Chapter 6

The p-adic Case

6.1 The *p*-adic valuation on \mathbb{Q}

The absolute value |x| on \mathbb{Q} defines the metric, or distance function,

$$d(x,y) = |x - y|.$$

Surprisingly perhaps, there are other metrics on \mathbb{Q} just as worthy of study.

Definition 6.1 Let p be a prime. Suppose

$$x = \frac{m}{n} \in \mathbb{Q},$$

where $m, n \in \mathbb{Z}$ with gcd(m, n) = 1. Then we set

$$||x||_p = \begin{cases} 0 & \text{if } x = 0, \\ p^{-e} & \text{if } p^e \parallel m, \\ p^e & \text{if } p^e \parallel n. \end{cases}$$

We call the function $x \mapsto ||x||_p$ the p-adic valuation on \mathbb{Q} .

Another way of putting this is: If $x \in \mathbb{Q}$, $x \neq 0$, then we can write

$$x = \frac{m}{n}p^e$$

where $p \nmid m, n$. The p-adic value of x is given by

$$||x||_p = p^{-e}$$
.

Note that all integers are quite small in the p-adic valuation:

$$x \in \mathbb{Z} \Longrightarrow ||x||_p \le 1.$$

High powers of p are very small:

$$p^n \to 0$$
 as $n \to \infty$.

The following result is immediate.

Proposition 6.1 1. $||x||_p \ge 0$; and $||x||_p = 0 \iff x = 0$;

- 2. $||xy||_p = ||x||_p ||y||_p$;
- 3. $||x + y||_p \le \max(||x||_p, ||y||_p)$.

From (3) we at once deduce

Corollary 1 The p-adic valuation satisfies the triangle inequality:

$$\beta' \|x + y\|_p \le \|x\|_p + \|y\|_p.$$

A valuation on a field k is a map

$$x \mapsto ||x|| : k \to \mathbb{R}$$

satisfying (1), (2) and (3'). A valuation defines a metric

$$d(x,y) = ||x - y||$$

on k; and this in turn defines a topology on k.

Corollary 2 If $||x||_p \neq ||y||_p$ then

$$||x + y||_p = \max(||x||_p, ||y||_p).$$

Corollary 3 In a p-adic equation

$$x_1 + \dots + x_n = 0$$
 $(x_1, \dots, x_n \in \mathbb{Q}_n)$

no term can dominate, ie at least two of the x_i must attain $\max ||x_i||_p$.

To emphasize the analogy between the p-adic valuation and the familiar valuation |x| we sometimes write

$$||x||_{\infty} = |x|.$$

6.2 p-adic numbers

The reals \mathbb{R} can be constructed from the rationals \mathbb{Q} by *completing* the latter with respect to the valuation |x|. In this construction each Cauchy sequence

$$\{x_i \in \mathbb{Q} : |x_i - x_j| \to 0 \text{ as } i, j \to \infty\}$$

defines a real number, with 2 sequences defining the same number if $|x_i-y_i| \to 0$.

(There are 2 very different ways of constructing \mathbb{R} from \mathbb{Q} : by completing \mathbb{Q} , as above; or alternatively, by the use of *Dedekind sections*. In this each real number corresponds to a partition of \mathbb{Q} into 2 subsets L, R where

$$l \in L, r \in R \Longrightarrow l < r.$$

The construction by completion is much more general, since it applies to any metric space; while the alternative construction uses the fact that \mathbb{Q} is an *ordered* field. John Conway, in *On Numbers and Games*, has generalized Dedekind sections to give an extraordinary construction of rationals, reals and infinite and infinitesimal numbers, starting 'from nothing'. Knuth has given a popular account of Conway numbers in *Surreal Numbers*.)

We can complete \mathbb{Q} with respect to the *p*-adic valuation in just the same way. The resulting field is called *the field of p-adic numbers*, and is denoted by \mathbb{Q}_p . We can identify $x \in \mathbb{Q}$ with the Cauchy sequence (x, x, x, \ldots) . Thus

$$\mathbb{Q} \subset \mathbb{Q}_p$$
.

To bring out the parallel with the reals, we sometimes write

$$\mathbb{R} = \mathbb{Q}_{\infty}$$
.

The numbers $x \in \mathbb{Q}_p$ with $||x||_p \leq 1$ are called *p-adic integers*. The *p*-adic integers form a ring, denoted by \mathbb{Z}_p . For if $x, y \in \mathbb{Z}_p$ then by property (3) above,

$$||x + y||_p \le \max(||x||_p, ||y||_p) \le 1,$$

and so $x + y \in \mathbb{Z}_p$. Similarly, by property (1),

$$||xy||_p = ||x||_p ||y||_p \le 1,$$

and so $xy \in \mathbb{Z}_p$.

Evidently

$$\mathbb{Z} \subset \mathbb{Z}_n$$
.

More generally,

$$x = \frac{m}{n} \in \mathbb{Z}_p$$

if $p \nmid n$. (We sometimes say that a rational number x of this form is p-integral.) In other words,

$$\mathbb{Q} \cap \mathbb{Z}_p = \{ \frac{m}{n} : p \nmid n \}.$$

Evidently the p-integral numbers form a sub-ring of \mathbb{Q} .

