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Attempt 7 questions. All carry the same mark. The word ‘curve’
always means projective curve.

1. Explain informally how two points on an elliptic curve are added.

Find the sum P + Q of the points P = (0, 1), Q = (1, 2) on the curve

y2 = x3 + 2x + 1

over the rationals Q. What is 2P?

Answer: Let E be the elliptic curve. We choose any point O ∈ E as
the zero point.

Suppose P, Q ∈ E, the elliptic curve in question. The line PQ meets E
in a third point R (which may coincice with P or Q). We set

P ∗Q = R.

If P = Q then we take the tangent at P in place of the line PQ.

Now we set
P + Q = O ∗ (P ∗Q).

Suppose the elliptic curve is given in the standard Weierstrass form

y2 + c1xy + c3y = x3 + c2x
2 + c4x + c6.

More precisely, E is the projective curve

Y 2Z + c1XY Z + c3Y Z2 = X3 + c2X
2Z + c4XZ2 + c6Z

3.

In this case we normally take O = [0, 1, 0]. If now

R = P ∗Q = (x, y)

then
P + Q = (x,−y).



Now consider the points

P = (0, 1), Q = (1, 2)

on the elliptic curve

E(Q) : y2 = x3 + 2x + 1.

Suppose PQ is the line
y = mx + c.

Then

m =
2− 1

1− 0
= 1.

Thus the line is

y − 1 = x,

ie

y = x + 1.

This line meets the curve where

(mx + c)2 = x3 + 2x + 1.

Thus if P ∗Q = (x2, y2) then

0 + 1 + x2 = m2 = 1,

ie

x2 = 0.

Hence
y2 = x2 + 1 = 1.

Thus

P ∗Q = (0, 1) = P,

and so

P + Q = (0,−1).

Since the line PQ meets the curve again at P , this line is the tangent
at P . Hence

P ∗ P = Q = (1, 2),

and so

2P = (1,−2).



2. Show that all cubics through 8 given points in general position in the
plane pass through a 9th point.

Hence or otherwise show that addition on an elliptic curve is associative.

Answer:

(a) Let the points be Pi (i = 1 − 10). A cubic curve Γ has 10 coeffi-
cients:

c1X
3+c2X

2Y +c3X
2Z+C4XY 2+C5XY Z+C6XZ2+c7Y

3+c8Y
2Z+c9Y Z2+C10Z

3 = 0.

The requirement that Γ passes through Pi gives 8 homogeneous
linear conditions on these 10 coefficients. The solution space has
dimension ≥ 10− 8 = 2. In other words the cubics form a pencil
of homogeneous dimension ≥ 1.

We may suppose that no 4 of the points are collinear, and that the
points do not all lie on a conic.

We claim this in this case the dimension must be exactly 1. For
suppose it is ≥ 2. Then we can find a cubic in the pencil passing
through any further 2 points. Let us choose 2 points U, V on the
line P7P8. Then the line ` = P7P8UV must lie entirly in the cubic,
which must therefore split into

Γ = `C,

where C is a conic. Thus the 6 points Pi(i = 1− 6) must lie on a
conic.

By the same argument, any 6 of the 8 given points must lie on a
conic.

But there is only one conic through 5 points Qj(j = 1 − 5), no 4
of which are collinear.

For suppose first that three of the points are collinear, say

m = Q1Q2Q3.

Then the only conic through the 5 points is

C = mn,

where
n = Q4Q5.

Now suppose no three of the points are collinear; and suppose there
are two conics through the 5 points. Then the conics through the



points form a pencil of projective dimension ≥ 1, and we can find
a conic in the pencil through any further point W .

Choose W on m = Q1Q2. Then the conic must degenerate into
two lines,

C = mn,

and Q3, Q4, Q5 must lie on the line n, contrary to hypothesis.

Thus, returning to the 8 points Pi, there is a unique conic through
P1, P2, P3, P4, P5. But as we have seen, this conic must pass through
P6; and by the same argument it must also pass through P7 and
P8. Hence all 8 points lie on a conic, contrary to hypothesis.

Therefore the pencil is of dimension 1; and if Γ1, Γ2 are two curves
in the pencil then the general curve in the pencil is

Γ = λΓ1 + µΓ2.

The curves Γ1, Γ2 meet in the 8 points Pi. Let the curves have
equations

F1(X,Y, Z) = 0, F2(X,Y, Z) = 0.

We can regard these as cubics in Z with coefficients in X, Y . If
we form the resultant of the two cubics we obtain a homogeneous
polynomial R(X, Y ) of degree 9 in X, Y , whose vanishing is a
condition for the two cubics to have a root in common.

The 8 points Pi will provide 8 roots for this equation. By con-
sidering the sum of the roots, it follows that there is a 9th root
in the field k we are working over. Thus the two cubics meet in
a 9th point P9 = [X9, Y9, Z9]. Moreover, by the argument above
Y9/X9 ∈ k; and similarly Z9/X9 ∈ k. Hence P9 is defined over k.

(b) Suppose P, Q,R ∈ E. We have to show that

(P + Q) + R = P + (Q + R).

By definition,
P + Q = O ∗ (P ∗Q),

where P ∗Q is the point where PQ meets the curve again, and O
is the point chosen as zero point. Thus we have to show that

O ∗ ((P + Q) ∗R) = O ∗ (P ∗ (Q + R)) .

