is a subgroup of G; and supppse a representation
of H. Then

(<R
160 = i gy 2, o )

where the sum runs over those H-clasBe®ntained irg.

Proof » Letgy,...,gr be representatives of the cosetdin G, so thaf3® is the

representation in
V=gU@® - Pau.
Lemma 10.2 With the notation above

Xes(@= >  xg(h),
i:g tgg=hecH

where the sum extends over those coset-representatif@s.ghich g‘lgg € H.

Proof » Let us extend the functiogg (which is of course defined a) to G by
setting

Xp(9) =0ifg¢H,
then our formula can be written:

Xgs(9) = > Xp(gi'9g),

with the sum now extending over all coset-representatives.
Supposeey, ..., en is a basis fotJ. Thengiej (1 <i <r,1<j<m)is a basis
for V.
Suppose belongs to théth summand oY/, say

V=g
and supposgg belongs to thgth coset, say
9g =gjh.

Then
gv=ggu=g;(hu).
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So
g(gV) C gjuU.

Thus the basis elements gilJ cannot contribute txgs(g) unlessi = j, that is,
unlessgg = gih, ie
g 'gg =heH.

Moreover if this is so then

g(giej) = gi(hey),
ie the m x m matrix defining the action off on gU with respect to the basis
g€, ..., Giem is justB(h); so that its contribution t§ge(g) is

Xg(h).

The result follows on adding the contributions from all those summands sent into
themselves byg. «

Lemma 10.3 For each ge G,
1
Xge(9) = (=0 Z Xp(h)

geGg Tgg=heH
Proof » Suppose we take a different representative oftiveoset, say
g =gih.
This will make the same contribution to the sum, since
o od =h (g "gg)h;

and
Xg(h™th'h) = xg(H).

Thus if we sum over all the elements Gf we shall get each coset-contribution
just||H|| times. <

To return to the proof of the Proposition, we compute how many times each
elementh € H occurs in the sum above.

Two elementsg),g” define the same conjugate@in G, ie

g 'od =g’ 'od’
if and only if g’g/~* andg commute, ie if and only

g"N(g) = g'N(g),



GpReps-1-11

where

N(g) = {x € G: gx=xg}.
It follows that eachG-conjugateh of g in H will occur just |[N(g)|| times in the
sum of Corollary 1. Thus if we sum over these elemdmnige must multiply by

IN(9)]|-
The result follows, since

Gl
N9)| = =
IN(9)]| T
by the same argument, each conjugatégx of g arising from||N(g)|| elements
X.
Examples:

1. Let us look again a1~ The classes & andS; are related as follows:

1YnS = [17
21%ns = [21
NS = 0
B3NS = [3
4NSs = 0
Hence
24
Xes (1Y) = g% (1%) =8
24
Xas (22 = £E3a(22) =0
Xeu([2?]) = 0
24
Xas(31) = S2Xa(3)=-1
Xeu(4) = 0
Class| [14] [217] [27 [31] [4]
size | 1 6 3 8 6
o> 8 0 0O -1 O
Since 1
(0%, 0%) = (82+8.1%) =3,

24
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a has just 3 distinct simple parts. whose determination is left to the reader.

The relation betweef; andSg is unusual, in thatlasses never splitf gis
a class iy thengN s is either a whole cladsin H, or else is empty. This
is true more generally fd8, andSy, (m < n), whereS,, is identified with the
subgroup ofS, leaving the lash — m elements fixed. Ifis a class irS,,
then _

gNSn=hor0.

. Now let’s look at the cyclic subgroup
Ca = ((abcd)) = {e, (abed), (ac)(bd), (adch)}

of §. SinceC, is abelian, each element is in a class by itself. ek the
1-dimensional representation©f defined by

(abcd) — i
We have
[19NCsy = {e}
21NC4 = 0
22NCs = {(ac)(bd)}
B1NCsy = 0
[4NCs = {(abcd),(adch}
Hence
Xeul([1]) = 2 pXe(e)=6
Xess([217]) = 0O
2 24
Xess([27]) = nXe((aC)(bd)) =2
Xess([31]) = O
o (14) = 2o (Xo((abed) + xol(adch)
= i+(-)=0

Class| [1%] [217] [2%] [31] [4]
size | 1 6 3 8 6
B | 6 -2 0 0 O
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Since 1
1(6%,0%) = = (62+6-22) =3
( 9 ) 24( + ) ?

8% has just 3 distinct simple parts. whose elucidation we again leave to the
reader.

Proposition 10.2 1. (a+a’)¢ =aC+a'C;
2. (a)°=(a%)";
3. dima® = [G: H]dima.

It is worth noting that permutation representations are a particular case of in-
duced representations.

Lemma 10.4 Suppose G acts transitively on the finite set X. d_ée the corre-
sponding representation of G. TakeX; and let

S ={geG:gx=x}
be the corresponding stabilizer subgroup. Then

o =156

ie a is the representation of G obtained by induction from the trivial representation
of S.

Remark:The resultis easily extended to non-transitive actions. For in that case the
set splits into a number of orbits, on each of whighcts transitively. On applying

the Proposition to each orbit, we conclude that any permutation representation can
be expressed as a sum of representations, each of which arises by induction from
the trivial representation of some subgroup=of

Proof » By Definition 1,
o =156

is the representation in the subspace
V C C(G)
consisting of those functiorfs : G — k satisfying

F(ghy=h"1F(g) VhesS.
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But sinceS, acts trivially onk this condition reduces to

F(gh) =F(9),

ie F is constant on each cosg&. ThusV can be identified with the space
C(G/S, k) of functions on the seéb/S; of Si-cosets inG.

On the other hand, th&-setsX andG/S, can be identified, with the element
gx € X corresponding to the cosg&. Thus

C(G/S, k) = C(X, k).

Sincea is by definition the representation Gfin Cx the result follows. «

Proof » (Alternative) By Proposition 2,

X (@) = [{i:g"gg €Sl
I{i : ggix = gix}||
= [{yeX:gy=y},
since eacly € X is uniquely expressible in the forgn= gix. But by Proposition
???,
Xa(9) = [{y e X:gy=Vy}|.

Thus
Xa = Xao/»
and so
a=a =1%C,
<

Induced representations are of great practical value. But we end with an ex-
tremely important theoretical application.

Proposition 10.3 The number of simple representations of a finite group G is
equal to the number of conjugacy classes in G.

Proof » Let sdenote the number of classesGn We already know that
e The characters d& are class functions.

e The simple characters are linearly independent.
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ThusG has at moss simple characters; and the result will follow if we can show
that every class function is a linear combination of characters.

It suffices for the latter to show that we can find a linear combination of char-
acters taking the value 1 on a given clgsand vanishing on all other classes.

We can extend the formula in the Theorem above to define a map

f(h) — £&(g) : X(H,k) — X(G,k)

from the spaceX(H,k) of class functions on the subgrotp C G to the space
X(G, k) of class functions ofs, by

RO
= THiTan 2 Ihi

hcg

Evidently this map is linear:
F(h) = af(h) +bg(h) = F®(g) = af®(g) + bf®(g).

Choose ang € g. LetH be the subgroup generateddpyThus ifg is of order
d,
H :Cd = <g> = {e7gagza"'7gd_1}'

Let © denote the 1-dimensional charactertblefined by
0(g) = w=e"/d,

SinceH is abelian, each element is in a class by itself, so all functiond amne
class functions. Thd characters ol are

1,0,67,....89° 1.
Let f(h) denote the linear combination

f=1+twl0+w20%r ...+ @-Dgd-1

L (d ifi=1,
f(h'>:{o iti=0. °

ie f vanishes off théd-class{g}, but is not identically 0.
It follows that the induced functioi®(g) has the required property; it van-
ishes offg, while

Then

|Glid
IH[llgl

fe(g) = #0.
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This proves the result, sind& is a linear combination of characters:
f6=1%+ we®+w?(6?)% + - + (@D (8971,

<«

Examples:

1. S3 has 3 classes:3121 and 3. So it has 3 simple representations Gyexs
of course we already knew: namelyglanda.

2. D(4) has 5 classege}, {’}, {s,s°}, {c,d} and{h,v}. So it has 5 simple
representations oveéf. We already know of 4 1-dimensional representa-
tions. In addition the matrices defining the natural 2-dimensional represen-
tation inIR? also define a 2-dimensional complex representation. (We shall
consider this process of complexification more carefully in Chapter ???.)
This representation must be simple, since the matrices do not commute, as
they would if it were the sum of 2 1-dimensional representations. Thus all
the representations @f, are accounted for.

Proposition 10.4 (Frobenius’ Reciprocity Theorem) Suppaseés a representa-
tion of G, andp a representation of H- G. Then

lo(a, B%) = In(an,B).

Proof » We have

G _ 1 |G S
(0.0 = oy 3 1900 iy 3
1 — —
= W%Hh”Xa(h)XB(h)

= IH(GHaB)

<
This short proof does not explawhy Frobenius’ Reciprocity Theorem holds.
For that we must take a brief excursion into category theory.
Let (s denote the category dd-spaces an@-maps. Then restriction and
induction defindunctors

S:(c— CH, ,l:CH— Co

Now 2 functors
E:G— G, F:G—-0G
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are said to badjointif for any 2 objectsX € (1,Y € (» there are bijections
Mo, (X, FY) = Mg, (EXY)
which are natural in the sense that given any morphism
f:X—X
in (1 the diagram

M(X,FY) — M(X,FY)

MEX)Y) «— MEX,Y)
is commutative, and similarly given any morphism
e:Y =Y

in (> the diagram
M(X,FY) — M(X,FY')

H |

M(EX)Y) — M(EX)Y)

IS commutative.

It's not difficult to establish—but would take us too far out of our way—that
theinduction and restriction functors are adjoimt this sense: iV is aG-space,
andU aH-space, then

hont' (V4,U) = hon®(V,U®).
On taking dimensions, this gives Frobenius’ Theorem:

I (om,B) = Is(at, B®).



Chapter 11

Representations of Product Groups

The representations of a product graBpx H can be expressed—in as neat
a way as one could wish—in terms of the representatioiz afidH.