Concretely, each element $x \in \mathbb{Z}_p$ is uniquely expressible in the form

$$x = c_0 + c_1 p + c_2 p^2 + \cdots$$
 $(0 \le c_i < p).$

More generally, each element $x \in \mathbb{Q}_p$ is uniquely expressible in the form

$$x = c_{-i}p^{-i} + c_{-i+1}p^{-i+1} + \dots + c_0 + c_1p + \dots \quad (0 \le c_i < p).$$

We can think of this as the *p*-adic analogue of the decimal expansion of a real number $x \in \mathbb{R}$.

Suppose for example p=3. Let us express $1/2 \in \mathbb{Q}_3$ in standard form. The first step is to determine if

$$\frac{1}{2} \equiv 0, 1 \text{ or } 2 \mod 3.$$

In fact $2^2 \equiv 1 \mod 3$; and so

$$\frac{1}{2} \equiv 2 \bmod 3.$$

Next

$$\frac{1}{3}\left(\frac{1}{2} - 2\right) = -\frac{1}{2} \equiv 1 \bmod 3$$

ie

$$\frac{1}{2} - 2 \equiv 1 \cdot 3 \bmod 3^2.$$

Thus

$$\frac{1}{2} \equiv 2 + 1 \cdot 3 \bmod 3^2$$

For the next step,

$$\frac{1}{3}\left(-\frac{1}{2}-1\right) = -\frac{1}{2} \equiv 1 \bmod 3$$

giving

$$\frac{1}{2} \equiv 2 + 1 \cdot 3 + 1 \cdot 3^2 \bmod 3^3$$

It is clear that this pattern will be repeated indefinitely. Thus

$$\frac{1}{2} = 2 + 3 + 3^2 + 3^3 + \cdots$$

To check this,

$$2+3+3^{2}+\cdots = 1 + (1+3+3^{2}+\cdots)$$

$$= 1 + \frac{1}{1-3}$$

$$= 1 - \frac{1}{2}$$

$$= \frac{1}{2}.$$

As another illustration, let us expand $3/5 \in \mathbb{Q}_7$. We have

$$\frac{3}{5} \equiv 2 \mod 7$$

$$\frac{1}{7} \left(\frac{3}{5} - 2 \right) = -\frac{1}{5} \equiv 4 \mod 7$$

$$\frac{1}{7} \left(-\frac{1}{5} - 4 \right) = -\frac{3}{5} \equiv 5 \mod 7$$

$$\frac{1}{7} \left(-\frac{3}{5} - 5 \right) = -\frac{4}{5} \equiv 2 \mod 7$$

$$\frac{1}{7} \left(-\frac{4}{5} - 2 \right) = -\frac{2}{5} \equiv 1 \mod 7$$

$$\frac{1}{7} \left(-\frac{2}{5} - 1 \right) = -\frac{1}{5} \equiv 4 \mod 7$$

We have entered a loop; and so (in \mathbb{Q}_7)

$$\frac{3}{5} = 2 + 4 \cdot 7 + 5 \cdot 7^2 + 2 \cdot 7^3 + 1 \cdot 7^4 + 4 \cdot 7^5 + 5 \cdot 7^6 + \dots$$

Checking,

$$1 + (1 + 4 \cdot 7 + 5 \cdot 7^{2} + 2 \cdot 7) \frac{1}{1 - 7^{4}} = 1 - \frac{960}{2400}$$
$$= 1 - \frac{2}{5}$$
$$= \frac{3}{5}.$$

It is not difficult to see that a number $x \in \mathbb{Q}_p$ has a recurring p-adic expansion if and only if it is rational (as is true of decimals).

Let $x \in \mathbb{Z}_p$. Suppose $||x||_p = 1$. Then

$$x = c + yp$$
,

where 0 < c < p and $y \in \mathbb{Z}_p$. Suppose first that c = 1, ie

$$x = 1 + yp.$$

Then x is invertible in \mathbb{Z}_p , with

$$x^{-1} = 1 - yp + y^2p^2 - y^3p^3 + \cdots$$

Even if $c \neq 1$ we can find d such that

$$dc \equiv 1 \bmod p$$
.

Then

$$dx \equiv dc \equiv 1 \bmod p$$
,

$$dx = 1 + py$$

and so x is again invertible in \mathbb{Z}_p , with

$$x^{-1} = d \left(1 - yp + y^2 p^2 - \cdots \right).$$

Thus the elements $x \in \mathbb{Z}_p$ with $||x||_p = 1$ are all *units* in \mathbb{Z}_p , ie they have inverses in \mathbb{Z}_p ; and all such units are of this form. These units form the multiplicative group

$$\mathbb{Z}_p^{\times} = \{ x \in \mathbb{Z}_p : ||x||_p = 1 \}.$$

6.3 In the p-adic neighbourhood of 0

Recall that an elliptic curve $\mathcal{E}(k)$ can be brought to Weierstrassian form

$$y^2 + c_1 xy + c_3 y = x^3 + c_2 x^2 + c_4 x + c_6$$

if and only if it has a flex defined over k. This is not in general true for elliptic curves over \mathbb{Q}_p . For example, the curve

$$X^3 + pY^3 + p^2Z^3 = 0$$

has no points at all (let alone flexes) defined over \mathbb{Q}_p . For if [X, Y, Z] were a point on this curve then

$$||X^3||_p = p^{3e}, ||pY^3||_p = p^{3f-1}, ||p^2Z^3||_p = p^{3g-2}$$

for some integers e, f, g. But if $a, b, c \in \mathbb{Q}_p$ and

$$a + b + c = 0$$

then two (at least) of a, b, c must have the same p-adic value, by Corollary 3 to Proposition F.1.