Since
U ∗ V = U ∗W ⇐⇒ V = W



it is sufficient to show that

(P + Q) ∗R = P ∗ (Q + R),

ie

(O ∗ (P ∗Q)) ∗R = P ∗ (O ∗ (Q ∗R)) .

Note that
U ∗ V = W ⇐⇒ V ∗W = U.

Thus if we set
P ∗Q = X, Q ∗R = Y

then
P = Q ∗X, R = Q ∗ Y,

and our equation becomes

(O ∗X) ∗ (Q ∗ Y ) = (Q ∗X) ∗ (O ∗ Y ),

ie (since V ∗ U = U ∗ V )

(O ∗X) ∗ (Y ∗Q) = (O ∗ Y ) ∗ (X ∗Q).

Thus the result will follow if we show that

(P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S) (†)

for any 4 points P, Q, R, S ∈ E.

[Conversely, if the operation + is associative then it defines an
abelian group structure on E, with

−P = O ∗ P

and

P ∗Q = −(P + Q).

In this case,

(P ∗Q) ∗ (R ∗ S) = P + Q + R + S = (P ∗R) ∗ (Q ∗ S).

Thus the identity (†) holds if and only if the operation is associa-
tive.]



Now let us apply the 8-point theorem to the points,

P, Q, R, S, U = P ∗Q, V = R ∗ S, W = P ∗R,X = Q ∗ S.

Let us define lines as follows:

` = PQU, m = RSV, n = WX,

f = PRW, g = QSX, h = UV.

Then the degenerate cubics

`mn, fgh

pass through the 8 points, and so must have a 9th point in common.

This 9th point must be where the line n meet E again, ie the point

W ∗X = (P ∗R) ∗ (Q ∗ S).

But by the same argument, it must be the point where the line h
meet E again, ie the point

U ∗ V = (P ∗Q) ∗ (R ∗ S).

We conclude that

(P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S),

as required.

[This argument assumes, on the face of it, that the 9 points arising
in this was are distinct. There are several ways of extending the
reult to cover the special cases when some of the points coincide.

Thus we could extend the definition of the pencil of cubics so that
if eg P = Q then our pencil consisted of the cubics which had the
same tangent at P as E.

Alternatively, we could justify the general result when k = C, say,
by continuity. The result must then be an algebraic identity which
will hold over all fields.

Thirdly, we could appeal to the “Irrelevance of Algebraic Inequal-
ities”, which states that if an identity f(x1, . . . , xn) = 0 holds
subject to an inequailty g(x1, . . . , xn) 6= 0 then it must hold in all
cases.

But the question is long enough as it is, and I think one can assume
that no examiner would expect the student to go into this issue.]



3. Find the order of the point P = (0, 0) on the elliptic curve

y2 + y = x3 − x.

Answer: We have

(2y + 1)
dy

dx
= 3x2 − 1.

Thus the slope at (x, y) is

m =
3x2 − 1

2y + 1
.

The tangent
y = mx + c

at (x, y) meets the curve where

(mx + c)2 + (mx + c) = x3 − x.

If this meets the curve again at (x2, y2) then

2x + x2 = m2.

In particular the slope at P is

m =
−1

1
= −1,

so the tangent
y = −x

meets the curve again where

x2 = 1,

ie at
Q = (1,−1).

Hence
Q = −2P.

The slope at Q is

m =
2

−1
= −2.

Thus the tangent at Q is

y + 1 = −(x− 1),



ie

y = −x− 2,

and this meets the curve again where

2 + x2 = 4,

ie

x2 = 2,

ie at (2,−4). Thus
−2Q = R = (2,−4).

The slope at R is

m =
3− 1

−8 + 1
= −2

7
.

It follows that R is of infinite order, and so therefore is P .

4. Sketch the proof of the Nagell-Lutz Theorem, that a point P = (x, y)
of finite order on the elliptic curve

E(Q) : y2 + Axy + By = x3 + ax2 + bx + c,

where A, B, a, b, c ∈ Z, necessarily has integral coordinates x, y ∈ Z.

Answer: It is sufficient to show that

‖x‖p ≤ 1, ‖y‖p ≤ 1

for each prime p.

Let us write ‖ · ‖ for ‖ · ‖p. Note that

‖x‖ > 1 ⇐⇒ ‖y‖ > 1;

and if this is so then the terms in y2, x3 must balance, ie

‖x‖3 = ‖y‖2.

since otherwise y2 or x3 would dominate [ie would have larger p-adic
value than any other term]. Let us suppose that this is the case.

Suppose first that p 6= 2. In this case we can bring the equation to
standard form

E(Qp) : y′2 = x3 + a′x2 + b′x + c′



by “completing the square” on the left, with the change of coordinates

y′ = y + c1x/2 + c3/2.

The coefficients a′, b′, c′ will still be p-adic integers. Also y′ will be a
p-adic integer if and only if y is a p-adic integer. So we may assume
(if p 6= 2) that the equation takes this simpler form.

Lemma. Suppose

E = E(Qp) : y2 = x3 + ax2 + bx + c

is an elliptic curve with a, b, c ∈ Zp; and suppose P = (x, y) is a point
on E of finite order. Then x, y ∈ Zp.

Remark: the result (and proof) still hold if p = 2. However, the full
equation cannot in general be reduced to this simpler form if p = 2.

