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Attempt 3 questions. (If you attempt more, only the best 3 will
be counted.) All questions carry the same number of marks.

. State (without proof) Hasse’s Theorem on the number of points on an
elliptic curve over a finite field.

Show that the curve
E[Fy) :y* +y =2°
is elliptic, and find the number of points on it.

Answer:

(a) Hasse’s Theorem states that the number N of points on an elliptic
curve &(F,) over the finite filed F, satisfies

N —(g+1)] <24
(b) In homogeneous coordinates the equation takes the form
FX,)Y,2)=Y*Z+YZ*+X*=0
(using the fact that the field is of characteristic 2). Thus

OF

-~ — X2
0X ’
OF

= _ 72
oYy ’
oF
a—Z—Y.

Thus at a singular point X =Y = Z =0, which is impossible.



(¢) The polynomial
px)=2"+z+1

is irreducible over Fo, since p(0) # 0, p(1) # 0. Thus
Fy = Fy[z]/(p(x)).
Let o = x mod p(x). Then the elements of Fy are
co + cra + 02,
where ¢y, c1,c2 € {0,1}; and
o’ =a+1.

Since |Fg| = 7 there are no elements of order 3 in Fg. Thus the
homomorphism

z 2 FY — FY
has trivial kernel, and so is an isomorphism. In other words, each
element of FS has a unique cube-root; and this is evidently true of
the element 0 too.

It follows that for each choice of y we can find just one x with
2% = y? +vy. Thus there are 8 points on the affine curve; and so,
on adding the point O = [0,1,0],

|&(Fs)| = 9.
2. Show that there are no rational numbers z,y such that

y? =zt 4+ 2.

Answer: To bring this hyper-elliptic equation to elliptic form we re-
write it as

(y—a)(y+2%) =2

Now set
5=y + %
Then
5 2
y—axt=—.
s
Thus 5
207 =5 — .
s

Multiplying across by s?,

25222 = §3 — 2s.



Setting s = t,
2t* = 53 — 2s.

Explicitly,
(s,) = (y + 2, 2y + 2°),

while the inverse map is
(z,y) = (t/2,5 = t°/4).
Now set x = s/2, y =1t/4. We obtain the elliptic curve

&Q):y* =a2* — 8.
The associated elliptic curve s

&(Q) :y* = 2° + 32u.

Since & has just one point of order 2, while by = 32 is not a perfect
square, the rank r of & is given by

grrt _ [imx] - [im x|
2 Y

where
X:€—-Q—=Q* x:6-Q°—-Q*
are the auxiliary homomorphisms.

We have
imy C {£1,£2}, imy; C {£1,+2}.

Since x(0,0) = =8 ~ =2,
imy = {1, -2} or {£1, £2}.
Recall that d € im x if and only if the equation
du' + d't' =0,

where d' = b/d, has an integral solution with ged(u,t) = 1 = ged(v,t).
Taking d = —1 we have d = 8 and the equation is

—ut + 8t* = 2.

If v is odd then so is u. But then u* = 1 mod 4 and v* = 1 mod 4,
which 1s a contradiction.



Hence v is even, and so u is even. But then

2|u = 16 | u*
= 8| v?
= 4|v
— 16| v?
= 2|t,

contradicting the assumption that ged(t,u) = 1.

It follows that
imy = {1, —2}.

For imx; we note that d < 0 = d' = 32/d < 0, in which case
u=1t=wv=0, which is absurd. On the other hand, x1(0,0) = 2. Thus

im x; = {1,2}.

We conclude that r = 0, ie the group on the curve is finite.

To find the points of finite order, we recall that if x(z,y) = (z1,v1)

then
x?—8
r = .
T

But if P = (x,y) is of finite order then so is (z1,y1). Hence
r,r1 € 2.

Thus © € {£1,4+2,+4,48}. But it is a trivial matter to verify that
none of these make x3 — 8z a perfect square. Thus & contains only the
point (0,0).