On the other hand, \mathbb{Q}_p is of characteristic 0; so if $\mathcal{E}(\mathbb{Q}_p)$ is Weierstrassian — as we shall always assume, for reasons given earlier — then it can be brought to standard form

$$y^2 = x^3 + bx + c.$$

In spite of this, there is some advantage in working with the general Weierstrassian equation, since — as we shall see in Chapter 6 — this allows us to apply the results of this Chapter to study the integer points (that is, points with integer coordinates) on elliptic curves over \mathbb{Q} given in general Weierstrassian form. Such an equation over \mathbb{Q} can of course be reduced to standard form; but the reduction may well transform integer to non-integer points.

As in the real case, we study the curve in the neighbourhood of 0 = [0, 1, 0] by taking coordinates X, Z, where

$$(X, Z) = [X, 1, Z].$$

In these coordinates the elliptic curve takes the form

$$\mathcal{E}(\mathbb{Q}_p): Z + c_1 X Z + c_3 Z^2 = X^3 + c_2 X^2 Z + c_4 X Z^2 + c_6 Z^3.$$

As in the real case, if Z(P) is small then so is X(P).

Proposition 6.2 If $P \in \mathcal{E}(\mathbb{Q}_p)$ then

$$||Z||_p < 1 \Longrightarrow ||X||_p < 1;$$

and if this is so then

$$||Z||_p = ||X||_p^3$$

Proof ▶ Suppose $||Z||_p < 1$. Let

$$||X||_p = p^e$$
.

If $e \ge 0$ then X^3 will dominate; no other term can be as large, *p*-adically speaking.

Thus e < 0, ie $||X||_p < 1$; and now each term

$$||c_1XZ||_p$$
, $||c_3Z^2||_p$, $||c_2X^2Z||_p$, $||c_4XZ^2||_p$, $||c_6XZ||_p < ||Z||_p$.

Only X^3 is left to balance Z. Hence

$$||Z||_p = ||X^3||_p = ||X||_p^3.$$

Definition 6.2 For each e > 0 we set

$$\mathcal{E}_{(p^e)} = \{ (X, Z) \in \mathcal{E} : ||X||_p \le p^{-e}, ||Z||_p \le p^{-3e} \}.$$

Recall that in the real case, we showed that Z could be expressed as a power-series in X,

$$Z = X^3 - c_1 X^4 + (c_1^2 + c_2) X^5 + \cdots$$

valid in a neighbourhood of O = [0, 1, 0]. It follows that

$$F(X, Z(X)) = 0$$

identically, where

$$F(X,Z) = Z + c_1 XZ + c_3 Z^2 - (X^3 + c_2 X^2 Z + c_4 X Z^2 + c_6 Z^3).$$

This identity must hold in any field, in particular in \mathbb{Q}_p .

Note that in the p-adic case, convergence is much simpler than in the real case. A series in \mathbb{Q}_p converges if and only if its terms tend to 0:

$$\sum a_r \text{ convergent } \iff a_r \to 0.$$

Remember too that in the p-adic valuation integers are small,

$$x \in \mathbb{Z} \Longrightarrow ||x||_p \le 1.$$

Thus a power-series

$$a_0 + a_1 x + a_2 x^2 + \cdots$$

where $a_i \in \mathbb{Z}$ —or more generally, $a_i \in \mathbb{Z}_p$ —will converge for all x with $||x||_p < 1$.

Proposition 6.3 Suppose $||Z||_p < 1$. Then we can express Z as a power-series in X,

$$Z = X^3 + a_1 X^4 + a_2 X^5 + \cdots$$

where

- 1. $a_1 = -c_1$, $a_2 = c_1^2 + c_2$, $c_3 = -(c_1^3 + 2c_1c_3 + c_3)$;
- 2. each coefficient a_i is a polynomial in c_1, c_2, c_3, c_4, c_6 with integer coefficients;
- 3. the coefficient a_i has weight i, given that c_i is ascribed weight i for (i = 1 4, 6.

Proof
ightharpoonup By repeatedly substituting for Z on the right-hand side of the equation

$$Z = X^3 + c_2 X^2 Z + c_4 X Z^2 + c_6 Z^3 - (c_1 X Z + c_3 Z^2)$$

we can successively determine more and more terms in the power series. Thus suppose we have shown that

$$Z = X^3 (1 + a_1 X + \dots + a_{n-1} X^{n-1}).$$

On substituting for Z on the right-hand side of the equation and comparing coefficients of X^{n+3} ,

$$a_n = c_2 a_{n-2} + c_4 \sum_{i+j=n-4} a_i a_j + c_6 \sum_{i+j+k=n-6} a_i a_j a_k - c_1 a_{n-1} - c_3 \sum_{i+j=n-3} a_i a_j,$$

from which the result follows.