Proof. In homogeneous terms the equation takes the form

Y 2Z = X3 + aX2Z + bXZ2 + cZ3,

where
x = X/Z, y = Y/Z.

Since y 6= 0 we may take Y = 1, so that

Z = X3 + aX2Z + bXZ2 + cZ3, (∗)

with
x = X/Z, y = 1/Z,

or conversely,
X = x/y, Z = 1/y.

Note that

‖X‖ = ‖x‖/‖y‖ = ‖x‖−1/2 < 1;

‖Z‖ = 1/‖y‖ < 1.

By repeatedly substituting for Z in the right-hand side of (∗) we obtain
a series expansion for Z in terms of X, starting

Z = X3 + aX2(X3 + · · · ) + bX(X3 + · · · )2 + cX(X3 + · · · )3

Z = X3 + O(X5).

Let
E(pr) = {P = [X, 1, Z] ∈ E(Qp) : ‖X‖ ≤ p−r, ‖Z‖ < 1}.



Lemma. E(pr) is a subgroup of E(Qp). Moreover, if

P1 = [X1, 1, Z1], P2 = [X2, 1, Z2] ∈ E(pr),

and
P3 = P1 + P2 = [X3, 1, Y3]

then
X3 ≡ X1 + X2 mod p3r.

Proof. Suppose P1P2 is the line

Z = mX + d.

Then

m =
Z2 − Z1

X2 −X1

.

Subtracting the equation for P1 from that for P2,

(Z2 − Z1) = (X3
2 −X3

1 ) + a(X2
2Z2 −X2

1Z1)

+b(X2Z
2
2 −X1Z

2
1) + c(Z3

2 − Z3
1).

We can write this as

(Z2 − Z1) = (X3
2 −X3

1 ) + a(X2
2 −X2

1 )Z2 − aX2
1 (Z2 − Z1)

+b(X2 −X1)Z2 − bX1(Z
2
2 − Z2

1) + c(Z3
2 − Z3

1).

Hence

m = (X2
1 + X1X2 + X2

2 ) + a(X1 + X2)Z2 −mX2
1

+bZ2 − bmX1(Z1 + Z2) + cm(Z2
1 + Z1Z2 + Z2

2).

Thus

m =
U

V
,

where

U = X2
1 + X1X2 + X2

2 + · · · ≡ 0 mod p2r

V = 1−X2
2 + · · · ≡ 1bmodp2r.

It follows that
m ≡ 0 mod p2r.

Hence
d = Z1 + mX1 ≡ 0 mod p3r.



Suppose

P = [X, 1, Z] = [X/Z, 1/Z, 1] = (X/Z, 1/Z) = (x, y),

say. Then

−P = (x,−y) = (X/Z,−1/Z) = [X/Z,−1/Z, 1] = [−X, 1,−Z].

In other words,
−[X, 1, Z] = [−X, 1,−Z].

In particular,
−P3 = [−X3, 1,−Z3].

Now P1, P2,−P3 lie on the line Z = mX + d. Thus, on substituting
Z = mX + d in (∗) and equating the coefficients of X2 and X3,

X1 + X2 −X3 = − (a + 2bm + 3cm2)d)

1 + am + bm2 + cm3

≡ 0 mod p3r.

In other words,
X3 ≡ X1 + X2 mod p3r.

In particular,

‖X1‖, ‖X2‖ ≤ p−r =⇒ ‖X3‖ ≤ p−r.

Thus

P1, P2 ∈ Epr =⇒ P1 + P2 ∈ Epr ,

ie E(pr) is a subgroup.

Lemma. The only point of finite order in E(p) is P = 0.

Proof. It is sufficient to show that there is no point of prime order q.
For if P is of order q1 · · · qr then (q2 · · · qr)P is of order q1.

If q 6= p this follows at once from the Lemma. For suppose P =
[X, 1, Z] ∈ E(p), and suppose

‖X‖ = p−r.

Then (writing X(qP ) for the X-coordinate of qP )

X(qP ) ≡ qX mod p3r

6≡ 0 mod pr.



The same argument also holds if q = p, since

X(pP ) ≡ pX mod p3r,

while
‖pX‖ = p−(r+1).

Since r + 1 < 3r it follows that

X(pP ) 6≡ 0 mod pr+1.

We have reduced the problem to the case p = 2, where we have to
return to the original equation.

The argument is similar, but more complicated.

Lemma. Suppose

E = E(Qp) : y2 + Axy + By = x3 + ax2 + bx + c

is an elliptic curve with A, B, a, b, c ∈ Zp. Then

E(pr) = {P = [X, 1, Z] ∈ E : ‖X‖ ≤ p−r, ‖Z‖ ≤ p−3r}

is a subgroup of E for each r ≥ 1. Moreover, if

P1 = [X1, 1, Z1], P2 = [X2, 1, Z2] ∈ E(pr)

and
P3 = P1 + P2 = [X3, 1, Z3]

then
X3 ≡ X1 + X2 mod p2r.

Proof. As before, on passing to (X, Z) coordinates we can express Z
as a power-series in X, though now there is a term in X4:

Z = X3 − c1X
4 + O(X5).

The computation of m and d for the line

P1P2 : Z = mX + d

is a little more complicated, but as before

‖m‖ ≤ p−2r, ‖d‖ ≤ p−3r.



[In detail, the equation of the curve is now

Z + AXZ + BZ2 = X3 + aX2Z + bXZ2 + cZ3.