But no point (x,y) on the original curve gives rise to this point. (More
precisely, the point (0,0 on & corresponds to a point on the line at
infinity on the original curve.) We conclude that the original equation
has no rational solution.

. Show that a non-singular cubic I'" over the field k can be brought to
Weierstrassian form if and only if there is a point P € I' defined over
k.

Bring the curve
X+ Y34+ 2P =XYZ
to Weierstrassian form.
Show that the cubic
X3 42Y? +472° =0
is non-singular, but has no rational point.

Answer:



(a) Let P be a rational point on T.
If P is a point of inflexion then we can bring P to the point [0, 1, 0]
and the tangent at P to the line Z = 0 by a projective transfor-
mation.

Since the line Z = 0 meets I' where X3 = 0 it follows that the
coefficients of Y3, XY?, X2Y all vanish. Thus T takes the form

F(X,Y,Z) = AY?*Z+BXY Z+CY Z*+DX*+EX*Z+FX 7*+GZ* = 0.

If D =0 then Z s a factor, so the curve is degenerate and there-
fore singular.

If A =0 then
OF/0X = 0F/0Y = 0F/0Z =0

at P =10,1,0], so again the curve is singular.

Thus the curve takes the inhomogeneous form
y? + axy + by = cx® + da? + ex + f,

with ¢ # 0. But now the transformation ¥’ = cx, vy = xy makes
the coefficients of y?> and x® equal, bringing the curve to Weier-
strassitan form.
Suppose now that P is not a flex. Let the tangent at P meet the
curve again at Q, and let the tangent at Q) meet the curve again
at R. We may suppose that QQ is not a flex, so that P,Q, R are
non-collinear and can be brought by a projective transformation to
the points [1,0,0],1]0,1,0], 0,0, 1].
Since the curve goes through these three points, the coefficients of
X3.Y3,Z% all vanish. Since the tangent at [1,0,0] is Z = 0, the
coefficient of X*Y wanishes; and since the tangent at [0,1,0] is
X =0, the coefficient of Y2Z wvanishes. Thus the curve takes the
form

aXY? +bXYZ +cYZ? =dX*Z 4+ eX 72,

or in inhomogeneous form,

azxy® + bry + cy = do* + ex.
Multiplying by z, and setting xy =1/,

ay'’ + bay + ey = da® + ex?.

The transformation (z,y') = (x,xy) is birational, with inverse
(z,y) = (2,9 /z).

As above, the curve is singular if a = 0 or d = 0; and the trans-
formation y" = Xy, 2" = Az with A\ = a/d brings the curve to
Weierstrassian form.



(b) If
FX,Y,2)=X*+Y*+ 73+ XY Z

then
g—f( =3X2+YZ,
g—i =3Y*+XZ,
g—g =37+ XY.

At a singular point,

3X2=-YZ, 3Y?’=-XZ, 372 =-XY = 2TX?*Y?7%* = —X?*Y?7?
— XYZ =0
— X=Y=27=0.

Thus the curve is non-singular.
Let P =[1,—1,0]. The tangent at P is

3X+3Y —Z=0.
This meets the curve again where
(X3 + V) +21(X + YY) +3XY(X +Y) =0,
e
(X +Y)[(X? = XY +Y?) 4+ 3XY +27(X +Y)?]
e
28(X +Y)°.

Thus the tangent meets the curve three times at P, ie P is a point
of inflexion.

Hence we can bring the curve to Weierstrassian form by a projec-
tive transformation taking the point [1,—1,0] to [0,1,0] and the
line 3X +3Y —Z =0 to Z =0. A suitable transformation is

X' =X+Y,YV'=Y, 7 =7-3(X+Y),
or inversely,
X=X'-Y Yv=Y, 6 Z=3X"+7.
The equation becomes

(X' —YVP+Y?+BX' + 2V +(X -Y)WBX' +7Z)=0,



1e
X7 +21X2Z' +9X' 2%+ Z2° + X'Y'Z' =Y Z' =0,
or in affine coordinates
y? — 2’y =282 4+ 272 + 92" + 1.
The transformation
¥ =x/28, y =1y/28
brings this to Weierstrassian form
vy — oy =2°+ 2722 +9 - 28z + 28%
(¢) Suppose X,Y,Z (not all 0) satisfy
X?4+2Y?4+42° =0