Corollary If the elliptic curve is given in standard form

$$y^2 = x^3 + ax^2 + bx + c$$

then

$$Z = X^3 + d_2 X^5 + d_4 X^7 + \cdots,$$

where

- 1. only odd powers of X appear, ie $d_i = 0$ for i odd;
- 2. $d_2 = a$, $d_4 = a^2 + b$, $d_6 = a^3 + 3ab + c$;
- 3. each coefficient d_{2i} is a polynomial in a, b, c with integer coefficients;
- 4. the coefficient d_{2i} has weight i, given that a, b, c are ascribed weights 2,4,6 respectively;

Proof \triangleright We note that in the standard case the (X, Z)-equation

$$Z = X^3 + aX^2Z + bXZ^2 + cZ^3$$

is invariant under the reflection $(X,Z)\mapsto (-X,-Z)$ (corresponding to $P\mapsto -P$). Thus

$$Z(-X) = -Z(X),$$

from which the absence of terms of even degree X^{2i} follows.

As in the real case, the sum of 2 points near O is defined by a function $S(X_1, X_2)$, where

$$X(P_1 + P_2) = S(X(P_1), X(P_2)).$$

Proposition 6.4 Suppose $||X_1||_p$, $||X_2||_p < 1$. Then we can express $S(X_1, X_2)$ as a double power-series in X_1, X_2 ,

$$S(X_1, X_2) = X_1 + X_2 + c_1 X_1 X_2 + \cdots$$

$$= \sum_{i} S_i(X_1, X_2)$$

$$= \sum_{i} s_{ij} X_1^i X_2^j$$

where

- 1. $S_i(X_1, X_2)$ is a symmetric polynomial in X_1, X_2 of degree i;
- 2. $S_1(X_1, X_2) = X_1 + X_2$, $S_2(X_1, X_2) = c_1 X_1 X_2$;
- 3. the coefficient s_{jk} of X^jX^k is a polynomial in c_1, c_2, c_3, c_4, c_6 with integral coefficients.
- 4. all the coefficients in $S_i(X_1, X_2)$ have weight i.

Proof
ightharpoonup As in the real case, let the line

$$P_1P_2: Z = MX + D$$

meet \mathcal{E} again in $P_3 = (X_3, Z_3)$, ie

$$P_3 = P_1 * P_2.$$

Then X_1, X_2, X_3 are the roots of the equation

$$X^{3} + c_{2}X^{2}(MX + D) + c_{4}X(MX + D)^{2} + c_{6}(MX + D)^{3} - (MX + D) - c_{1}X(MX + D) - c_{3}(MX + D)^{2} = 0.$$

Hence

$$X_1 + X_2 + X_3 = -\frac{\text{coeff of } X^2}{\text{coeff of } X^3}$$
$$= \frac{c_1 M + 2c_3 M^2 - (c_2 + c_4 M + c_6 M^2)D}{1 + c_2 M + c_4 M^2 + c_6 M^3}$$

Now

$$M = \frac{Z_2 - Z_1}{X_2 - X_1}$$

$$= \frac{X_2^3 - X_1^3}{X_2 - X_1} - c_1 \frac{X_2^4 - X_1^4}{X_2 - X_1} + \cdots$$

$$= X_1^2 + X_1 X_2 + X_2^2 - c_1 (X_1^3 + X_1^2 X_2 + X_1 X_2^2 + X_2^3) + \cdots,$$

$$D = \frac{X_2 Z_1 - X_1 Z_2}{X_2 - X_1}$$

$$= X_1 X_2 \left(\frac{X_2^2 - X_1^2}{X_2 - X_1} - c_1 \frac{X_2^3 - X_1^3}{X_2 - X_1} + \cdots \right)$$

$$= X_1 X_2 \left(X_1 + X_2 - c_1 (X_2^2 + X_1 X_2 + X_2^2) + \cdots \right).$$

Thus M,D are both expressible as symmetric power-series in $X_1,X_2;$ and

$$||M||_p \le p^{-2}, ||D||_p \le p^{-3},$$

or more precisely,

$$M \equiv X_1^2 + X_1 X_2 + X_2^2 \mod p^3$$

 $D \equiv X_1 X_2 (X_1 + X_2) \mod p^4$.