Subtracting the equation for P1 from that for P2,

(Z2 − Z1) + A(X2Z2 −X1Z1) + B(Z2
2 − Z2

1) =

(X3
2 −X3

1 ) + a(X2
2Z2 −X2

1Z1) + b(X2Z
2
2 −X1Z

2
1) + c(Z3

2 − Z3
1).

We can write this as

(Z2 − Z1)
(
1 + AX2 + B(Z2 + Z1)− aX2

2 − b(X2(Z2 + Z1)− c(Z2
2 + Z2Z1 + Z2

1)
)

=

(X2 −X1)
(
−AZ1 + (X2

2 + X2X1 + X2
1 ) + aZ1(X2 + X1) + bZ2

1

)
.

Thus

m =
Z2 − Z1

X2 −X1

=
U

V
,

where
U ≡ 0 mod p2r, V ≡ 1 mod p2r;

and so
m ≡ 0 mod p2r, d ≡ 0 mod p3r,

as before.]

Now suppose
P ′

3 = −P3 = [X ′
3, 1, Z

′
3].

Then P1, P2, P
′
3 lie on the line Z = mX + d. This line meets the curve

where

(mX+d)+AX(mX+d)+B(mX+d)2 = X3+aX2(mX+d)+bX(mX+d)2+c(mX+d)3.

Thus

X1 + X2 + X ′
3 =

Am + Bm2 − (a + 2bm + 3cm2)d

1 + am + bm2 + cm3

≡ 0 mod p2r.

[Note that the term Am means that we only have equivalence modp2r

rather than modp3r as before.] Hence

X ′
3 ≡ −(X1 + X2) mod p2r.

In particular,

‖X1‖, ‖X2‖ ≡ 0 mod pr =⇒ ‖X ′
3‖ ≡ 0 mod pr

=⇒ ‖Z ′
3‖ ≡ 0 mod p3r



since Z3 = mX3 + d.

The formula for −[X, 1, Z] is a little more complicated than before. We
know that −(x0, y0) = (x0, y

′
0) is the point where the line x = x0 meets

the curve again. Considering the given equation as a quadratic in y,
we see that

y0 + y′0 = −(c1x + c3).

Thus
−(x, y) = (x,−(y + c1x + c3));

or in (X,Z)-coordinates,

−[X, 1, Z] = −(X/Z, 1/Z)

= (X/Z,−(1/Z + c1X/Z + c3)

= [X,−(1 + c1X + c3Z), Z]

=

[
− X

1 + c1X + c3Z
, 1,− Z

1 + c1X + c3Z

]
.

In particular,

X ′
3 = − X3

1 + c1X3 + c3Z3

= −X3 + c1X
2
3 + · · ·

≡ −X3 mod p2r.

Thus
X3 ≡ X1 + X2 mod p2r.

If r ≥ 2 then
X3 ≡ X1 + X2 mod pr+2;

and our argument in the simpler case above yields the following result.

Lemma. Suppose

E = E(Qp) : y2 + Axy + By = x3 + ax2 + bx + c,

where A, B, a, b, c ∈ Zp. Then the only point in E(p2) of finite order is
P = 0.

Finally, suppose p = 2; and suppose P = [X, 1, Z] ∈ E(2) is of finite
order. As before, we may assume that P is of prime order q. Let

‖X‖2 = 2−r.



If q is odd then our previous argument holds, since

X(qP ) ≡ qX mod 22r

and
‖qX‖2 = ‖X‖ = 2−r.

Our previous argument also holds if q = 2 and r ≥ 2, since in that case

X(2P ) ≡ 2X mod 22r

and
‖2X‖ = 2−r+1 > 2−2r.

We are left with the case q = 2, r = 1. In this case either 2P = 0 or
else

2P ∈ E(22),

in which case it follows from our previous argument that 2P is not of
finite order.

5. Find all points of finite order on the elliptic curve

E(Q) : y2 = x3 + 17.

Answer: By Nagell-Lütz, if P = (x, y) is of finite order then x, y ∈ Z
and either y = 0 or

y2 | D,

where
D = −(4b3 + 27c2) = 27 · 172,

Thus
y = 0 or y | 3 · 17.

There is no integral solution with y = 0.

If 17 | y then

17 | x3 =⇒ 17 | x
=⇒ 17 | y2

=⇒ 172 | y2

=⇒ 172 | 17,

which is absurd.

Hence
y = {±1,±3}.



If y = ±1 then
x3 = 16,

which has no integral solution.

If y = ±3 then
x3 = −8,

giving x = −2, ie the points (−2,±3). Let P = (2, 3), so the points are
±P .

It remains to determine if ±P are of finite or infinite order.

The slope at (x, y) is

m =
3x2

2y
.

If the tangent
y = mx + c

meets the curve again at (x2, y2) then x, x, x2 are the roots of

(mx + c)2 = x3 + 17.

Thus
2x + x2 = m2.

In particular the slope at P = (−2, 3) is

m = 126 = 2,

so the tangent is

y − 3 = 2(x + 2),

ie

y = 2x + 7;

and this meets the curve again where

−2− 2 + x2 = 22,

ie

x2 = 8.



6. Show that the elliptic curve

E : y2 + xy = x3 − x2 − 2x− 1

has good reduction modulo 2 and 5; and determine the groups E(F2)
and E(F5).