Definition 11.1 Suppose! is a representation of G in the vector space U over k,
and[3 a representation of H in the vector space V over k. Then we denatexlfgy
the representation of the product group<3 in the tensor product &V defined

by
(g,h)Zu@v: Zgu@hv.

Lemmalll 1. Xaxp(9h) =Xa(9)Xs(h)
2. dim(a x B) =dimadimf
3. if a andf3 are both representations of G then
(axB)c=ap,
where the restriction is to the diagonal subgroup
G={(9,0):9geG} CcGxG.

Proposition 11.1 The representation x 3 of Gx H overC is simple if and only
if a andf3 are both simple. Moreover, every simple representation afkbis of
this form.

Proof »

Lemma 11.2 If a1, are representations of G, arfii, 32 are representations of
H, all over k, then

I (01 x By, 02 % B2) = (01, B1)l (az,B2)

GpReps-I-1
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Proof » We have

1 [
I(Gl X [3170(2 X BZ) = | H ’ Z X(11><[31<g7 h)XGgXBz(g7 h)
eGxH
- (9)Xp: (e (@)X, (1)
= GHH’ h)EZGXHX(]l g XBl XGQ g XBZ

_ |—é| é_xaag)xaz(g)&hEHxBAh)sz(h)
ge <

= I(ag,B1)l(0z,B2)

<
Recall that a representationoverC is simple if and only if

l(a,0) =1

Thus ifa is a simple representation Gfandf3 is a simple representation bif
(both overC) then

I(axB,axP)=I(a,a)l(B,B) =

and therefore x 3 is simple.
Now supposé&s hasr classes andll hass classes. Thefs x H hasrs classes,
since
(g,h) ~ (d,h) <= g~d andh~h'.

But we have just producad simple representatiors x 3 of G x G; so these are
in fact the full complement.
(The lemma shows that these representations are distinct; for

I (ag x Bg,02 x Br) = (ag,02)1 (B1,B2) =

unlessa; = az andp1 =f2.) <«

It is useful to give a proof of the last part of the Proposition not using the fun-
damental result that the number of simple representations is equal to the number
of classes; for we can give an alternative proof of this result using product groups.

Proof » (of last part of Proposition). Suppogés a representation & x H in W
overC.
Consider the restrictiopy of yto the subgroupd =exH Cc Gx H. LetV be
a simple part oMy
W=Vo---

Let
X = hont! (V,W)
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be the vector space formed by tHemapst : V — W. This is non-trivial sinc&/
is a subspace aV.
Now X is aG-space, under the action

(gt)(v) = g(tv)
LetU be a simples-subspace oX. Then

hon®(U,X) = hon (U, hont' (V,W))
hon®H (U @ V,wW).

Since this space is non-trivial, there existSa H map
0:U®V —->W.
But since botlU @V andW are simple, we must have
ker6=0, ImB6=W.

Hence0 is an isomorphism, ie

W=U®®V.
Thus

y=axB,
wherea is the representation @ in U, andp is the representation ¢ in V.
<«

Theorem 11.1 Suppose G has n elements and s classes. Then
1. G has s simple representations o¢gr
2. ifthese areoy,...,05then
dim?0y+ - - +dim?os = n.
Proof » Let T be the permutation representation®k G in C(G, k) induced by

the action
(g,h)x=gxh*

of Gx GonG.

Lemma 11.3 The character of is given by

_ | I1G]/lgl ifg~h
X(9.h) = { 0 otherwise
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Proof » Sincet is a permutational representation,

xt(g.h) = [{x:(g,h)x=x}|
= [{x:gxht=x}|
[{x: x 1gx=nh}|.

If g +¢ hthen clearly no suck exists.
Suppose ~ h. Then there exists at least oresayxp, such that

h=x;'g%.
Now
xlgx=h «— xlgx= xalgxo
= (0g1g=90x%")
— x5tez(g)
<= X€Z(g)Xo.
Thus
Xx(g.h) = [{x:gxht=x
1Z(9)]
Gl/lg]-
|

Lemma 11.4 Suppose G has simple representations ..0s. Then

T=0] X071+ -+ 0% X Os.

Proof » We know that the simple representation€zok G area; x gj. Thus

= €, )0 x gj,
g

wheree(i.j) € N.
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To determine(i, j) we must compute the intertwining number
1 h h
|(T,0i XO]) = @;XT(97 )XCiX0j<g7 )

_ &Z‘xkg,h)xm(g)xoj(h)
g,

1 g

= Xoi (9)X
G2 2, 1gy % (9% ("
1

= e (9)Xo;(9)

1
= @xor(g>xoj(g>
= 1(of,0j).
Thus .
(1,01 x 0]) = 1 if of = 0j
el 0 otherwise

In other wordso; x gj occurs int if and only if 6 = o}, and then occurs just
once. «

It follows from this result in particular that the number of simple representa-
tions is equal td (1, 1).

Lemma 11.5 I(1,7) is equal to the number of classes in G.

Proof » We have

(0 = g3 (o)
I p—c
- o ;gg(@)
_ 1ggles
" fop %7@2
Z
g

Since each class contributgg terms to this sum, each equal tg|d], the sum is
equal to the number of classes.«



GpReps-1-6

That proves the first part of the Theorem; the number of simple representations
is equal tdl (T, 1), which in turn is equal to the number of classes.
The second part follows at once on taking dimensions in

T=0] X071+ -+ 0% X Os.

<

Example:We can think of product groups in 2 ways—as a method of constructing
new groups, or as a way of splitting up a given group into factors.
We say thaG = H x K, whereH, K are subgroups d&, if the map

HxK— G: (hk)— hk

is an isomorphism.
A necessary and sufficient condition for this— supposiignite—is that

1. elements oH andK commute, ie
hk=kh
forallhe H ke K; and
2. |G| = [HI|K].

Now consider the symmetry group of a cube. This has 48 elements; for
there are 8 vertices, and 6 symmetries leaving a given vertex fixed.

Of these 48 symmetries, half are proper and half improper. The proper sym-
metries form a subgroup C G.

Let Z = {lI,J}, whered denotes reflection in the centre of the cube. In fact
IS the centre o6:

Z=72G={ze G:zg=gzforallge G}.

By the criterion above,
G=ZxP

Moreover,
P= Sb

as we can see by considering the action of symmetries on the 4 diagonals of the
cube. This defines a homomorphism

0:P— %
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Since no symmetry send every diagonal into itself,
ker® = {l}.
ThusO is injective; and so it is bijective, since
Pl =24= sl

HenceO is an isomorphism.
Thus
G= C2 X S4

In theory this allows us to dtermine the character tabl&dfom that ofS;.
However, to make use of this table we must know how the classgés 0 are
to be interpreted geometrically. This is described in the following table.

class inCy; x P | size| order geometricaldescription

{1} x 14 1 | 1 |identity

{ x14 1 | 1 |reflectionin centre

{1} x 222 6 2 | half-turn about axis joining centres of op-
posite edges

{3} x 212 6 2 |relflection in plane through opposite
edges

{1} x 22 3 2 |rotation about axis parallel to edge
throughtt

{3} x 22 3 2 | relflection in central plane parallel to face

{I} x31 8 3 | rotation about diagonal through?

{J} x31 8 6 | screw reflection about diagonal

{I} x4 6 4 |rotation about axis parallel to edge
through+7

{J} x4 6 4 | screw reflection about axis parallel to
edge

The character table @, x &, id readily derived from that 0&;. We denote
the non-trivial character &> (J — —1) byn.
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Class|l x 1% Jx 1% I x212 IJx212 1 x22 Jx 22 I x31JIx31 1 x4 JIx4
1x1| 1 1 1 1 1 1 1 1 1 1
nx1| 1 -1 1 -1 i -1 1 -1 1 -1
1xe| 1 1 -1 -1 1 1 1 1 -1 -1
nxe| 1 -1 -1 1 1 -1 1 -1 -1 1
1xa| 2 2 0 0 2 2 -1 -1 0 O
nxa| 2 =2 0 0 2 -2 -1 1 0O O
1xB| 3 3 1 1 -1 -1 o0 0 -1 -1
nxp| 3 -3 1 -1 -1 1 0 0o -1 1
1xep| 3 3 -1 -1 -1 -1 o 0 1 1
nxepl 3 -3 -1 1 -1 1 0 0 1 -1

Now supposeat is the 6-dimensional permutational representatiorGah-
duced by its action on the 6 faces of the cube. Its character is readily determined:

Classl x 1% IJx 1% I x212 Jx 212 I x22 Jx 2?2 I x31JIx31 1 x4 x4
T 6 0 0 2 2 4 0 0 2 0

For example, to determine({J} x 4) we note that an element of this class
is a rotation about an axis parallel to an edge followed by reflection in the centre.
This will send each of the 4 faces parallel to the edge into an adjacent face, and
will swap the other 2 faces. Thus it will leave no face fixed; and so

Xn({J} x 4) =0.

We have
|(n,1><1):4—18(1-1-6+6-2-1+3-2-1+3-4-1+6-2-1):1
(as we knew it would be, since the action is transitive). Similarly,
I x1) = 4—18(1-1-6—6-2-1+3-2-1—3-4-1-|—6-2-1):O,
I(mlxe) = 4—18(1-1~6—6-2-1+3~2~1+3~4-1—6-2~1):O,
l(nxe) = 4—18(1-1-6+6-2-1+3-2-1—3-4-1—6-2-1):O.

It is clear at this point that the remaining simple partstohust be of dimensions
2 and 3. Thustcontains either X a orn x a. In fact

1
[(mlxa)=-—(1-6-24+3-2-24+3-4-2) =1
48
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The remaining part drops out by subtraction; and we find that

Mm=1x1+1xa-+nxEePR.



Chapter 12

Exterior Products

12.1 The exterior products of a vector space

SupposeV/ is a vector space. Recall that itk exterior product\'V is a vector
space, spanned by elements of the form

VIA---AVy (Vi,...,Vy €V),

where
VA AV = E(MVLA - AV

for any permutatiom e S.
This implies in particular that any product containing a repeated element van-
ishes:
o AVA---AVA---=0.