Hence

$$X_1 + X_2 + X_3 \equiv 0 \bmod p^2.$$

More precisely,

$$X_1 + X_2 + X_3 \equiv c_1(X_1^2 + X_1X_2 + X_2^2) \bmod p^3,$$

ie

$$X_3 \equiv -(X_1 + X_2) + c_1(X_1^2 + X_1X_2 + X_2^2) \bmod p^3.$$

In particular,

$$||X_3||_p \le p^{-1},$$

and so

$$||Z_3||_p = ||MX_3 + D|| \le p^{-3},$$

ie

$$P_1, P_2 \in \mathcal{E}_{(p)} \Longrightarrow P_3 \in \mathcal{E}_{(p)}.$$

Recall that

$$P_1 + P_2 = O * (P_1 * P_2) = O * P_3.$$

By our formulae above, with O, X_3 in place of X_1, X_2 ,

$$X(O * P_3) \equiv -X_3 \mod p^2$$
,

or more precisely

$$X(O * P_3) \equiv -X_3 + c_1 X_3^2 \mod p^3$$
,

Hence

$$X(P_1 + P_2) = X_1 + X_2 \mod p^2$$
,

or more precisely

$$X(P_1 + P_2) = X_1 + X_2 - c_1(X_1^2 + X_1X_2 + X_2^2) + c_1(X_1 + X_2)^2 \bmod p^3$$

= $X_1 + X_2 + c_1X_1X_2 \bmod p^3$

Finally, we turn to the normal coordinate function $\theta(X)$, defined as in the real case by

$$\frac{d\theta}{dX} = \frac{1}{\partial F/\partial Z}$$

$$= \frac{1}{1 + c_1 X + 2c_3 Z - c_2 X^2 - 2c_4 X Z - 3c_6 Z^2}$$

Proposition 6.5 Suppose $||X||_p < 1$. Then we can express θ as a power-series in X,

$$\theta = X + \frac{c}{2}X^2 + \cdots$$
$$= \sum t_n X^{n+1}$$

where

- 1. $t_1 = 1$, $t_2 = -c_1/2$;
- 2. for each i, it is a polynomial in c_1, c_2, c_3, c_4, c_6 with integral coefficients;
- 3. t_i is of weight i.

Proof
ightharpoonup Since

$$\frac{d\theta}{dX} = \frac{1}{1 + c_1 X + 2c_3 Z - c_2 X^2 - 2c_4 X Z - 3c_6 Z^2}$$

$$= 1 - (c_1 X + 2c_3 Z - c_2 X^2 - 2c_4 X Z - 3c_6 Z^2)$$

$$+ (c_1 X + 2c_3 Z - c_2 X^2 - 2c_4 X Z - 3c_6 Z^2)^2 + \cdots$$

the coefficients in the power-series for $d\theta/dX$ are integral polynomials in the c_i . It follows on integration that the coefficients t_i in the power-series for $\theta(X)$ have at worst denominator i.

It remains to show that this power series converges for $||X||_p < 1$.

Lemma 6 For all i,

$$||1/i||_p \le i.$$

 $Proof \ of \ Lemma > Suppose$

$$||i||_p = p^{-e}.$$

Then

$$p^e \mid i \Longrightarrow p^e \le i$$

 $\Longrightarrow ||1/i|| < i.$

 \triangleleft

If now $||X||_p < 1$ then

$$||X||_p \le \frac{1}{p};$$

and so

$$||t_i X^i||_p \le \frac{i}{p^i},$$

which tends to 0 as $i \to \infty$. The power-series is therefore convergent. Note that

$$p^i \ge 2^i = (1+1)^i > i^2/2$$

if $i \ge 2$, while if p is odd, $||1/2||_p = 1$. Thus

$$||X||_p \le p^{-1} \Longrightarrow ||X^i/i||_p \le p^{-2} \text{ for } i \ge 2$$
 $(p \text{ odd})$
 $||X||_2 \le 2^{-2} \Longrightarrow ||X^i/i||_2 \le 2^{-3} \text{ for } i \ge 2$ $(p = 2)$.

So if p is odd,

$$\theta(X) = X + O(p^2) \text{ if } ||X||_p \le p^{-1};$$

while if p = 2,

$$\theta(X) = X + O(2^3)$$
 if $||X||_2 \le 2^{-2}$.

That is why in our discussion below the argument often applies to $P \in \mathcal{E}_{(p)}$ if p is odd, while if p = 2 we have to restrict P to \mathcal{E}_{2^2} .

Theorem 6.1 For each power p^e , where $e \ge 1$,

$$\mathcal{E}_{(p^e)}(\mathbb{Q}_p)$$

is a subgroup of $\mathcal{E}(\mathbb{Q}_p)$. Moreover the map

$$\theta: \mathcal{E}_{(p^e)}(\mathbb{Q}_p) \to p^e \mathbb{Z}_p$$

is an isomorphism (of topological abelian groups), provided $e \geq 2$ if p = 2.

Proof
ightharpoonup The identity

$$\theta(S(X_1, X_2) = \theta(X_1) + \theta(X_2),$$

which we established in the real case, must still hold; and we conclude from it, as before, that

$$\theta(P_1 + P_2) = \theta(P_1) + \theta(P_2)$$

whenever

$$P_1, P_2 \in \mathcal{E}_{(p^e)}(\mathbb{Q}_p).$$

It follows from this that $\mathcal{E}_{(p^e)}$ is a subgroup; and that

$$\theta: \mathcal{E}_{(p^e)} \to p^e \mathbb{Z}_p$$

is a homomorphism, provided $e \ge 2$ if p = 2.