What can you deduce about the group of points of finite order on E(Q)?

Answer: The curve takes homogeneous form

F (X, Y, Z) ≡ Y 2Z + XY Z −X3 −X2Z − 2XZ2 − Z3 = 0.

At a singular point,

∂F/partialX = Y Z − 3X2 − 2XZ − 2Z2 = 0,

∂F/partialY = 2Y Z + XZ = 0,

∂F/partialZ = Y 2 + XY −X2 − 4XZ − 3Z2 = 0.

(a) In characteristic 2, the second equation gives

XZ = 0 =⇒ X = 0 or Z = 0.

If Z = 0 the first equation gives X = 0, and then the third equation
gives Y = 0. Thus X = Y = Z = 0, which is impossible.

If X = 0 then the first equation gives

Y Z = 0 =⇒ Y = 0 or Z = 0.

We have excluded Z = 0, so

X = Y = 0 =⇒ Z = 0

from the third equation, so again X = Y = Z = 0, which is
impossible.

We conclude that there is no singular point, ie the reduction at 2
is good.

(b) In characteristic 5, the second equation gives

Z(2Y + X) = 0 =⇒ Z = 0 or X = −2Y.

If Z = 0, then as before the first equation gives X = 0, and then
the third gives Y = 0.

Thus X = −2Y =⇒ Y = 2X (as −1/2 = 4/2 = 2), and the first
equation gives

2X2 = 2Z2 =⇒ X = ±Z.



The third equation now gives

(4 + 2− 1∓ 4− 3)X2 = 0 =⇒ X = 0.

Thus X = Y = Z = 0, which is impossible.

We conclude that the curve is non-singular, ie the reduction at 5
is good.

[Alternatively, one could bring the curve to reduced form since the
characteristic is neither 2 nor 3. Thus the equation can be written

y2 − 4xy = x3 − x2 − 2x− 1,

ie

(y − 2x)2 = x3 + 3x2 − 2x− 1.

Writing y for y − 2x, and continuing the reduction,

y2 = x3 + 3x2 + 3x− 1,

ie

y2 = (x + 1)3 − 2.

Hence the discriminant

D mod 5 = −27 · (−2)2 6= 0,

ie 5 is a good prime.]

In any characteristic, the only point on the line at infinity Z = 0 is
[0, 1, 0].

(a) In characteristic 2 there are just 4 finite points: (0, 0), (1, 0), (0, 1), (1, 1).
Of these, (0, 1) and (1, 1) lie on the curve. Thus

E(F2) = Z/(3).

(b) In characteristic 5 we can write the equation

y2 − 4xy = x3 − x2 − 2x− 1,

ie

(y − 2x)2 = x3 + 3x2 − 2x− 1.



Setting y′ = y − 2x,

y′2 = x3 + 3x2 + 3x− 1,

ie

y′2 = x′3 − 2,

where x′ = x + 1.

Dropping the ′s, we have to determine the group on the curve

E(F5) : y2 = x3 − 2.

The quadratic residues mod5 are: 0, 1, 4, ie 0,±1. We have the
following table.

x x3 − 2 y points
0 −2 −
1 −1 ±2 (1,±2)
2 1 ±1 (2,±1)
−2 0 0 (−2, 0)
−1 2 −

With O = [0, 1, 0],
‖E(F5)‖ = 6.

It follows that
E(F5) = Z/(6).

If T ⊂ E(Q) is the torsion subgroup, and p is a good prime, then the
map

T → E(Fp)

is an injective homomorphism.

Thus in this case p = 2 gives an injective homomorphism

T → Z/(3).

It follows that
T = {0} or Z/(3).

(The prime p = 5 does not give any further information.)



7. Define a lattice L ⊂ C. Show that the series

1

z2
+

∑
ω∈L, ω 6=0

(
1

(z − ω)2
− 1

ω2

)
defines a function ϕ(z) which is periodic with respect to L.

Show also that ϕ(z) satisfies the functional equation

ϕ′(z)2 = 4ϕ(z)3 + Aϕ(z) + B

for certain constants A, B.

Answer:

(a) A lattice is a subgroup

L = 〈ω1, ω2〉

of the additive group C generated by two non-zero complex numbers
ω1, ω2 such that

ω2/ω1 /∈ R.

[One could equally well define a lattice as a discrete subgroup of
C of rank 2. A discrete subgroup of C is isomorphic to Zr where
r ≤ 2. In this subject we would normally exclude lattices of rank
0 (ie the group {0}) or 1 (ie the group 〈ω〉 consisting of multiples
of some ω ∈ C).]

(b) Let

ϕ(z) =
1

z2
+

∑′
(

1

(z − ω)2
− 1

ω2

)
.

Then

i. The series converges absolutely for any z /∈ L;

ii. the convergence is uniform in any bounded closed region ex-
cluding lattice points, and so the series defines a merormor-
phic function on C with a double pole at each lattice point;

iii. The function is periodic with respect to L, ie

ω ∈ L =⇒ ϕ(z + ω) = ϕ(z).

To prove (i), note that

1

(z − ω)2
− 1

ω2
=

1

ω(1− z/ω)2
− 1

ω2

= ω−2
(
(1− z/ω)−2 − 1

)
= ω−2

(
2z/ω + 3z2/ω2 + · · ·

)
= 2z/ω3 + 3z2/ω4 + · · · .