We may suppose without loss of generality that ged(X.Y.Z) = 1.
FEvidently 2 | X, say X =2X'. Then

8X"% 4 2Y3 4+ 47° =0,
1e

AX" 4 Y3 4227 = 0.
Now2|Y, say Y =2Y'; and

4X"7 +8Y" +22% =0,
e

2X"7 4y 4+ 73 = 0.

But now 2 | Z, contradicting our assumption that ged(X,Y, Z) =
1.

4. Outline Pollard’s p — 1 method for factorizing large numbers, and
Lenstra’s Elliptic Curve development of this.
What advantage does Lenstra’s method possess?

Answer:



Pollard’s p — 1 method Suppose n is a large composite number. (It
15 easy to establish that n is composite, by the Miller-Rabin algo-
rithm.) Let p be a prime factor of n.

Recall that a number m 1is said to be b-smooth, where b is a rel-
atiwely small number, if every for every prime factor g of m the
highest power of q dividing m is < b:

¢“|lm = ¢ <b.
This is the same as saying that
m | k,
where

k= k) =[]r",

p<b

where e(p) is the exponent of the highest power of p such that

pe(P) <b.
Now suppose that p — 1 is b-small. Then
p—1]Ek.

By Fermat’s Little Theorem, if a is coprime to p then

a® ! =1 mod p.
Hence
a* =1 mod p,
1e
plad* -1,
and so

d=ged(a® —1,n) > 1.

It is improbable that d = n; so d gives a proper factor of n.

To summarise, we choose a small number a, compute a* mod n
(working throughout mod n) and then calculate d = ged(a®—1,n).

Lenstra’s elliptic curve method Suppose as before thatn is a large
composite integer, and that p is a prime factor of n.

Let
EQ):y*=2*+br+c (bceZ)



be an elliptic curve; and let &(F,) be the reduction of & mod p.

We may suppose that the reduction is good, ie &(FF,) is an elliptic
curve. For if it is not then

p| A= —(4b® 4 27¢7)

and so
d=ged(A,n) > 1

will almost certainly provide a proper factor of n.

Let the order of the group &(F,) be N. By Hasse’s Theorem, N
1s roughly equal to p; more precisely,

(N —(p+1)] <2yp.
Now suppose N is b-small. Then
N |k

as in Pollard’s method.

Let us choose a point
P=IX.,V,Z] (X,Y,Z€Z)
on &(Q); and set

rP = [Xra Y;"a Zr]
forr € N.
Let P, denote the reduction of P mod p. By Lagrange’s Theorem,
NP, =0,
and so
kP, =0,
1€
kP, =10,1,0].
Thus
Z, = 0 mod p.
Hence

d = ged(Zg,n) > 1,

and we may expect d to be a proper factor of n.

Note that we can compute the coordinates of rP as polynomials
(with integer coefficients) in X,Y, Z. In effect if

Pl = {X17Y17Z1]7 P2 = [X27}/27Z2]



and
Py =P + P, = [X3,Y5, Zs)

then
X?n YE% Z3 € Z[Xh}/la Zla X2a }/27 ZQ]

Note that we can work throughout modn. Thus the computation
of kP mod n requires approzimately log k additions and doublings
of points modn.

Note too that it is simplest to choose the point P = [X,Y, Z] and
then find an elliptic curve y*> = 23 + bx + ¢ containing this point.

Comparison We can choose many different elliptic curves y? = 3 +
bx +c. We may expect that as the curve varies the order N of the
reduced curve will be randomly distributed over the range (p+1 —
2/p,p+1+2,/p) allowed by Hasse’s Theorem.

Thus there is a far greater chance of finding a curve with b-small
order N than there is with Pollard’s method which relies on the
single number p — 1 being b-small.