Since

$$\theta(X) = X - c_1 X^2 / 2 + \cdots,$$

we have

$$\|\theta(X)\|_p = \|X\|_p$$

for all $||X||_p \leq p^{-e}$. In particular

$$\theta(X) = 0 \iff X = 0.$$

Hence θ is injective.

It is also surjective, as the following Lemma will show.

Lemma 7 The only closed subgroups of \mathbb{Z}_p are the subgroups

$$p^n \mathbb{Z}_p \quad (n = 0, 1, 2, \dots),$$

together with $\{0\}$. In particular, every closed subgroup of \mathbb{Z}_p , apart from $\{0\}$, is in fact open.

Proof of Lemma $\triangleright \mathbb{Z}$ is a dense subset of \mathbb{Z}_p :

$$\overline{\mathbb{Z}} = \mathbb{Z}_p$$
.

For the p-adic integer

$$x = c_0 + c_1 p + c_2 p^2 + \cdots \quad (c_i \in \{0, 1, \dots, p-1\})$$

is approached arbitrarily closely by the (rational) integers

$$x_r = c_0 + c_1 p + \dots + c_r p^r.$$

Now suppose S is a closed subgroup of \mathbb{Z}_p . Let $s \in S$ be an element of maximal p-adic valuation, say

$$||s|| = p^{-e}.$$

Then

$$s = p^e u$$

where u is a unit in \mathbb{Z}_p , with inverse v, say. Given any $\epsilon > 0$, we can find $n \in \mathbb{Z}$ such that

$$||v-n|| < \epsilon.$$

Then

$$ns - p^e = p^e(nu - 1)$$
$$= p^e u(n - v);$$

and so

$$||ns - p^e|| < \epsilon.$$

Since $ns \in S$ and S is closed, it follows that

$$p^e \in S$$
.

Hence

$$p^e \overline{\mathbb{Z}} = p^e \mathbb{Z}_p \subset S.$$

Since s was a maximal element in S, it follows that

$$S = p^e \mathbb{Z}_p$$
.

 \triangleleft

It follows from this Lemma that im θ is one of the subgroups $p^m \mathbb{Z}_p$. But since

$$||X|| = p^{-e} \Longrightarrow ||\theta(X)|| = p^{-e},$$

 $\operatorname{im} \theta$ must in fact be $p^e \mathbb{Z}_p$, ie θ is surjective.

A continuous bijective map from a compact space to a hausdorff space is necessarily a homeomorphism. (This follows from the fact that the image of every closed, and therefore compact, subset is compact, and therefore closed.) In particular, θ establishes an isomorphism

$$\mathcal{E}_{(p^e)} \cong p^e \mathbb{Z}_p \cong \mathbb{Z}_p.$$

◀

It follows from this Theorem that $\mathcal{E}_{(p^e)}$ is torsion-free, since \mathbb{Z}_p is torsion-free. Thus there are no points of finite order on \mathcal{E} close to O, a result which we shall exploit in the next Chapter.

6.4 The Structure of $\mathcal{E}(\mathbb{Q}_p)$

We shall not use the following result, but include it for the sake of completeness.

Theorem 6.2 Let $\mathbb{F} \subset \mathcal{E}(\mathbb{Q}_p)$ be the torsion subgroup of the elliptic curve $\mathcal{E}(\mathbb{Q}_p)$. Then

$$\mathcal{E}(\mathbb{Q}_p) \cong \mathbb{F} \oplus \mathbb{Z}_p$$
.

Proof ▶ The torsion subgroup \mathbb{F} splits (uniquely) into its *p*-component \mathbb{F}_p and the sum $\mathbb{F}_{p'}$ of all components \mathbb{F}_q with $q \neq p$:

$$\mathbb{F} = \mathbb{F}_p \oplus \mathbb{F}_{p'}$$
.

(See Appendix A for details.) Explicitly,

$$\mathbb{F}_p = \{ P \in \mathcal{E} : p^n P = 0 \text{ for some } n \},$$

$$\mathbb{F}_{p'} = \{ P \in \mathcal{E} : mP = 0 \text{ for some } d \text{ with } \gcd(m, p) = 1 \}.$$

(We write \mathcal{E} for $\mathcal{E}(\mathbb{Q}_p)$).

We also set

$$\mathcal{E}_p = \{ P \in \mathcal{E} : p^n P \to O \text{ as } n \to \infty \}.$$

Evidently

$$\mathcal{E}_p\supset\mathcal{E}_{(p)}.$$

Since $E_{(p)}$ is an open (and therefore closed) subgroup of \mathcal{E} , it follows that the same is true of \mathcal{E}_p .

Lemma 8 $p^n \mathcal{E}_p = \mathcal{E}_{(p^e)}$ for some n, e > 0.