If
ω = mω1 + nω2

then

|ω|2 = ωω̄

= Q(m, n),

where Q(m, n) is a positive-definite quadratic form. It follows that

C1(m
2 + n2) ≤ |ω|2 ≤ C2(m

2 + n2)

for some C1, C2 > 0.

In particular ∣∣ω−r
∣∣ ≤ C(m2 + n2)−r/2.

But ∑′
(m2 + n2)−r/2

converges for r > 2, eg by comparison with∫
(x2 + y2)−r/2dx dy.

It follows that ∑′
ω−r

converges absolutely for r ≥ 3; and so the series for ϕ(z) converges
absolutely for z /∈ L.

This argument also shows that the convergence is uniform in any
bounded region where say

|z − ω| ≥ ε > 0

for all ω ∈ L.

[It is a little more difficult to prove periodicity than one might
think. If one could completely separate the terms

1

(z − ω)2
and

1

ω2

it would be trivial, but unfortunatele these two series do not con-
verge.]

Suppose z /∈ L = 〈ω1, ω2〉. We regard z as fixed. It is sufficient to
show that

ϕ(z + ω1) = ϕ(z).



Given ε > 0 we can find R such that∑
m2+n2>R2

∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ < ε

and ∑
m2+n2>R2

∣∣∣∣ 1

((z + ω1)− ω)2
− 1

ω2

∣∣∣∣ < ε

Thus it is sufficient to consider the terms with m2 + n2 ≤ R2.

But now the terms in the finite sums can be split in two. Now all
the terms will cancel except for the terms

1

(mω1 + nω2)2

when one of
m2 + n2 and (m + 1)2 + n2

is ≤ R and the other is > R. But this implies that

|m| ≤ R + 1.

Hence

(m,n) ∈ A = {(x, y) : R2 − 3R < x2 + y2 < R2 + 3R}.

Since ∣∣(mω1 + nω2)
2
∣∣ ≥ C(m2 + n2),

the discrepancy will be

< C ′
∑

(m,n)∈A

1

m2 + n2
.

But this is

< C ′
∫

(x,y)∈A′

dx dy

x2 + y2

where

A′ = {(x, y) : R2 − 4R < x2 + y2 < R2 + 4R},

say. But the area of A′ is 8πR, while the value of the integrand is
always ≥ 1/(R2 − 4R). Thus the integral is of order O(1/R) and
so → 0 as R →∞. Hence the discrepancy can be ignored, and

ϕ(z + ω1) = ϕ(z).



Similarly
ϕ(z + ω2) = ϕ(z),

and so
ϕ(z + ω) = ϕ(z)

for all ω ∈ L.

(c) Since

1

(z − ω)2
− 1

ω2
=

1

ω2

(
(1− z/ω)−2 − 1

)
=

2z

ω3
+

3z2

ω4
+

4z3

ω5
+ · · · ,

in the neighbourhood of z = 0

ϕ(z) =
1

z2
+ 2G3z + 3G4z

2 + · · · ,

where

Gr =
∑′ 1

ωr

(for r ≥ 3). If r is odd then

Gr = 0,

since the terms in ±ω cancel out. Thus

ϕ(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + O(z6).

Hence

ϕ′(z) =
−2

z3
+ 6G4z + 20G6z

3 + O(z5),

and so

ϕ′(z)2 =
4

z6
− 24G4

z2

+ O(1).

On the other hand,

ϕ(z)3 =
1

z6
+

9G4

z2
+ O(1).

Thus

ϕ′(z)2 − 4ϕ(z)3 = −60G4

z2
+ O(1).

Hence
ϕ′(z)2 − 4ϕ(z)3 + 60G4ϕ(z) = O(1).



Thus the periodic function on the left has no poles. But such a
function is bounded on a fundamental parallelogram, and so on
the whole of C. Hence it is constant, say

ϕ′(z)2 − 4ϕ(z)3 + 60G4ϕ(z) = B,

ie

ϕ′(z)2 = 4ϕ(z)3 + Aϕ(z) + B,

where A = 60G4.

8. Find the rank of the curve

E(Q) : y2 = x3 − 5x.

Answer: The associated elliptic curve is

Ẽ : y2 = x3 + 20x.

The rank r of E is given by

2r+2 = |imχ| |imχ̃| ,

where
χ : E → Q×2/Q×, χ : Ẽ → Q×2/Q×

are the auxiliary homomorphisms.

We know that
{1, 5} ⊂ imχ ⊂ {±1,±5}.

If e = −1 then ef = b = −5 =⇒ f = 5 (working always modQ×2).
Thus −1 ∈ imχ if and only if the equation

u2 = −s4 + 5t4

has a solution with gcd(s, t) = gcd(u, t) = 1. This equation has the
obvious solution

s = 1, t = 1, u = 2.

We conclude that −1 ∈ imχ, and so

imχ = {±1,±5}.

[The solution (s, t) = (1, 1) corresponds to a point on the curve. To
see what is, recall how the auxiliary homomorphisms are defined. Any



rational point on the curve is of the form (a/t2, b/t3), with gcd(a, t) =
gcd(b, t) = 1. This lies on the curve if and only if

b2 = a3 − 5at4 = a(a2 − 5t4).

Now
gcd(a, a2 − 5t4) = gcd(a, 5t4) = gcd(a, 5).

If gcd(a, 5) = 1 then

a = ±s2, a2 − 5t4 = ±u2,

and so

u2 = s4 − 5t4 or u2 = −s4 + 5t4.

