Exercises 1

All representations are over \mathbb{C} , unless the contrary is stated.

In Exercises 01–11 determine all 1-dimensional representations of the given group.

Suppose G is a group; and suppose $g, h \in G$. The element $[g, h] = ghg^{-1}h^{-1}$ is called the *commutator* of g and h. The subgroup $G' \equiv [G, G]$ is generated by all commutators in G is called the commutator subgroup, or *derived group* of G.

12 *** Show that G' lies in the kernel of any 1-dimensional representation ρ of G, ie $\rho(g)$ acts trivially if $g \in G'$.

13 *** Show that G' is a normal subgroup of G, and that G/G' is abelian. Show moreover that if K is a normal subgroup of G then G/K is abelian if and only if $G' \subset K$. [In other words, G' is the smallest normal subgroup such that G/G' is abelian.)

14 ** Show that the 1-dimensional representations of G form an abelian group G^* under multiplication. [Nb: this notation G^* is normally only used when G is abelian.]

15 ** Show that
$$C_n^* \cong C_n$$
.

16 *** Show that for any 2 groups G, H

$$(G \times H)^* = G^* \times H^*.$$

17 ******** By using the Structure Theorem on Finite Abelian Groups (stating that each such group is expressible as a product of cyclic groups) or otherwise, show that

 $A^* \cong A$

for any finite abelian group A.

18 ** Suppose $\Theta: G \to H$ is a homomorphism of groups. Then each representation α of H defines a representation $\Theta \alpha$ of G.

19 *** Show that the 1-dimensional representations of G and of G/G' are in oneone correspondence.

In Exercises 20–24 determine the derived group G' of the given group G.

$20 *** C_n$	21 *** D_n	22 ₩ ℤ	$23 *** D_{\infty}$
24 *** Q ₈	$25 * S_n$	26 *** A4	$27 *** A_n$

Exercises 2

All representations are over \mathbb{C} , unless the contrary is stated.

In Exercises 01–15 determine all 2-dimensional representations (up to equivalence) of the given group.

$1 * C_2$	$2 * C_3$	$3 * C_n$	$4 * D_2$	$5 * D_4$
6 *** D5	7 **** D_n	$8 * S_3$	9 **** S_4	10 ***** S_n
$11 *** A_4$	$12 **** A_n$	$13 * Q_8$	14 ** Z	15 **** D_∞

16 *** Show that a real matrix $A \in Mat(n, \mathbb{R})$ is diagonalisable over \mathbb{R} if and only if its minimal polynomial has distinct roots, all of which are real.

17 *** Show that a rational matrix $A \in Mat(n, \mathbb{Q})$ is diagonalisable over \mathbb{Q} if and only if its minimal polynomial has distinct roots, all of which are rational.

18 **** If 2 real matrices $A, B \in Mat(n, \mathbb{R})$ are similar over \mathbb{C} , are they necessarily similar over \mathbb{R} , ie can we find a matrix $P \in GL(n, \mathbb{R})$ such that $B = PAP^{-1}$?

19 **** If 2 rational matrices $A, B \in Mat(n, \mathbb{Q})$ are similar over \mathbb{C} , are they necessarily similar over \mathbb{Q} ?

20 ***** If 2 integral matrices $A, B \in Mat(n, \mathbb{Z})$ are similar over \mathbb{C} , are they necessarily similar over \mathbb{Z} , ie can we find an integral matrix $P \in GL(n, \mathbb{Z})$ with integral inverse, such that $B = PAP^{-1}$?

The matrix $A \in Mat(n, k)$ is said to be *semisimple* if its minimal polynomial has distinct roots. It is said to be *nilpotent* if $A^r = 0$ for some r > 0.

21 *** Show that a matrix $A \in Mat(n, k)$ cannot be both semisimple and nilpotent, unless A = 0.

22 *** Show that a polynomial p(x) has distinct roots if and only if

$$gcd\left(p(x), p'(x)\right) = 1.$$

23 **** Show that every matrix $A \in \mathbf{Mat}(n, \mathbb{C})$ is uniquely expressible in the form

$$A = S + N,$$

where S is semisimple, N is nilpotent, and

$$SN = NS.$$

(We call S and N the semisimple and nilpotent parts of A.)

24 **** Show that S and N are expressible as polynomials in A.

25 **** Suppose the matrix $B \in Mat(n, \mathbb{C})$ commutes with all matrices that commute with A, ie

$$AX = XA \Longrightarrow BX = XB.$$

Show that *B* is expressible as a polynomial in *A*.

Exercises 3

In Exercises 01–10 determine all simple representations of the given group over $\mathbb{C}.$

$1 * C_2$	$2 * C_3$	$3 * C_n$	$4 * D_2$	$5 * D_4$
$6 * D_5$	7 **** D_n	$8 * S_3$	$9 * A_4$	10 **** Q_8

In Exercises 11–20 determine all simple representations of the given group over $\mathbb R.$

$11 * C_2$	$12 ** C_3$	$13 ** C_n$	$14 * D_2$	$15 * D_4$
$16 * D_5$	$17 * D_n$	$18 * S_3$	19 **** A_4	20 ***** Q_8

In Exercises 21–25 determine all simple representations of the given group over the rationals \mathbb{Q} .

$$21 \text{ where } C_n$$
 $22 \text{ where } D_n$ $23 \text{ where } S_3$ $24 \text{ where } Q_8$ $25 \text{ where } A_4$