Proof of Lemma \triangleright For each $P \in \mathcal{E}_p$,

$$p^n P \in \mathcal{E}_{(p)}$$

for some n > 0 since $p^n P \to O$ and $\mathcal{E}_{(p)}$ is an open neighbourhood of O. Hence the open subgroups $p^{-n}\mathcal{E}_{(p)}$ cover \mathcal{E}_p . Since \mathcal{E}_p is compact, it follows that $p^{-n}\mathcal{E}_{(p)} \supset \mathcal{E}_p$ for some n, ie

$$p^n \mathcal{E}_p \subset \mathcal{E}_{(p)} \cong \mathbb{Z}_p.$$

But by Lemma 7 to Theorem 6.1, the only closed subgroups of \mathbb{Z}_p are the $p^e \mathbb{Z}_p$, which correspond under this isomorphism to the subgroups $\mathcal{E}_{(p^e)}$ of $\mathcal{E}_{(p)}$. We conclude that

$$p^n \mathcal{E}_p = \mathcal{E}_{(p^e)}$$

for some e. \triangleleft

Lemma 9 Suppose A is a finite p-group; and suppose gcd(m,p) = 1. Then the map $\psi : A \to A$ under which

$$a \mapsto ma$$

is an isomorphism.

Proof of Lemma \triangleright Suppose $a \in \ker A$, ie

$$ma = 0$$
.

Then $\operatorname{order}(a) \mid m$. But by Lagrange's Theorem, $\operatorname{order}(a) = p^e$ for some e. Hence $\operatorname{order}(a) = 1$, ie a = 0.

Thus ψ is injective; and it is therefore surjective, by the Pigeon-Hole Principle. Hence ψ is an isomorphism. \triangleleft

It is not difficult to extend this result to \mathcal{E}_p , which is in effect a kind of topological p-group.

Lemma 10 Suppose gcd(m, p) = 1. Then the map $\psi : \mathcal{E}_p \to \mathcal{E}_p$ under which

$$a \mapsto ma$$

is an isomorphism.

Proof of Lemma \triangleright Suppose $P \in \ker \psi$, ie

$$mP = 0$$
.

By Lemma 1,

$$p^n \mathcal{E}_p \subset \mathcal{E}_{(p^2)} \cong \mathbb{Z}_p$$

for some n.

But \mathbb{Z}_p is torsion-free. Thus

$$mP = 0 \Longrightarrow m(p^n P = 0) \Longrightarrow p^n P = 0.$$

Hence

$$m, p^n \mid \operatorname{order}(P) \Longrightarrow \operatorname{order}(P) = 1 \Longrightarrow P = 0$$

since $gcd(m, p^n) = 1$. Thus

$$\ker \psi = 0$$
,

ie ψ is injective.

Now suppose $P \in \mathcal{E}_p$. We have to show that P = mQ for some $Q \in \mathcal{E}_p$. Since $\mathcal{E}_p/p^n\mathcal{E}_p$ is a finite p-group we can find $Q \in \mathcal{E}_p$ such that

$$mQ \equiv P \bmod p^n \mathcal{E}_p$$

ie

$$mQ = P + R$$
,

where

$$R \in p^n \mathcal{E}_p \cong \mathbb{Z}_p$$
.

Now the map

$$P \mapsto mP : \mathbb{Z}_p \to \mathbb{Z}_p$$

is certainly an isomorphism, since m is a unit in \mathbb{Z}_p with inverse $m^{-1} \in \mathbb{Z}_p$. In particular we can find $S \in p^n \mathcal{E}_p$ with

$$mS = R$$
.

Putting all this together,

$$P = mQ + R = mQ + mS = m(Q + S).$$

Thus the map ψ is surjective, and so an isomorphism. \triangleleft

Lemma 11 $\mathcal{E}(\mathbb{Q}_p) = \mathbb{F}_{p'} \oplus \mathcal{E}_p$.

 $Proof \ of \ Lemma > Suppose$

$$P \in \mathbb{F}_{p'} \cap \mathcal{E}_p$$

say

$$mP = O$$
,

where gcd(m, p) = 1.

On considering $p \mod m$ as an element of the finite group

$$(\mathbb{Z}/m)^{\times} = \{r \bmod m : \gcd(r, m) = 1\},\$$

it follows by Lagrange's Theorem that

$$p^r \equiv 1 \mod m$$

for some n > 0. But then

$$p^r P = P;$$

and so

$$p^n P \to O \Longrightarrow P = O.$$

Now suppose $P \in \mathcal{E}$. Since \mathcal{E} is compact, and \mathcal{E}_p is open, $\mathcal{E}/\mathcal{E}_p$ is finite (eg since \mathcal{E} must be covered by a finite number of \mathcal{E}_p -cosets). Let the order of this finite group be mp^e , where $\gcd(m,p)=1$.

We can find $u, v \in \mathbb{Z}$ such that

$$um + vp^e = 1;$$

and then

$$P = Q + R$$
,

where

$$Q = u(mP), R = v(p^eP).$$

Now

$$p^e Q = u(mp^e P) \in \mathcal{E}_p.$$

Hence

$$p^n Q \to 0 \text{ as } n \to \infty$$

ie

$$Q \in \mathcal{E}_p$$
.

On the other hand,

$$mR = v(mp^e P) \in \mathcal{E}_p.$$

Hence by Lemma 10, there is a point $S \in \mathcal{E}_p$ such that

$$mR = mS$$
,

and so

$$T = R - S \in \mathbb{F}_{p'}$$
.