(We are assuming here that the characteristic of the scalakfisldot 2. In fact
we shall only be concerned with the cakes R or C.)
The exterior produchV could be defined rigorously as the quotient-space

AV =V /X,
whereX is the subspace &' spanned by all elements of the form
Vi A ..V —E(TOVIA -+ AV,

wherevs,...,Vy € V,TT€ §, ande denotes the parity representationSpf
Supposesy, ..., e, is a basis fov. Then

&, N6, N\---\g, (ip<ipg<---<liy)

GpReps-I-1
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is a basis forA"V. (Note that there is one basis element corresponding to each
subset of ey, ...,en} containingr elements.) It follows that if dird = n then

AV =0ifr>n;

dimA'Y = G‘)

Now supposd :V — V is a linear map. Then we can define a linear map

while if r < nthen

AN'T: AV S ATV

by
(ATYVIA - AV) = (TV) A A(Tw).

(To see that this action is properly defined, it is sufficient to see that it sends the
subspac& c V®" described above into itself; and that follows at once since

(A'T) (Ve A+ AV ) —€(MVIA... Ve = (Tvim) A A (T ) — (M (TV) A A(TW)

is again one of the spanning elements<of
In the case = n, A"V is 1-dimensional, with the basis element

e A---Aen

and
AT = (detT)I.

This is in fact the “true” definition of the determinant.
Although we shall not make use of this, the spacB¢ can be combined to
form theexterior algebraAV of V

AV =AY,
with the “wedge multiplication”
ANV X AN — ATV
defined by
(UL A== AU)A (VLA < AVs) =Ug A= AU AVL A+ AVs,

extended to\V by linearity.
Observe thatihe A"V,b e AV then

bAra=(—1)®aAb.

In particular the elements of even order forrmanmutativesubalgebra of\V.
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12.2 The exterior products of a group representa-
tion

Definition 12.1 Suppose is a representation of G in V. Then we denote\by
the representation of G in"V defined by

g(VIA - AVE) = (QVa) A+ A (W)
In other wordsg acts through the linear mag (a(g)).

Proposition 12.1 Suppose g G has eigenvaluek,, ..., A in the representation
a. Then the character of"a is the rth symmetric sum of thés, ie

Xnra(9) = Z AigAiy. A,

i1<ir<---<ir

Proof » Let us suppose that= C. We know thati(g) can be diagonalised, ie we
can find a basisy, . .., e, of the representation-spa¥esuch that

ga =Aig (i=1,...,n).
But now
ga, A&, A--- A&, =AjAiy. . A&, A, A NG,

from which the result follows, since these products form a basisfdr <«

12.3 Symmetric polynomials

We usually denote the symmetric product in the Proposition above by

It is an example of @ymmetric polynomiah A1,. .., An.

More generally, suppos& is a commutative ring, with 1. (In fact we shall
only be interested in the rindgé andQ.) As usual A[xy,...,Xn| denotes the ring
of polynomials inxy, ..., X, with coefficients inA.

The symmetric grouf®, acts on this ring, by permutation of the variables:

(TP) (X4, %) = P (xwl(l), . ,xwl(n)) (e ).
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The polynomiaP(xy, ..., Xn) is said to besymmetridf it is left invariant by this ac-
tion of S,. The symmetric polynomials evidently fornsab-ringof Alxs, ..., Xn],
which we shall denote b¥n(A).

Then polynomials

a].:th 3-222 Xilxiza ,anlexn

11<l2

are symmetric; as are

si=3%, 2=3x,%=3 %, ..
Proposition 12.2 The ringZz(n) is freely generated oveét by &, ..., a,, ie the
map

DXL, - %) = P(a,- -, 8n)  Z[Xa, .., Xn] — Zn(2)
is a ring-isomorphism.
Proof » We have to show that

1. Every symmetric polynomidP(xy,...,X,) overZ (ie with integer coeffi-
cients) is expressible as a polynomiabmn. .., a, overZ:

P(X1,...,%) = p(ay,...,an).
This will show that the map is surjective.
2. The map is injective, ie
p(ai,...,an) =0= p=0.
1. Any polynomial is a linear combination afionomials % X, We order

the monomials first by degree, with higher degree first, and then within each
degredexicographically eg if n = 2 then

1<Xp <X <X <XXp <X <X < -m

Theleading termin p(x,...,Xy) is the non-zero termx‘i1 -+ X containing
the greatest monomial in this ordering.

Now suppose the polynomid(xy,...,X,) is symmetric. Evidentlye; >
e > - > einthe leading term. For if sagy < e, then the ternex2x3! - - - X
— which must also appear B(Xy, ..., Xn).

<«
Corollary 12.1 The ringZg(n) is freely generated ovep by &, ..., an,
Proposition 12.3 The ringZg(n) is freely generated ové@ by s, ..., s,

Proof » <«
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12.4 Newton’s formula

It follows from the Propositions above that the power-sismare expressible in
terms of the symmetric producss, and vice versa. More precisely, there exist
polynomialsS, (X, . .., Xn) andAn(Xq, ..., X,) such that

$=Sa,...,n), an=A~An(as,...,n),

with the coefficients of5, integral and those oA, rational. Newton’s formula
allows these polynomials to be determined recursively.

Let
ft) =(1—xat) - (1—Xnt)
=1—agt+apt’— -+ (—1)"ant".
Then
:‘/((tt; = frac—x11—xqt +--- + frac—xnl— Xt
= —s —Spt—sat’— -
Thus

—ag+2ast —3agt’ 4+ (—1)"nant" 1 = (1—agt+apt? — - -+ (—1)"ant") (—s1 — Spt —Sat?—- - ).
Equating coefficients,

a = 9
20 = |1 -9
33 = Si@—a+3

rar = s1a—Sa 1+ + (-1 s

Evidently these equations allow us to expresss,ss,... successively in
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terms ofap,ap,as, ..., or vice versa:

Si=a1
S = a3 — 28
3= a; — 3aay + 3as

=9
Qo =S -
6ag = S; — 3515 + 23

12.5 Plethysm

There is another way of looking at the exterior product — as a particular case of
the plethysnoperator on the representation-riR(G).

Supposé/ is a vector space over a fiekdof characteristic 0. (We shall only
be interested in the casks= Ror C.) Then the symmetric grou§, acts on the
tensor producy ®" by permutation of the factors:

T[<V1®-"®Vn) =V11® - @V 1p

ThusV®" carries a representation 8f. As we know this splits into components
V= corresponding to the simple representatizine Sy

V®n :Vzl D @VZS,

whereXy,...,Zs are the simple representationsSif (We shall find it convenient
to use superfixes rather than suffixes for objects corresponding to representations
of §,.)

We are particularly interested in the components corresponding to the 2 1-
dimensional representations®{. the trivial representation,land the parity rep-
resentatiorg,, and we shall write

VP =yl YN e,

We also use® andN to denote the operations sfymmetrisatiorand skew-
symmetrisatiomnV®"; that is, the linear maps

PN VEN L yen
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defined by

1
P(V1®"‘®Vn) = H ES'T[(V]_@...@Vn),
" TE

NVI®:- - ®Vn) = n—ll %a(n)n(w@m@vn).

Supposeat e S,. Regardingtas a mapy ®" — V&, we have
M =P=Pr, TN =¢(mMN=NT

It follows that
{PP=P, N?=N,

ie P andN are bothprojectionsonto subspaces &“".
We say thak € V" is symmetridf

™ = X
for all me S,; and we say that is skew-symmetriit
T™X = €(T)X

for all Tu It follows at once from the relatiorms® = P, TN = €N thatx is symmetric
if and only if
Px=1x;

while x is skew-symmetric if and only if
NX=X.

ThusP is a projection onto the symmetric element¥/if”, andN is a projection
onto the skew-symmetric elements.
To see the connection with the exterior produél/, recall that we could
define the latter by
AV =VEN/X,
whereX c V®"is the subspace spanned by elements of the form
TX — E(TDX.

It is easy to see thatix = 0 for such an element; while conversely, for any
xeven
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It follows that
X =kerN;

and so (sincé\ is a projection)
AV =V/X=imN=VN,

that is,the nth exterior product of V can be identified with #i:eomponent of
ven,

Now suppose that carries a representati@enof some groups. ThenG acts
onV®" through the representation'.

Proposition 12.4 Suppose! is a represenation of G in V. Then the actions of G
and $ on V®" commute.

For each simple representatich of S,, the component ¥ of V" is stable
under G, and so carries a representatiof of G. Thus

a"=o*l 440,

wherey, ..., 2 are the simple representations 6f. S

Proof » We have

TYV1I® - @Vn) =T(GVL ® - - - @ Vi)
= (gvrr11® Tt ®gvrr1n)
=grnvi® - ®Vp).

<
Since the actions o6 and S, on V®" commute, they combine to define a
representation of the product gro@px S, on this space.

Corollary 12.2 The representation of & S, on V®" is given by
A*l X S+ 4+ 0% X S

Supposeg € G (or more accuratelyp(g)) has eigenvalueds, ..., Aq. We
know that the character of
Ala = o

is thenth symmetric product of tha;:

Xana(9) = @n(A1, ..., Aq).
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Proposition 12.5 To each simple representati@rof S, there corresponds a unique
symmetric functionsSof degree n such that for any representateonf G, and for
any ge G with eigenvaluegy, ..., Aq,

X/\na(g) = SZ()\lv s a)\d)'

Proof » We begin by establishing an important result which should perhaps have
been proved when we discussed the splitting GFgpaceV into components

V :Vo.l@...@vo.s
corresponding to the simple representations. ., os of G.

Lemma 12.1 The projection B onto thec-component of V is given by

B dimo

p,— oMY “1yg,

Proof of Lemma> Supposen is a representation d& in V. Then the formula

above defines a linear map
P:V V.