Conversely, the solution (s, t, u) = (1, 1, 2) of u2 = −s4 + 5t4 arises
from the point (a/t3, b/t2) = (−1, 2). The slope at this point is

m =
3x2 − 5

2y
= −1

2
.

Thus the point is of infinite order, and the rank of E(Q) is ≥ 1.

However, it not necessary to show this in order to answer the question.]

Turning to χ̃,

{1, 5} ⊂ imχ̃ ⊂ {±1,±2,±5,±10}

(since 20 ≡ 5 mod Q×2).

If e = −1 then ef = b̃ = 20 =⇒ f = −20. Thus −1 ∈ imχ̃ if and
only if

u2 = −s4 − 20t4,

which is absurd. Hence −1 /∈ imχ̃, and similarly −2,−5,−10 /∈ imχ̃.
Thus

{1, 5} ⊂ imχ̃ ⊂ {1, 2, 5, 10}.

If e = 2 then ef = 20 =⇒ f = 10. Thus 2 ∈ imχ̃ if and only if the
equation

u2 = 2s4 + 10t4

has a solution with gcd(s, t) = gcd(u, t) = 1. Evidently u is even, say
u = 2v, and

2v2 = s4 + 5t4.



Since gcd(s, t) = 1, t is odd, and so

s4 + 5t4 ≡ 5 or 6 mod 8,

while
2v2 ≡ 0 or 2 mod 8.

Hence 2 /∈ imχ̃, and so
imχ̃ = {1, 5}.

We conclude that

2r+2 = 4 · 2,

ie

r = 1.

9. Find all rational points on the curve

E(Q) : y2 = x3 − 1.

Answer: We begin by determining the points of finite order. By
Nagell-Lütz, if P = (x, y) is of finite order then x, y ∈ Z and

y = 0 or y2 | D,

where

D = −(4b3 + 27c2)

= 33.

Thus
y ∈ {0,±1,±3}.

If y = 0 then x = 1. Thus there is just one point of order 2, namely
(1, 0).

If y = ±1 then
x3 = −2,

which is impossible.

Similarly, if y = ±3 then
x3 = 10,

which is again impossible.



Hence the only points of finite order on the curve are the point (1, 0),
of order 2, and the zero point O = [0, 1, 0].

It remains to determine the rank of the curve. First we bring the root
x = 1 of the cubic to 0 by the transformation x′ = x− 1. Dropping the
′s, our curve is not

E(Q) : y2 = x3 + 3x2 + 3x.

The associated elliptic curve is

Ẽ : y2 = x3 − 6x2 − 3x.

The rank r of E is given by

2r+2 = |imχ| |imχ̃| ,

where
χ : E → Q×2/Q×, χ̃ : Ẽ → Q×2/Q×

are the auxiliary homomorphisms.

We know that
{1, 3} ⊂ imχ ⊂ {±1,±3}.

If e = −1 then ef = b = 3 =⇒ f = −3 (working always modQ×2).
Thus −1 ∈ imχ if and only if the equation

u2 = −s4 + 3s2t2 − 3t4

has a solution with gcd(s, t) = gcd(u.t) = 1.

If 3 - s then s4 ≡ 1 mod 3 and so

u2 ≡ −1 mod 3

which is impossible.

Hence 3 | s. But then

3 | u =⇒ 32 | −3t4 =⇒ 3 | t,

contradicting gcd(s, t) = 1. Hence −1 /∈ imχ, and so

imχ = {1, 3}.

Turning to χ̃,
{1,−3} ⊂ imχ̃ ⊂ {±1,±3}.



If e = −1 then ef = b̃ = −3 =⇒ f = 3. Thus −1 ∈ imχ̃ if and only
if the equation

u2 = −s4 + 6s2t2 + 3t4

has a solution with gcd(s, t) = gcd(u.t) = 1.

As before, if 3 - s then s4 ≡ 1 mod 3 and so

u2 ≡ −1 mod 3

which is impossible.

Hence 3 | s. But then

3 | u =⇒ 32 | 3t4 =⇒ 3 | t,

contradicting gcd(s, t) = 1. Hence −1 /∈ imχ̃, and so

imχ̃ = {1,−3}.

We conclude that r = 0, so the only rational points on the curve are
the points of finite order.

Thus there is only one rational point on the curve, namely the point
(1, 0) of order 2.

10. Either show that the equation

x4 + y4 = z4

has no solutions in non-zero integers x, y, z; or show that the equation

x3 + y3 = z3

has no solutions in non-zero integers x, y, z.

Answer:

(a) We may suppose that gcd(x, y, z) = 1, which means that x, y, z
are pairwise co-prime.

We shall show that the equation

x4 + y4 = z2

has no solution in integers with xyz 6= 0 and gcd(x, y, z) = 1.

We use the following result on “Pythagorean triples”.

Lemma. Suppose
x2 + y2 = z2,



where x, y, z ∈ Z and xyz 6= 0, gcd(x, y, z) = 1. Then one of x, y
is even, and one odd. If we suppose that y is even then

x = u2 − v2, y = 2uv, z = u2 + v2

for some u, v ∈ Z.

Applying the Lemma to x4 + y4 = z2, and supposing x is odd and
y is even,

x2 = u2 − v2, y2 = 2uv.