Putting these results together,

$$P = T + (Q + S),$$

with $T \in \mathbb{F}_{p'}$ and $Q + S \in \mathcal{E}_p$.

Lemma 12 $\mathbb{F}_p \subset \mathcal{E}_p$.

 $Proof \ of \ Lemma > Suppose$

$$P = Q + R \in \mathbb{F}_n$$

where $Q \in \mathbb{F}_{p'}$, $R \in \mathcal{E}_p$. Then

$$p^n P = 0 \Longrightarrow p^n Q = 0, \ p^n R = 0.$$

since the sum is direct. But

$$p^nQ = 0 \Longrightarrow \operatorname{order}(Q) \mid p^n \Longrightarrow \operatorname{order}(Q) = 1 \Longrightarrow Q = 0,$$

since the order of Q is coprime to p by the definition of $\mathbb{F}_{p'}$. Thus

$$P = R \in \mathcal{E}_p$$
.

 \triangleleft

It remains to split \mathcal{E}_p into \mathbb{F}_p and a subgroup isomorphic to \mathbb{Z}_p .

Consider the surjection

$$\psi: \mathcal{E}_p \to \mathcal{E}_{(p^e)} \cong \mathbb{Z}_p.$$

Let us choose a point

$$P_0 \in \mathcal{E}_{p^e} \setminus \mathcal{E}_{(p^{e+1})},$$

eg if we identify $\mathcal{E}_{(p^e)}$ with \mathbb{Z}_p we might take the point corresponding to $1 \in \mathbb{Z}_p$. Now choose a point P_1 such that

$$\psi(P_1) = P_0;$$

and let

$$\mathcal{E}_1 = \overline{\langle P_1 \rangle}$$

be the closure in \mathcal{E}_p of the subgroup generated by P_1 . We shall show that the restriction

$$\psi_1 = \psi \mid \mathcal{E}_1 : \mathcal{E}_1 \to \mathcal{E}_{(p^e)}$$

is an isomorphism, so that

$$\mathcal{E}_1 \cong \mathcal{E}_{(p^e)} \cong \mathbb{Z}_p$$
.

Certainly ψ_1 is surjective. For \mathcal{E}_1 is compact, and so its image is closed; while $\langle P_0 \rangle >$ is dense in $\mathcal{E}_{(p^e)} \cong \mathbb{Z}_p$.

Suppose

$$Q \in \ker \psi_1 = \ker \psi \cap \mathcal{E}_1.$$

By definition, Q is the limit of points in $\langle P_1 \rangle$, say

$$n_i P_1 \to Q$$
,

where $n_i \in \mathbb{Z}$. But then, since ψ is continuous,

$$n_i P_0 \to \psi(Q) = 0.$$

Hence

$$n_i \to 0$$

in \mathbb{Z}_p . But then it follows that

$$n_i P_1 \rightarrow 0$$

in \mathcal{E}_p , since

$$\bigcap p^n E_p = 0.$$

Hence Q = 0, ie ker $\psi_1 = 0$.

It remains to show that

$$\mathcal{E}_p = \mathbb{F}_p \oplus \mathcal{E}_1$$
.

Suppose $P \in \mathcal{E}_p$. Then

$$\psi(P) = \psi(Q),$$

for some $Q \in \mathcal{E}_1$. In other words,

$$p^n(P-Q) = 0.$$

Thus

$$R = P - Q \in \mathbb{F}_n$$

On the other hand, if

$$F_n \cap \mathcal{E}_1 = 0$$
,

since as we have seen,

$$\mathcal{E}_1 \cong \mathcal{E}_{(p^e)} \cong \mathbb{Z}_p,$$

and Z_p is torsion-free.

We have shown therefore that

$$\mathcal{E} = \mathbb{F}_{p'} \oplus \mathcal{E}_{p}$$

$$= \mathbb{F}_{p'} \oplus (\mathbb{F}_{p} \oplus \mathcal{E}_{1})$$

$$= (\mathbb{F}_{p'} \oplus \mathbb{F}_{p}) \oplus \mathcal{E}_{1}$$

$$= \mathbb{F} \oplus \mathcal{E}_{1}$$

$$\cong \mathbb{F} \oplus \mathbb{Z}_{p}.$$

Remark: We can regard \mathcal{E}_p as a \mathbb{Z}_p -module; for since $p^nP \to O$ we can define xP unambiguously for $x \in \mathbb{Z}_p$:

$$n_i \to x \Longrightarrow n_i P \to x P$$
.

Moreover, \mathcal{E}_p is a *finitely-generated* \mathbb{Z}_p -module; that follows readily from the fact that $\mathcal{E}_{(p)} \cong \mathbb{Z}_p$ is of finite index in \mathcal{E}_p .

The Structure Theorem for finitely-generated abelian groups, ie Z-modules, extends easily to \mathbb{Z}_p -modules; such a module is the direct sum of copies of \mathbb{Z}_p and cyclic groups $\mathbb{Z}/(p^e)$. (This can be proved in much the same way as the corresponding result for abelian groups.)

Effectively, therefore, all we proved above was that the factor \mathbb{Z}_p occurred just once, which simply reflects the fact that we are dealing with a 1-dimensional curve.