Supposé € G. Then (writingd for dimo)
d
hPh* = = Xo(g ")hgh™*
IGIl 4
d —1.-1p\ v
== » Xa(h™g g
oy XM g

. d =1\
=P

Now supposex is simple. By Schur's Lemma, the only linear transformations
commuting with alla(g) are multiples of the identity. Thus

P=npl

for somep € C. Taking traces,

] 2 X8 a(g) = pd
[¢]
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It follows that

B 1 a=o0
=30 a#£0

|l a=a0
P—
0 a#o
It follows thatP acts as the identity on all simp{&subspaces carrying the repre-
sentationo, and as 0 on all simple subspaces carrying a representitiéw. In
particular,P =1 onVg andP = 0 onVy for all o’ # 0. In other wordsP is the

projection onto the componevi.
<«

< In other words,



Chapter 13

Real Representations

Representation theory ovér is much simpler than representation theory
overR. For that reason, we usualtlpmplexifyreal representations—extend
the scalars fronR to C—just as we do with polynomial equations. But at the
end of the day we must determine if the representations—or solutions—that
we have obtained are in fact real.

SupposéJ is a vector space ové&k. Then we can define a vector spate-
CU overC by “extension of scalars”. More precisely,

V=C®prU.

In practical terms,
V=Ua®IU,

ie each element €V is uniquely expressible in the form
V=us+iuz (u,upeU).
If e1,...,enisabasis fol overR, thenitis also a basis ff overC. In particular,
dimcV =dimgrU.

On the other hand, suppoSeis a vector space ovét. Then we can define
a vector spactl = RV overR by “forgetting” scalar multiplication by non-reals.
Thus the elements &f are precisely the same as thos&off ey, ..., e, is a basis
forV overV, theney,ie1, e, i€y, ..., ey, ie, IS a basis fotJ overR. In particular,

dimpU = 2dim¢ V.

Now supposés acts on the vector spatkoverR. ThenG also acts orCU,
by
g(u1+iuz) = (gur) +i(gup).

GpReps-I-1
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On the other hand, suppo&eacts on the vector spaveoverC. ThenG also acts
onRV by the same rule

(g,v) — gv.

Definition 13.1 1. Suppose is a real representation of G in U. Then we
denote byC[3 the complex representation of G in the vector space

CU=UasiU
derived from U by extending the scalars frdtrio C.

2. Suppose is a complex representation of G in V. Then we denot&by
the real representation of G in the vector sp&¢ derived from V by “for-
getting” scalar multiplication by non-reals.

Remarks:

1. Suppos@ is described in matrix terms, by choosing a basisf@nd giving
the matrice(g) representing(g) with respect to this basis. Then we can
take the same basis f@J, and the same matrices to represéfitg). Thus
from the matrix point of viewf3 and C(3 appear the same. The essential
difference is thaC3 may split even i3 is simple, ie we may be able to find
a complex matrixP such that

PB(g)P ' = ( C(Og) D?g) >

for all g € G, although no real matriR has this property.

2. Suppose is described in matrix form, by choosing a basise, ..., e, for
V, and giving the matrice&(g) representingt(g) with respect to this basis.
Then we can take thenzlement®y,ie1, e, i€y, ..., €, i€, as a basis foRV;
and the matrix representii®o (g) with respect to this basis can be derived
from the matrixA = A(g) representingi(g) as follows. By definition,

ge = Z Agr€s.
S

Let
Ars=Xs+iYrs,
whereX;s,Yrs € R. Then

g6 = Xsr&s+ Ysri€s
g(ier) = —Ysr&+ Xgri€s



GpReps-1-3

Thus the entryAs is replaced iRa (g) by the 2x 2-matrix

( Xes —Yis )
Yr,s xr,s

Proposition 13.1 1. C(B+p') = CB+Cp

2.

10.
11.
12.
13.

© © N o 00 b~ W

C(BB') = (CR)(CR)
C(p") = (CB)*
Ci=1
dimCB = dimp
Xcp(9) = Xp(9)
I(CB,CB) =1(B,B)
R(a+0a’) =Ra+Ra’
R(a*) = (Ra)*
dimRa = 2dima
Xea(9) = 20Xa(9) = Xa(9) +Xa (9™
RCB = 2B

CRa=a+4a*

Proof » All is immediate except (perhaps) parts (11) and (13).
11. Suppose(g) is represented by thex n matrix

A=X+iY,

whereX,Y are real. Then—as we saw above—the eAtryis replaced irfRa(g)
by the 2x 2 matrix

(Xw —Ws)
Yis Xs
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Thus
trRa(g) = ZZer
4
= 20(3 A)
r
= 20tra(g)
= 20Xa(9)
= Xa(9) +Xa(g)
since o
X(9) =X(g™).
13. This now follows on taking characters, since
Xcra(9) XRa (9)
= Xa(9) +Xa(g)
= Xa(9)+Xa(9)
Since this holds for aly,
CRa =a+a*.

<

Lemma 13.1 Given a representation of G overC there exists at most one real
representatior of G overR such that

a=Cp.

Proof » By Proposition 1,

CB=CP = Xcp(9) =Xcp(9)
= Xp(9) =Xp(9)
— B=p.

<

Definition 13.2 A representatior of G overC is said to be real ilo = Cf3 for
some representatiopioverR.

Remarks:
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1. In matrix termsa is real if we can find a complex matrRR such that the
matrices
PB(g)P 1

are real for alg € G.

2. Sincef is uniquely determined by in this case, one can to some extent
confuse the two (as indeed in speakingooés real), although eg if dis-
cussing simplicity it must be made clear whether the referencecisorao

B.

Lemma 13.2 Consider the following 3 properties of the representatiooverC:

1. aisreal

2. Xa isreal, iexq(g) e Rforallge G

3.a=0"
We have

(1) = (2) = (3).

Proof » (1) = (2): If a = Cp then

Xa(9) = Xp(9)-

But the trace of a real matrix is necessarily real.
(2) <= (3): If xq is real then

Xa(9) = Xa(9) = Xo+(9)

for all g € G. Hence

<

Problems involving representations ovRroften arise in classical physics,
since the spaces there are normally real, eg those given by the electric and mag-
netic fields, or the vibrations of a system. The best way of tackling such a problem
is usually to complexify, ie to extend the scalars fr&rto C. This allows the pow-
erful techniques developed in the earlier chapters to be applied. But at the end of
the day it may be necessary to determine whether or not the representations that
arise are real. The Lemma above gives a necessary conditionisifeal then
its character must be real. But this condition is not sufficient; and our aim in the
rest of the Chapter is to find necessary and sufficient conditions for reality, of as
practical a nature as possible.
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Definition 13.3 Suppose! is a simple representation ov€r. Then we say that
is strictly complexif Xq is not real; and we say that is quaternionidf X is real,
buta itself is not real.

Thus the simple representations @fover C fall into 3 mutually exclusive
classes:

R real: a =Cp
C strictly complex:xy not real

H quaternionic:xq real buta not real

Lemma 13.3 Suppose! is a simple representation ové&l. Then
1. Ifaisreal, Ra = 23, wherep is a simple representation ova;

2. if a is strictly complex or quaternionida = 3 is a simple representation
overR.

In particular, if X is not real thenRa must be simple.

Proof » If a is real, saya = C[3, then by Proposition 1
Ra = RCP = 2.
Conversely, supposka splits, say
Ra =B+p.
Then by Proposition 1,
a+a* =CRa =CB+Cp.

But sincea anda™ are simple, this implies (by the unique factorisation theorem)
that
a=Cpora=Cp.

In either cas@ isreal. «
This gives a (not very practical) way of distinguishing between the 3 classes:

R: o real<= xq real andRa splits
C: a quaternionic= Xq real andRa simple

H: a strictly complex<= x4 not real & Ra simple)
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The next Proposition shows that the classification of simple representations
over C into 3 classes leads to a similar classification of simple representations
overR.

Proposition 13.2 Suppose is a simple representation ov&. Then there are 3
(mutually exclusive) possibilities:

R: CB=aissimple
C: CB=a+a0a*,
H: CB = 2a, with a simple witha (anda*) simple, andx # o*

In case R), a is real and

1(B,B) =1
In case (), a is strictly complex and

[(B,B) =2
In case M), a is quaternionic and

[(B,B) =4
Proof » Since

RCP = 2,

Cp cannot split into more than 2 parts. Thus there are 3 possibilities:
1. CB=aissimple
2. CB = 2a, with a simple
3. CB=a+a’, with a, a’ simple andx # o’

Since
1(B,B) =1(CB,CPB)

by Proposition 1, the values off3,3) in the 3 cases follow at once. Thus it only
remains to show that is in the class specified in each case, and that a* in
case (3).

In case (1) is real by definition.

In case (2),

2Xa(9) = X2a(9) = Xp(9)
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is real for allg € G. Hencexq(Qg) is real, and sa is either real or quaternionic. If
a were real, sag = Cp’, we should have

CB=2Cp
which would imply that
B=2p
by Proposition 2. Hence is quaternionic.
In case (3)

2B =RCB =Ra +Ra’.

Hence
Ra =B =Ra’.

But then

a+ao =CB=a+a"
Hence

o =a*.

Finally, sincea* = o’ # a, a is strictly complex. «

Proposition 5 gives a practical criterion for determining which of the 3 classes
a simple representatighoverR belongs to, namely by computirgp,3) from
Xp- Unfortunately, the question that more often arises is: which class does a given
simple representatiom over C belong to? and this is more difficult to determine.

Lemma 13.4 Suppose@ is a simple representation of G ov&rin V. Then

R: if a is real,there exists an invariant symmetric (quadratic) form on V, unique
up to a scalar multiple—but there is no invariant skew-symmetric form on
A

C: if a is complex, there is no invariant bilinear form on V.

H: if a is quaternionic, there exists an invariant skew-symmetric form on V,
unique up to a scalar multiple—but there is no invariant symmetric form
onV,;

Proof » A bilinear form onV is a linear map
VeV —C,

ie an element of
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Thus the space of bilinear maps carries the represent@tion of G. Hence the
invariant bilinear maps form a space of dimension

(1, (")) = I(1,0%a*) = I (o, ")

Sincea anda* are simple, this is 0 or 1 according@as= a* or not, ie according
asa is either real or quaternionic, or strictly complex. In other wordsy i
complex there is no invariant bilinear form; whiledifis real or quaternionic there
is an invariant bilinear form oW, sayF(u, V), unique up to a scalar multiple.