Clearly gcd(u, v) = 1. Also u must be odd and v even, since
x2 ≡ 1 mod 4.

So from the second equation,

u = r2, v = 2s2,

with gcd(r, s) = 1. Hence

x2 = r4 − 4s4.

Applying the Lemma again to x2 + 4s4 = r4,

r2 = a2 + b2, 2s2 = 2ab,

with gcd(a, b) = 1. Hence

a = X2, b = Y 2,

with gcd(X, Y ) = 1; and so

r2 = X4 + Y 4.

Thus from the solution (x, y, z) of x4 + y4 = z2 we have derived a
second solution (X, Y, r).

Moreover, this new solution is strictly smaller than the old, in the
sense that

max(|X|2 , |Y |2) < |r|
≤ |u|
< |y|2

≤ max(|x|2 , |y|2).

This leads to a contradiction, since a strictly decreasing sequence
of positive integers must terminate.

Hence the equation
x4 + y4 = z2

has no non-trivial solution, and the same is therefore true of

x4 + y4 = z4.



(b) Let

ω = e2π/3 =
−1 +

√
−3

2
;

and let
A = Z[ω].

For
α = a + bω ∈ A

we set

ᾱ = a + bω2,

N(α) = αᾱ = a2 − ab + b2.

Evidently

N(α) ∈ N,

N(α) = 0 ⇐⇒ α = 0, ᾱβ = ᾱβ̄,

N(αβ) = N(αβ).

We say that α ∈ A is a unit if

N(α) = 1.

It is easy to see that the only units in A are

±1,±ω,±ω2.

We shall assume the following result.

Lemma. The ring A is a unique factorisation domain.

Let
π =

√
−3 = 1 + 2ω.

Then π is prime, since
N(π) = 3.

Suppose
x3 + y3 + z3 = 0,

with gcd(x, y, z) = 1, xyz 6= 0.

If x ≡ 1 mod 3 then

x3 = (1 + 3u)3

≡ 1 mod 32.



Similarly
x ≡ −1 mod 3 =⇒ x3 ≡ −1 mod 32,

while
x ≡ 0 mod 3 =⇒ x3 ≡ 0 mod 33.

Thus
x3 ≡ 0,±1 mod 32.

Since
±1± 1± 1 6≡ 0 mod 9,

It follows that just one of x, y, z is divisible by 3. We may suppose
without loss of generality that

3 | z,

ie

π2 | z.

Thus, replacing z by −z,

x3 + y3 = π6z3.

We want to show that

x3 + y3 = z3

has no solution with x, y, z ∈ Z, xyz 6= 0.

We shall prove the more general result that the equation

x3 + y3 = επ6z3

has no solution with x, y, z ∈ A = Z[ω], xyz 6= 0, and with ε a
unit. We may suppose that

gcd(x, y, πz) = 1.

There are 3 residue classes modπ, represented by 0,±1.

Lemma. If x ≡ ±1 mod π then

x3 ≡ ±1 mod π4.

[



Proof. If
x = ±1 + πu

then

x3 = (±1 + πu)3

= ±1 + 3πu± 3π2u2 + π3u3

≡ ±1− π3u + π3u3 mod π4

≡ ±1− π3u(u2 − 1) mod π4

≡ ±1 mod π4,

since
u ≡ 0,±1 mod π =⇒ u2 − 1 ≡ 0 mod π.

]

Evidently
x, y ≡ ±1 mod π.

We may suppose without loss of generality that

x ≡ 1 mod π, y ≡ −1 mod π.

We can write the equation as

(x + y)(x + ωy)(x + ω2y) = επ6z3.

Since x ≡ 1, y ≡ −1 mod π,

x + ωy ≡ 1− ω ≡ 0 mod π,

and similarly for x + ω2y. Thus

π | x + y, x + ωy, x + ω2y.

On the other hand, since gcd(x, y) = 1,

gcd(x+y, x+ωy) = gcd(x+y, x+ω2y) = gcd(x+ωy, x+ω2y) = π.

It follows that one of (x + y), (x + ωy), (x + ω2y) is divisible by π2

(at least), while the other two are divisible by π but not by π2. On
replacing y by ωy or ω2y we may suppose that

π2 | x + y, π ‖ x + ωy, π ‖ x + ω2y.



It follows that

x + y = ε1π
4u3, x + ωy = ε2πv3, x + ω2y = ε3πw3,

where ε1, ε2, ε3 are units, and π - u, v.

Now
(x + y) + ω(x + ωy) + ω2(x + ω2y) = 0.

Dividing by π,
ε′2v

3 + ε′3w
3 = ε′1π

3u3,

where ε′1, ε
′
2, ε

′
3 are units. Dividing by ε′2 and absorbing −1 into the

cubes we may suppose that ε′2 = 1 and that ε′3 ∈ {1, ω, ω2}. But
now

v3, w3 ≡ ±1 mod π3 =⇒ ε′3 = 1.

Moreover,
v3 + w3 ≡ 1− 1 mod π4 =⇒ π | u.

Setting u = πu′, the equation takes the same form

v3 + w3 = ε′π6u′3

as the equation we started from with v, w, u′ in place of x, y, z

Moreover,

N(u) ≤ N(u′)3

= N(u)3/N(π)3

= N(x + y)/N(π)7

≤ N(z)/N(π).

This leads to a contradiction, since a strictly decreasing sequence
of positive integers must terminate.