Now any bilinear form can be split into a symmetric (or quadratic) part and a
skew-symmetric part; say

F(u,v) = Q(u,v) + S(u,v),

where

1 1
Q(U,V) = E (F(U,V) + F(V, U)) ) S(U,V) = é (F(UJV) - F<Vv U))
But it is easy to see that K is invariant then so ar® andS. SinceF is the only
invariant bilinear form oV, it follows that either

F=QorF=§

ie F is either symmetric or skew-symmetric. It remains to show that the former
occurs in the real case, the latter in the quaternionic case.

Supposean is real, saya = Cp, wheref is a representation in the real vector
spacdJ. We know thatJ carries an invariant symmetric form (in fact a positive-
definite one), sa@(u,u’). But this defines an invariant symmetric fo@Q on
V = CU by extension of scalars. Sodfis real,V carries an invariant symmetric
form.

Finally, supposex is quaternionic. TheW carries either a symmetric or a
skew-symmetric invariant form (but not both). Suppose the formergay/) is
invariant. By Proposition 33 = Ra is simple. Hence there exists a real invariant
positive-definite symmetric form oRV; and this is the only invariant symmetric
form onRV, up to a scalar multiple. But the real part@fv,V') is also an invariant
form onRV; and it is certainly not positive-definite, since

0Q(iv,iv) = —0Q(v,V).

This contradiction shows thaf cannot carry an invariant symmetric form. We
conclude that it must carry an invariant skew-symmetric forme

We deduce from this Proposition the following more practical criterion for
reality.
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Proposition 13.3 Suppos@ is a simple representation ovér. Then

1 ifaisreal

|_C1;| %xa(gz) =¢ 0 if aisstrictly complex
ge —1 if ais quaternionic

Proof » Every bilinear form has a unique expression as the sum of its symmetric
and skew-symmetric parts. In other words, the space of bilinear forms is the direct
sum of the spaces of symmetric and of skew-symmetric forms; say

VoV =VeaVS,

Moreover, each of these subspaces is stable uBfso the representatigio*)?
in the space of bilinear forms splits in the same way; say

(a*)?2 =a®+aS,

wherea® is the representation @ in the spac& Q of symmetric forms on V, and
aS is the representation in the spa¢of skew-symmetric forms.
Now the dimensions of the spaces of invariant symmetric and skew-symmetric
space are
1(1,a9) andl(1,05),

respectively. Thus Proposition 6 can be reworded as follows:

R: If aisreal then
1(1,a%) =1 andl(1,a% =0.

C: If ais complex then

1(1,a9) =0 andl (1,a5) = 0.
H: If ais quaternionic then

1(1,a®) =0andl(1,05% = 1.

Thus all () we have to do is to compute these 2 intertwining numbers. In fact
it suffices to find one of them, since

1(1,a?) +1(1,a5) =1(1, (a*)?) = I (a,a%)

which we already know to be 1 d is real or quaternionic, and Odf is complex.
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To computd (1,a®), choose a basks, ..., &, for V; and let the corresponding
coordinates baj, ..., X,. Then then(n+1)/2 quadratic forms

¥ (1<i<n), 2 (1<i<j<n)

form a basis folvQ. Let gij denote the matrix defined hy(g). Thus ifv=
(X1,...,%n) € V, then the coordinates gfvare

av)i = > GijXj-
7

Hence

90¢) = S GijXj Gk
2

In particular, the coefficient of? in this (which is all we need to know for the
trace) isg?. Similarly, the coefficient of 2x; in g(2xxj) is

Gigjj +Gijgji-
We conclude that

Xao(@ =Y o+ Y (Gigji +0ijgi)-
|

i<
But
Zgu Xa (9 Zgljgjl
Thus 1
Xae(@) = 5 (Xa(@)* +Xa(9%))
Since

1(1,a®) = |G| %Xa

21(1,a9) = |G|§X°‘ 2+ Xa(9?)).

it follows that

But L
6] 2 Xe(0) =1(oa")
g
Thus
21(1,09) = I (a,a*) + ‘G‘zxa

The result follows, sincé(a,a*) =1 in the real and quaternionic cases, and 0 in
the complex case. «
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13.1 The endomorphism algebra of a representation

There is another way of looking at the classification of simple representations
over C into real, quaternionic and essentially complex — and one that justifies
that termquaternionic

Recall that an associative algebra over a fleld defined by giving a vector
spaceA overk, together with a map

AxA— A,

which we denote bya,b) — ab, and which is both bilinear and associative. The
element 1c Ais said to be a unity element it h=a-1=afor allac A. We
shall use the terralgebrato mean ‘associative algebra with 1'.

Proposition 13.4 If a is a representation of the group G in the vector space V
over k then the G-maps ¥V — V, form an algebra over k of dimensioful, o).

Proof » The G-maps certainly form a vector space okesf dimension
|(a,a) = dimhonf(V,V).

Moreover, composition of maps defines a multiplication which is both bilinear
and associative. <
A G-mapV —V is often called amndomorphisnof the G-spaceV.

Definition 13.4 We denote the algebra of G-mapsHyd ()a).

An algebraA is said to be a division-algebra or skew-field (the two terms are
used interchangeably) if each non-zero elenaentA has an inverse:

ab=1=Dba

Proposition 13.5 If a is a simple representation of G th&nd(a) is a division-
algebra.

Proof » Supposéd :V — V is a non-zerds-map. It is readily verified that ker
and imt are both stable und&. Sincea is simple, it follows that

kert =0orV, imt=0orV.

Thus ift # 0,
kert =0, imt =V,
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iet is injective and surjective. It follows thais bijective and so invertible; and it
is a straightforward matter to verify thiat! is also aG-map. «

The most familiar example of a non-commutative division-algebra is furnished
by the algebra of quaterniori$ Recall thatH is a 4-dimensional algebra over
with basis 1i, j,k, so that each quaterniape H is uniquely expressible in the
form

g=t+xi+yj+zk
wheret, x,y,z € R. Multiplication of quaternions is defined by the familiar rules
i2=j?=K= -1,
ij=k=—]ji, jk=1=—kj, ki=]=—Ik,
extended td by bilinearity, eg
(i+2j)(1-k) =i—ik+2j—2jk=—i+3j.

It is a straightforward matter to verify that this multiplicatioraeissociative—
in effect one has to verify that

X(y2) = (xy)z

in the $ = 27 casex,y,z < {i, j,k}. If we observe that the multiplication rules
are invariant under the cyclic permutation> j — k— i then the number of cases
is reduced to 9, since we may assume egxhai.

There is a conjugacy operation Bhanalogous to complex conjugation, with

g=t—xi—yj—zk

It is readily verified that
0102 = Q201
(eg by considering the 9 cases oz € {i, j,k} and applying bilinearity).
Also
qq=t>+x2+y>+ 2.
We define|q| to be the positive square-root of this, so that

g2 =2+ 2 +y?*+ 2.

Evidently
g =0«<=q=0.
It follows thatevery non-zero quaternion g has an invensenely
19
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Thus the quaternions formskew-fieldor division algebra (The two terms are
interchangeable.)
The quaternions have a certain uniqueness, as we shall see.

Proposition 13.6 The only finite-dimensional division algebra overs C itself.

Proof » If Ais an algebra ovek then we can identifjA € k with the element
A-1€ A. Thusk can be identified with a subalgebraffk C A.

Supposd\is a finite-dimensional division-algebra owérand supposA # C.
Letae A\C.

If dim A = n then them+ 1 elements 1a,a?,...,a" must be linearly depen-
dent, iea satisfies a polynomial equation of degrea.

Let m(x) be the minimal polynomial od, ie the monic polynomial of minimal
degree satisfied by. Thenm(x) must be irreducible; for im(x) = f(x)g(x) then

m(a) =0= f(a)g(a) =0= f(a)=0o0rg(a) =0,

contradicting the minimality ofn(x).

But every polynomial ove€ factorises completely into linear factors, by the
Fundamental Theorem of Algebra. It follows tmatx) = x—c, and sca=c < C.
We conclude thah =C. <

Proposition 13.7 The only finite-dimensional division algebras oleare R, C
and the quaternionl.

Proof » SupposeA is a finite-dimensional division algebra over and suppose
A#R. Letac A\R.

As abovea satisfies a polynomial equation ovey and if m(x) is the minimal
such polynomial, them(x) is irreducible. But an irreducible polynomiai(x)
overR is necessarily linear or quadratic. In effectoif C is a root ofm(x) then
soisa; and

(x— o) (x— @)
is a polynomial oveR satisfied bya.

If m(x) is linear thera € R. So

m(x) = X%+ 2bx+c,

where
d=b’—ac<0,
since otherwisen(x) could be factorised ovéR®. Letd = —€?. Then
i_a+b
e
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satisfies
i2=-1

It follows that the elements
{X+vyi:xyeR}

form a subalgebra ok which we can identify withC.
If A= C we are done; otherwise consider the linear map

tix—ixi 1= —ixi: A— A
Evidently
t2=1.
It follows that
A=E1®E_q,

whereE, E_; are the + and—1—eigenspaces df ie
Ei={acA:ai=ia}, E.1 ={acA:ai=—ia}.

(Explicitly,

1
a=-(a+ta) +§(a—ta),

NI =

anda+tac Ej,a—tacE_1.)

EvidentlyC € E;. We show that in fadE; = C. For supposa € E; \ C. Since
ai = ia it follows thataz= zafor all ze C. Consider the subalgebBagenerated
by C anda, ie the set of elements expressible as polynomials

Co+cla+---+ca (¢eC).

Evidently B is a commutative sub-algebra &f Moreover it is a division-
algebra, ie the inverse of every non-zero elenteatB lies in B. For suppose the
minimal polynomial ofb is

mx) =X +axX' 14+... +a.
Thena, # 0 sincem(x) is irreducible; and so
b= —é (b t+ab™ %+ +a_1) €B.
SinceC C B, we can regar® as a division-algebra ovét; and so from above

B =C. Hence
E;=C.
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If A= C we are done; otherwide_; #0. Letac E_;,a# 0.
Then
E_1=ak =aC.

For if zcommutes with thenaz anti-commutes with; henceak; ¢ E_;. Con-
versely,a~! anti-commutes with; so if & also anti-commutes withthenz =
a_ia commutes with, iea = aze aF;.

From the definition oE_;,

ai= —ia.

It follows that
az=za

forall z=x+vyi e C.
In particular, ifze€ C then

ze R<=az=za
Evidentlya? commutes withi, and so
a’eC.

In fact, since
it follows that

Thus
a® = +d?,
whered € R.
If a? = d? then(a—d)(a-+d) = 0 and so (since we are in a division-algebra)
a = +d, contradicting our assumption that4 C. Hencea? = —d?. Thus if we
set

_a
=4
then
i?=-1
while sincej € E_;,
ji = —ij
Finally, on setting
k=ij=—ji
it is readily verified that, j, k satisfy Hamilton’s identities, so that
A=H.
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13.2 Application to simple representations

If a is a simple representation ov€rthenl(a,a) =1 and so Enth) = C. Thus
Proposition 136 tells us nothing new; in effect it is a re-statement of Schur’s
Lemma.

But we do learn something new if we consider simple representations over
R. First we note that the intertwining number is invariant under extension of the
scalars.

Proposition 13.8 Suppos§, 32 are representations of G ov&. Then

1 (CB1, CP2) = 1By, B2).

Proof » Since
Xcp(9) = Xp(9),
this follows at once from our formula for the intertwining number:

| (B1,B2) = H_C15|| ;xm(wxm(g)-
ge

But it is also easy to establish directly. If we think in terms of matrices,
I (B1,B2) is the dimension of the space of matrieésatisfying the linear equations

XBy(9) = B2(9)X

for all g € G. Now the Proposition follows from the fact that if we have a set of
equations over the fiekl and ifk C K (ie k is a subfield oK) then the dimension
of the solution-space ovét is equal to the dimension of the solution-space over
k. <

Now we can complete our classification of simple representatiois mfer
R.

Proposition 13.9 Suppose is a simple representation of the finite group G over
R. Then

1. If Bis essentially real, i€f3 is simple, then
I(B.B)=1

and

EndB) =R;



13.3. REPRESENTATIONS OVER THE QUATERNIONS H GpReps-1-18

2. If Bis quaternionic, ieCp3 = 2a, then
1(B,B) =4
and
End(B) = H;
3. If Bis essentially complex, i€ = a + a*, wherea™ # a, then
1(B,B) =2

and

EndB) =C;

Proof » If CB is simple then
I(B,B) =1(CB,CP) = 1— End(B) = R.
Similarly, if Cp = 2a then
1(B,B) =1(20,20) = 4= Endp) = H.
Finally, if CB=a+a* then
1(B,B) =1(a+0a",a+0a") =2= Endp) =C.

In effect, Endp3) is completely determined by its dimension, since there is just
one division-algebra of each dimension 1,2,4«

These results refer to representations debut we shall see next that they
have a bearing on representations dier

13.3 Representations over the quaternionl

Although vector spaces are normally defined oveommutativdield k, the ba-
sic concepts of linear algebra carry over unchanged if we alidw be a non-
commutative oskewfield, The most familiar skew-field is provided by theater-
nionsH.

If we look at the definitions (and basic properties)vettor spaceand sub-
space linear independencanddependencespanning setbasisanddimension
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we see that none of them make use of the commutativiky b all extend to the
non-commutative case.
Thus a vector space ovEris defined by giving an additive groMu together
with a map
HxW —W,

which we denote byqg, w) — gw, and which satisfies the rules
1. g(wi+w2) = qwi + que,
2. (01 + 02W) = QW+ GaW,
3. q1(Aw) = (uG2)W,

4. lw=w.

An n-dimensional vector space ovErcan be identified in the usual way with the
space oh — tuplesof quaterniong".

The concept of a linear map Wy — W, of vector spaces ovdil also goes
over unchanged:is linear if

t(qw) = qt(w)
forallge H,weW.
But we need to take a little care when representing such maps by matrices. For
simplicity we restrict the discussion to linear map3V — W, since this is the
only kind we shall meet. Note that we cannot define a linear mdjp' — H" in
the usual way, by

Wi— Tw,

V\/r = ZTrsW&
S
whereT is ann x n matrix with quaternionic entries. For in general

Trs(qws) 7 d(TrsWs),

so the map is not linear.
In effect, the matrix must act on the right:

W= (dy,...,0) = (Q1,-..,0n) T.

Supposesy, ..., e, is a basis foW. In the commutative case we define the
associated matriX by

tes = zTrser-
T



Appendix A

Quaternions

The quaternions are the only non-commutative finite-dimensional skew-field
overR.

Definition A.1 Anassociative algebraover a field k is defined by giving a vector
space over k (which we also denote by A) together with a multiplication on A given
by a map

AxA— A:(ab)— ab,

which isbilinearand associativeie
1. for each a A the maps
X—axX X— xa:A— A

are linear; and

2. forallab,cc A
a(bc) = (ab)c.

The dimension of A is the dimension of the vector space over k.
The element € A is said to be aunity if

a-l=a=1-1
for all a € A.

By convention, the unadorned term ‘algebra’ is reserved for ‘associative alge-
bra’. Non-associative algebras (such as Lie algebras and Jordan algebras) should
be explicitly labelled as such.

If there is a unity 1 the algebra is said to be ‘unitary’ or ‘with 1’. Since we
shall be concerned exclusively with associative algebras with 1, we shall use the
term ‘algebra’ in this sense.

Examples:

GpReps-1-0
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1. The complex numbers form a 2-dimensional algebra over the reRls
2. Then x n matrices over a fiel& form ann?-dimensional algebra ovér

If e1,...,e, is a basis for th@-dimensional algebra then the multiplication
onA s completely determined by thé productsse; since

(D Aie)(H Kiej) = Y (Aikj)ee;.
[ ]

]
By the same token, the multiplication is associative ifnfédentities
(a€j)e = ei(eja)

all hold. If 1 is one of the basis elements the identities involving 1 are trivially
true, leaving(n — 1)2 identities to verify.

Definition A.2 The quaternion algebrdl is the 4-dimensional algebra ovét
with basisl, i, j,k and multiplication defined by

i2=j°=K=-1,

ij=k=—ji, jk=i=—kj, ki= j = —ik.

We should verify that this multiplication is associative. In principle this means
verifying 3® = 27 identities. However, the rules are evidently invariant under
cyclic permutation of, j,k. Thus it is sufficient to consider the 9 triple products
with i in first place, ie

i,i2),i%k,iji,ij2 ijk, iki, ikj, ik>.

For example,
(iHhk=K=-1, i(jk)=i’=-1

We leave the other 8 identities to the reader.
The letterH (for Hamilton) is used for the quaternions beca(ses already
in use for the rationals.

Definition A.3 Each quaternion
g=t+xi+yj+zk

hasconjugate
g=t—xi—yj—zk
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Proposition A.1 If
g=t+xi+yj+zk

then
0d=qq="t"+x"+y*+ 7"

Definition A.4 Thenormq € H is the positive square root

lal = /aq

Evidently
g =0«<=q=0.

Proposition A.2 Every quaternion g 0 has an inverse,

Proof » Let
q° = a/|a*
Then
qq' =1=qq;
and it follows easily that]* is the only quaternion with this property, since

ar=1=q(ar) =st= (q'q)r=q" =r=q".
<

Definition A.5 The algebra A is said to bedivision-algebrar skew-fieldif each
non-zero a A has an inverse b:

ab=1=Dba

We use the terms ‘division algebra’ and ‘skew field’ interchangeably. There
is an almost universal convention that the unadorned word ‘field’ meamsnu-
tative field. On the other hand, the term skew-field or division-algebra includes
commutative field, unless that is explicitly excluded.

Proposition A.3 The only finite-dimensional division-algebras (or skew-fields)
overR are R, C andH.
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Proof » Suppose is a finite-dimensional skew-field ov&:.

If A# R then we can find an elemeat A\ R.

Suppose dimA = n. Then the elements, 4,a°,...,a" are linearly dependent
overR, ie a satisfies a polynomial equation

p(a) =0,

wherep(x) is a polynomial of degre€ n overR.
Let m(x) be a polynomial satisfied bg of minimal degree. Note that in a
division-algebra
ab=0=—=a=0o0rb=0.

For if a # 0 then we can multiply by its inverse:
ab=0—a (ab)=0— (a la)b=0=Db=0.

It follows that the minimal polynomiam(x) must be irreducible oveR, ie it
cannot be expressed as the produgt) = f(x)g(x) of two polynomials oveiR
of lower degree; for therfi(a)g(a) = 0 and sof (a) =0 org(a) = 0.

But an irreducible polynomiah(x) overR is necessarily of degree 1 or 2. For
consider the factorisation ofi(x) overC, say

m(X) = (X—0a1)--- (X—0).

Each roofn; is either real, or else one of a conjugate pain of roots. In the first
case(x— a) is a factor ofm(x), and so isn(x) itself; in the second case the real
quadratic(x— o) (x— a) is a factor ofm(x), and so again im(x) itself.

If m(x) is linear thena € R, which we have excluded. Hence each element
a < A\ R satisfies a quadratic equation without real roots.

Suppose& has minimal equation

x*4+2Bx+C=0 (B,CcR),

whereB? —C < 0, say

Then
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Setting

we see that

andA has a subalgebrd, i) > isomorphic toC.

Two observations: Firstly, this subalgebra is not in general unijueay have
many subalgebras isomorphic@ SecondlyA is not in general an algebra over
C; forif ze C, ac Athen in general

az+# za

a(z-1) #z@a-1).

Lemma A.1 The only finite-dimensional commutative algebras dere R it-
self andC.

Proof of Lemma- If A # R thenA has a subalgebra which we can identify with

C. SinceA is commutative, itanbe regarded as an algebra o@r Then each
a € A satisfies a polynomial equation(a) = 0 wherem(x) is irreducible overC.
But an irreducible polynomial ovet is necessarily linear. Henge<c C, and so
A=C. <«
Returning to the general case, we have seen ta#4fR thenA has a subal-
gebra which we can identify witli. If A= C we are done. If not, lea € A\ C.
Now consider the mag : A— A under which

X i— ixi 1 = —ixi.

Itis easy to see that
a’=1.

It follows thatA is the direct sum of the 1- andl-eigenspaces d:
A=EDE 1.
(Explicitly,
X= 1(x+ax)+ 1(x oXx)
2 2

for eachx € A)
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We have
E;={xeA:xi=ix}, E.1 ={xe€ A:xi = —ix},
It follows easily that
E1E1 C E1, BiE_1 CE 1, E 1E; CE_4, E_4E_1 C Ey1.

In particularE; is a subalgebra oA, which evidently contain€. We claim
thatE; = C. For suppos® € E; \ C. Consider the sub-algebBagenerated by
anda. (Sinceb satisfies a quadratic equation oWrB consists of the elements
z+whb, wherez w € C.) EvidentlyB is commutative, sincea commute.

Now every subalgebr& C A is in fact a division-algebra. For suppose S
has minimal equation

r—1

mx) =X +cX "+

overR. (We know of course that the degreef m(x) is either 1 or 2, but that is
not relevant here.) Thery # 0 sincem(x) is irreducible, and so

bflz _Crfl(brfl_'_clber_i_.___i_Cril).

Thusb™1 is expressible as a polynomiallipand so belongs 8.
In particularB is a commutative division-algebra, and so by the LengmaC.
HenceE; = C; the only elements iA that commute with are the elements di.
It follows that if A# C thenE_1 # 0. Letac E_1,a# 0.
If be E_1 thenib = —bi, and so

zb=bz
for all zinC. In particular, ifze C then
ze R<=az=za

Consider the element. We know that € E; = C. But

It follows thata? € R.

Furthermorea® < O; for if a2 = A2 (with A € R) thena= 4A, and in particular
a < R, contrary to hypothesis.

Hence

for someA € R. Let
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Then
7= -1, ji = ij.

Set
k=ij.
Then — we leave the verification to the reader —

K=-1ki=—ik=]j, jk=—kj=i.

ThusAis isomorphic taHl. <

A.1 Linear algebra over H

It is perhaps surprising that the basic concepts of linear algebra all go over to
vector spaces ovef.

A vector spacé/ over H is defined in the usual way, by giving an additive
groupV together with a scalar multiplication

HxV —=V:(q,Vv)—qy

such that
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My favourite group — As

Recall thatS, is the group of permutations of objects, and?, is the subgroup
formed by the even permutations. Just half the permutations are evern @);
for if go is odd then the odd permutations are those of the fgggrwith g even.
In particular,
|As|| = 5!/2 = 60.

A.1 Dodecahedron and icosahedron

Each of the 5 regular solidS has a duab whose vertices are the centres of the
faces ofS Thus the dual of the cube is the octahedron, and the dual of the dodec-
ahedron is the icosahedron, while the regular tetrahedron is self-dual.

EvidentlSandShave the same symmetry group.

The symmetry group of the regular tetrahedroBuyissince every permutation
of its vertices can be effected by a symmetry. Just half of these symmetries are
proper. (For ifgy is an improper symmetry, then the improper symmetries are
those of the fornggy with g proper.) It follows that the proper symmetry group is
Ay, since this is the only subgroup &f of index 2.

It is easy to identify the proper symmetries of the regular tetrahedBDD:

¢ the identity elemenit;

e 4 rotations through angler¢?3 about the axe®A OB, OC, OD (whereO is
the centroid of the tetrahedron);

e 4 rotations through angle 21t/3 about the same axes;

¢ 3 rotations through angla about the axes joining mid-points of opposite
edges.

GpReps-1-0
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Each of these is a conjugacy class in the proper symmetry group; For example,
if gis the rotation abouDA through 2t/3 thenxgx ! is the rotation through the
same angle abo@X, whereX = x(A).

It is no coincidence that the proper symmetries are all rotations; every proper
symmetry of a bounded figufé in 3 dimensions is a rotation about some axis
through the centroi® of F.

To see this, note that every isometrynidimensions is expressible as the prod-
uct of at mosn+ 1 reflections in hyperplanes. Very briefly, suppose the isometry
a takes the simple®gP; ... P, into QoQ1 ... Qn. Then we can tak®y, ..., P, into
Qo, - - ., Qn by successive reflections. Thu$if£ Qg let po be the reflection in the
perpendicular bisector #Qp. (If Po = Qg let pp = 1.) Supposé; = po(P1). If
P; # Q1 let p1 be the reflection in the perpendicular bisectoPf®;. The essen-
tial point is that this reflection leave&dy fixed; for sincea andpg are isometries,

d(Qo, Q1) = d(Po,P1) = d(Qo,Py),

ie Qo is equidistant fronP{, Q1, and so lies on their perpendicular bisector.

By the same argument, onég,...,P._1 have been brought tQo,...,Qr_1
(by at most reflections) the next reflection bringify, 1 to its final positionQ; 1
will leave the firstr points fixed.

The original simplex is taken into its final position by a sequence of at most
n-+ 1 reflections; and it is easy to see that the isometrys the product of these
reflections.

Two further observations. Firstly, if the isometnysends a poin© into it-
self then we can take this as the first point of the simplex; so in this @ase
expressible as the product of at maseflections, all in hyperplanes through

Secondly, reflection in a hyperplane is improper. It follows that a proper isom-
etry can only be the product of an even number of reflections.

Putting these ideas together, we deduce that a proper isometry in 3 dimensions
which leaves a poin®D fixed is the product of 2 reflections in planes throuhe
a rotation about an axis through

Turning to the symmetry grou@ of the cube (and the octahedron), consider
the action ofG on the set of 6 faces. L& = ABCDbe one face. By Lagrange’s

theorem,
G|l = [|O(F)I[ - [IS(F)Il,

whereO(F) is the orbit ofF andS(F) is its stabilizer subgroup. The orbit consists
of all 6 faces, while the stabilizer is the symmetry group of the sg8Br@D, since
every symmetry of the square extends to a symmetry of the cube. Hence

S(F) = Da,
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and so
IIG||=6-8=48.

Thus the proper symmetry groupof the cube has order 24. It is easy to
identify these symmetries, knowing that they are all rotations:

¢ the identity elemenit;
¢ 8 rotations through angle2rt/3 about the 4 diagonals of the cube;

e 6 rotations through angle1t/2 about the axes joining the centres of oppo-
site faces;

3 rotations through angeabout the same axes;

6 rotations through angla about the axes joining mid-points of opposite
edges.

Each of these is a conjugacy clasin(Note that rotation through21/3 about
the diagonalAC/, for example, is the same as rotation througii2aboutC’'A.)

We can identifyP by considering its action on the set of 4 diagonals of the
cube. This gives a homomorphism

0:P—S.

It is easy to see that k@r= 1, so tha® is injective. Sincd|P| = ||| = 24, itis
bijective, ie

P=%.
It is left to the reader to identify the conjugacy classe® afescribed above with
the conjugacy classes 8f defined by permutation type.

ReflectionJ in the centre of the cube is improper, aitd=|. Also J € Z(G);
for if X is any vertex of the cube, théhiandJ X are diametrically opposite. Hence
so aregX andgJX for any symmetryg, sinceg preserves distances. ThgdX =
JgX; and since this is true for all vertice§

gJ=Jg
It follows that

G=Px{l,J}
=S xCo.
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Turning to the dodecahedron (and icosahedron), let us (as before) denote the
symmetry group byG and the proper symmetry group By By considering the
action ofG on the 12 faces we deduce that

|G| = 12-10=120Q

and so
||P|| = 60.

Again, it is easy to identify these symmetries, knowing that they are all rotations:

¢ the identity elemenit;

e 6-2=12 rotations through angte2m/5 about the 6 axes joining the centres
of opposite faces;

e 12 rotations through angle4rt/5 about the same axes;

e 15 rotations through angle about the axes joining mid-points of opposite
edges;

e 10 -2 = 20 rotations through angke2m/3 about the 10 diagonals (joining
opposite vertices).

Each of these is a conjugacy classHn It is easy to deduce from this that
P is simple. For any normal subgrolyp<P must be a union of classes, and
must include the clas§l}. Thus||N|| must be a sum of numbers chosen from
{12,12,15,20}, plus 1. But no such sum divides 60 (except for 1 and 60 itself).

A.2 Simplicity of A,

Proposition A.1 A, is generated by 3-cycles.

Proof » We argue by induction on. Suppose

g=(a1...a)(by...bs) - € Ay,

We may suppose by the inductive hypothesis thahalements occur in these
cycles.

Case 1: There are more than 2 cyclesgnin this case we can divide these cycles
into two parts, each of which is even, and so is expressible as a product of
3-cycles by the inductive hypothesis.
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Case 2: There are 2 cycles ig of odd length. In this case each cycle is express-
ible as a product of 3-cycles.

Case 3: ¢, ¢, David Ames ¢, ¢, David Ames

<

A.3 Agsis the smallest non-abelian simple group

To round off this diversion, let us show that there is no non-abelian group with
order< 60.

We know of course that a group of prime order is cyclic. This, together with a
couple of Lemmas, will eliminate most cases.

Lemma A.1 A group of order pq, where,g are distinct primes, cannot be simple
Proof of Lemma- Suppose > g. Then

np=1modp,np|g=np=1
Thus there is one Sylopw-subgroup, which must be normal. <

Lemma A.2 A finite p-group has non-trivial centre.

Proof of Lemma- Suppose
1G]l = p~.

The elemeng € G lies in a conjugacy class by itself if and onlygfe Z(G),
since
Xgx 1 =g <= xg=gx

On the other hand, the number of elements in a conjugacy class dj\&les

since
9]l - 1S9 = lIG]|-

In this case, therefore, each class cont@ihslements for somé < e. In partic-
ular, the number of elements in each clggss divisible by p, unlessg € Z(G).
It follows that the number of elementsZ{G) is divisible byp, and saZ(G) # 1.
g
In particular, the only simpl@-group isC,.
Although we shall not use this, one consequence of the last Lemma is of some
interest.
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Corollary A.1 A finite p-group contains subgroups of all poossible orders; that
is, if ||G|| = p® then G contains subgroups of ordef for 0< f <e.

Proof of Lemma> Any subgroup ofZ(G) is normal inG. Take an element of

orderpin Z(G). Then(g) = C,<G. ConsiderG/(g). Any normal subgroup of
this is of the formN/ (g) whereN <« G. Thus the result follows by induction @n
<
Now let us go through the possible orders from 1-59, omitting those excluded
by the above lemmas.

12 We have
n=1mod 3 ng | 4.

Hence
nz3 =4.

The 4 Sylow 3-subgroups contain2l= 8 elements of order 3, leaving only
4 elements for the Sylow 2-subgroups, each containing 4 elements. Hence
there is only one such subgroup, which must therefore be normal.

18 We have
n=1mod3nz|2=—nz3=1

Thus the Sylow 3-subgroup is normal.
(Alternatively, a subgroup of index 2 is necessarily normal.)

20 We have
ns=1mod5ns|4=—ns=1

24 \We have
ns=1mod3n3|8=—nz3=4

The action ofG on the 4 Sylow 3-subgroups gives a homomorphism
0:G— &,
which must be injective iG is simple. Hence
G=4%,
which is not simple.

28 We have
nz=1mod7n;|4—=—n;=1
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30 We have
ns=1mod 3 n3 | 10=n3 = 10.

Thus the Sylow 3-subgroups contain-20= 20 elements of order 3. At the
same time,
ns=1mod5ns | 6= ns=6.

Thus the Sylow 5-subgroups containde= 24 elements of order 5. We have
too many elements!

36 We have
ns=1mod3n3|4=—nz3=4.

Thus we have a homomorphism
0:G— %,

which must be injective iG is simple. But that is a contradiction since

Gl > IS4l

40 We have

ns=1mod5ns|8=—ns=1
42 We have

nz=1mod7n;|6=n;=1
44 \We have

nip=1mod1lng;|4=—n;1=1

45 We have

ne=1mod3nz|5=n3=1
48 We have

ns=1mod 3 n3|16=—n3=4orl6
If n3 =4 then we have a homomorphism
0:G— %,
which must be injective iG is simple. But that is impossible sing&|| >

1S4]]-

If n3 = 16 then the 16 Sylow 3-subgroups contain 26= 32 elements of
order 3. This leaves only 16 elements for the Sylow 2-subgroups, each of
which contains 16 elements. Hence there is only one Sylow 2-subgroup,
which is therefore normal.



A.3. As IS THE SMALLEST NON-ABELIAN SIMPLE GROUP GpReps-1-7

50 We have
ns=1mod5ns|2=—ns=1
52 We have
niz=1 mod 13 n13|4:> niz3=1.
54 We have
n=1mod3nzg|2=—nz3=1
56 We have

nz=1mod7 n;| 8= n;=8.

The 8 Sylow 7-subgroups contain 8 = 48 elements of order 7, leaving
just 8 elements. These are enough for just one Sylow 2-subgroup, which is
therefore normal.



Appendix D

The semisimple and nilpotent parts
of a matrix

D.1 Semisimple matrices

Definition D.1 An nx n-matrix A over a field k is said to bgemisimpleif it
satisfies a separable polynomial equatiofxin= 0O, ie an equation with distinct
roots.

Recall that a necessary and sufficient conditiomfigx) to be separable is that

gedm(x),m'(x)) =1,

wheren (x) is the derivative om(x).
Clearly any factor of a separable polynomial is separable. The following result
follows at once from this.

Proposition D.1 The matrix A is semisimple if and only if its minimal polynomial
is separable.

Proposition D.2 The matrix A over k is semisimple if and only if it is diagonalis-
able over the algebraic closuleof k.

Proof » If a matrix overk is semisimple then it will remain semisimple over
any extensiorK of k. For the minimal polynomial oveK will be a factor of the
minimal polynomail ovek.

It is sufficient therefore to consider matrices over an algebraically closed field
K = k; and we already saw (in Chapter 2) that such a matrix is diagonalisable.
<«

GpReps-I-1
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D.2 Nilpotent matrices

Definition D.2 An nx n-matrix N is said to bailpotentif
N'=0

for some r> 1.

Proposition D.3 The matrix A is nilpotent if and only if
trA"=0

forallr > 1.

D.3 The canonical splitting

Theorem D.1 Suppose A is an r n-matrix over a field k of characteristic O.
Then A is uniquely expressible in the form

A=S+N,

where S is semisimple, N is nilpotent, and NSN. Moreover, S and N are
expressible as polynomials in A.

Proof » We show first that there are polynomiax), n(x) € kx| such thatS=
S(A) is semisimpleN = n(A) is nilpotent, ancdA = S+ N.

Supposen(x) is the minimal polynomial oA. We know that there is unique
factorisation of polynomials ovdy, for any fieldk. Let

m(x) = p1)* -+ pr (x)%,

wherepi(X),..., pr(x) are distinct irreducible polynomials.
Set
P(X) = P1(X) -~ pr(X).
(In other words, each irreducible factor wf x) is taken just once ip(x).) Evi-
dently p(x) is separable; and

P(X) | m(x) | p(x)°,

wheree = maxg.
In particular,
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ie p(A) is nilpotent. Conversely, suppod$éA) is nilpotent for some polynomial
f(x) € k[x]. Then

FA)' =0=m(x) | f(X)" = p(x) | f(x).

Thusf(A) is nilpotent if and only iff (X) is a multiple ofp(x). In particular,

for some polynomiat (X).
Suppose
B=A+N,

whereNA = AN; and suppose the minimal polynomialsAfB are m(x), my(X).
Then
m(B) = m(A+N) =m(A) + Nf(A/N),

since all terms in the expansion except thosen{) will contain N as a factor.
But m(A) = 0. Hence
m(B) = Nf(AN);

and so
m(B)¢=0
for somee. It follows that
m(x) | my(x)%;
and similarly
my (x) | m(x)".

In other wordsm(x) andm (x) have the same separable part.
In particular, ifA= S+ N as in the theorem the® must have minimal poly-
nomial p(x). Thus
P(S) = p(A—N) =0.

In other words,
p(X—n(x)) =0 modm(x).

But as we have seem(x) = p(x)r(x). Thus we are looking for a polynomig(x)
such that
p(X— p(X)r(x)) =0 modm(x).

We shall show that we can satisfy the stronger congruence
p(x—p(x)r(x)) = 0 mod p(x)®,

by succesively finding solutions to higher powergpgx).
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Evidentlyr(x) = O is a solution fore = 1. Suppose we have a solutiof(x)
fore=f,ie

p(X— p(X)r¢(x)) = p(x) " u(x).
Set
r(x) =r(x)+ p(x) " (x).
Then we have to solve

p(x— p(X)r(x) — p(x) "t(x)) = 0 mod p(x) ",

P(X)"u(x) — P'(x)p(x) "t(x) mod p(x)"**,

u(x) = p’'(x)t(x) mod p(x).
But since gcdp(x), p'(x)) = 1 we can find polynomialg(x), w(x) such that
vV(X)p(x) + W) p'(x) = 1;

and then

will satisfy our congruence.

Accordingly, we have found polynomiafgx) = p(x)r(x) ands(x) = X — n(x)
such thaS= s(A) is semisimpleN = n(A) is nilpotent, andA = S+ N.

To prove uniqueness, suppose we had a second solution

A=S+N,

whereN’S = SN’. Then
S=S+N’,

whereN” =N —N'.

Now S andN’ commute withA = S + N’; and so they both commute with
S=s(A) andN = n(A). In particular,N andN’ commute. Henc&l” =N — N’ is
nilpotent; for ifN© = 0 andN’¢ = 0 then

N"et¢ =0,

From aboveS has the same minimal polynomip{x) asS. Thus

p(S+ N//) — p/(S)N//+ N//Zf(s N//) — 0
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But p'(S) — again from above — is invertible. For since gp@x), p’(x)) = 1 we
can find polynomials/(x),w(X) such that

V(X) p(x) +w(x)p'(x) = 1;
and then
w(Sp' (S =1.
Accordingly,
N”=N"g(SN),

and therN” is a multiple ofN"4, of N8, etc. Hence
N" =0

ieN=NandS=S. «

D.4 The result over finite fields

What goes wrong with the above argumerk i$ of finite characteristic? There is
only one point where the argument failie irreducible factors gx) of m(x) may
not be separable
For example, ik is a field of characteristip, anda € k does not have ath
root ink, then
f(x)=xP-a

is irreducible, but it is not separable since it factorises into
f(x) = (x—b)P

in an extension field of.

Actually, the result still holdsf k is perfect ie if every elementa € k has a
pth root ink. For in that case an irreducible polynomfdk) overk is necessarily
separable.

To see this, note thdt (x) cannot vanish identically; for suppose

f(x)=x"+axX" 1+ +a,_1x+an.
Then
f/(x) ="+ (n— Dapx 14 - +ay_1;

and this can only vanish identically if the only non-xero terms are those involving
powersxP", ie
f(x) = X" apxMDP ... 4 ag.
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But then, sincé is perfect, there are elemeng by, - - - € k such that

and so

where
g(x) = X"+ bx™ L+ 4 b,

This is particularly significant, sincall finite fields are perfect of perfect
fields are the finite fieldB . For if kis a field of characteristip the map

X xP:k—k
is a ring-homomorphism, since
(X+y)P=xP+yP,  (xy)P =xPyP;

and this homomorphism is injective singe= 0 — x = 0. Thus if the field is
finite, the homomorphism is surjective, ie every elementpthgpower.

Thus our result still holds over the finite figtd= F; (whereqis a prime-power,
q= p"): Every nx n-matrix A oveify is uniquely expressible in the form

A=S+N,

with S semisimple, N nilpotent, and NSSN. Moreover, S and N are expressible
as polynomials in A.
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