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Attempt 3 questions. (If you attempt more, only the best 3 will
be counted.) All questions carry the same number of marks.

1. State (without proof) Hasse’s Theorem on the number of points on an
elliptic curve over a finite field.

Show that the curve
E (F8) : y2 + y = x3

is elliptic, and find the number of points on it.

Answer:

(a) Hasse’s Theorem states that the number N of points on an elliptic
curve E (Fq) over the finite filed Fq satisfies

|N − (q + 1)| ≤ 2
√

q.

(b) In homogeneous coordinates the equation takes the form

F (X, Y, Z) = Y 2Z + Y Z2 + X3 = 0

(using the fact that the field is of characteristic 2). Thus

∂F

∂X
= X2,

∂F

∂Y
= Z2,

∂F

∂Z
= Y 2.

Thus at a singular point X = Y = Z = 0, which is impossible.



(c) The polynomial
p(x) = x3 + x + 1

is irreducible over F2, since p(0) 6= 0, p(1) 6= 0. Thus

F8 = F2[x]/(p(x)).

Let α = x mod p(x). Then the elements of F8 are

c0 + c1α + c2α
2,

where c0, c1, c2 ∈ {0, 1}; and

α3 = α + 1.

Since |F×
8 | = 7 there are no elements of order 3 in F×8 . Thus the

homomorphism
x 7→ x3 : F×8 → F×8

has trivial kernel, and so is an isomorphism. In other words, each
element of F×8 has a unique cube-root; and this is evidently true of
the element 0 too.

It follows that for each choice of y we can find just one x with
x3 = y2 + y. Thus there are 8 points on the affine curve; and so,
on adding the point O = [0, 1, 0],

|E (F8)| = 9.

2. Show that there are no rational numbers x, y such that

y2 = x4 + 2.

Answer: To bring this hyper-elliptic equation to elliptic form we re-
write it as

(y − x2)(y + x2) = 2.

Now set
s = y + x2.

Then

y − x2 =
2

s
.

Thus

2x2 = s− 2

s
.

Multiplying across by s2,

2s2x2 = s3 − 2s.



Setting sx = t,
2t2 = s3 − 2s.

Explicitly,
(s, t) = (y + x2, xy + x3),

while the inverse map is

(x, y) = (t/2, s− t2/4).

Now set x = s/2, y = t/4. We obtain the elliptic curve

E (Q) : y2 = x3 − 8x.

The associated elliptic curve is

E1(Q) : y2 = x3 + 32x.

Since E has just one point of order 2, while b1 = 32 is not a perfect
square, the rank r of E is given by

2r+1 =
| im χ| · | im χ1|

2
,

where
χ : E → Q× → Q×2, χ : E1 → Q× → Q×2

are the auxiliary homomorphisms.

We have
im χ ⊂ {±1,±2}, im χ1 ⊂ {±1,±2}.

Since χ(0, 0) = −8 ∼ −2,

im χ = {1,−2} or {±1,±2}.

Recall that d ∈ im χ if and only if the equation

du4 + d′t4 = v2,

where d′ = b/d, has an integral solution with gcd(u, t) = 1 = gcd(v, t).
Taking d = −1 we have d = 8 and the equation is

−u4 + 8t4 = v2.

If v is odd then so is u. But then u4 ≡ 1 mod 4 and v2 ≡ 1 mod 4,
which is a contradiction.



Hence v is even, and so u is even. But then

2 | u =⇒ 16 | u4

=⇒ 8 | v2

=⇒ 4 | v
=⇒ 16 | v2

=⇒ 2 | t,

contradicting the assumption that gcd(t, u) = 1.

It follows that
im χ = {1,−2}.

For im χ1 we note that d < 0 =⇒ d′ = 32/d < 0, in which case
u = t = v = 0, which is absurd. On the other hand, χ1(0, 0) = 2. Thus

im χ1 = {1, 2}.

We conclude that r = 0, ie the group on the curve is finite.

To find the points of finite order, we recall that if χ(x, y) = (x1, y1)
then

x1 =
x2 − 8

x
.

But if P = (x, y) is of finite order then so is (x1, y1). Hence

x, x1 ∈ Z.

Thus x ∈ {±1,±2,±4,±8}. But it is a trivial matter to verify that
none of these make x3− 8x a perfect square. Thus E contains only the
point (0, 0).

But no point (x, y) on the original curve gives rise to this point. (More
precisely, the point (0, 0 on E corresponds to a point on the line at
infinity on the original curve.) We conclude that the original equation
has no rational solution.

3. Show that a non-singular cubic Γ over the field k can be brought to
Weierstrassian form if and only if there is a point P ∈ Γ defined over
k.

Bring the curve
X3 + Y 3 + Z3 = XY Z

to Weierstrassian form.

Show that the cubic
X3 + 2Y 3 + 4Z3 = 0

is non-singular, but has no rational point.

Answer:



(a) Let P be a rational point on Γ.

If P is a point of inflexion then we can bring P to the point [0, 1, 0]
and the tangent at P to the line Z = 0 by a projective transfor-
mation.

Since the line Z = 0 meets Γ where X3 = 0 it follows that the
coefficients of Y 3, XY 2, X2Y all vanish. Thus Γ takes the form

F (X, Y, Z) = AY 2Z+BXY Z+CY Z2+DX3+EX2Z+FXZ2+GZ3 = 0.

If D = 0 then Z is a factor, so the curve is degenerate and there-
fore singular.

If A = 0 then

∂F/∂X = ∂F/∂Y = ∂F/∂Z = 0

at P = [0, 1, 0], so again the curve is singular.

Thus the curve takes the inhomogeneous form

y2 + axy + by = cx3 + dx2 + ex + f,

with c 6= 0. But now the transformation x′ = cx, y′ = xy makes
the coefficients of y2 and x3 equal, bringing the curve to Weier-
strassian form.

Suppose now that P is not a flex. Let the tangent at P meet the
curve again at Q, and let the tangent at Q meet the curve again
at R. We may suppose that Q is not a flex, so that P, Q,R are
non-collinear and can be brought by a projective transformation to
the points [1, 0, 0], [0, 1, 0], [0, 0, 1].

Since the curve goes through these three points, the coefficients of
X3, Y 3, Z3 all vanish. Since the tangent at [1, 0, 0] is Z = 0, the
coefficient of X2Y vanishes; and since the tangent at [0, 1, 0] is
X = 0, the coefficient of Y 2Z vanishes. Thus the curve takes the
form

aXY 2 + bXY Z + cY Z2 = dX2Z + eXZ2,

or in inhomogeneous form,

axy2 + bxy + cy = dx2 + ex.

Multiplying by x, and setting xy = y′,

ay′
2
+ bxy′ + cy′ = dx3 + ex2.

The transformation (x, y′) = (x, xy) is birational, with inverse
(x, y) = (x, y′/x).

As above, the curve is singular if a = 0 or d = 0; and the trans-
formation y′′ = λy′, x′′ = λx with λ = a/d brings the curve to
Weierstrassian form.



(b) If
F (X, Y, Z) = X3 + Y 3 + Z3 + XY Z

then

∂F

∂X
= 3X2 + Y Z,

∂F

∂Y
= 3Y 2 + XZ,

∂F

∂Z
= 3Z2 + XY.

At a singular point,

3X2 = −Y Z, 3Y 2 = −XZ, 3Z2 = −XY =⇒ 27X2Y 2Z2 = −X2Y 2Z2

=⇒ XY Z = 0

=⇒ X = Y = Z = 0.

Thus the curve is non-singular.

Let P = [1,−1, 0]. The tangent at P is

3X + 3Y − Z = 0.

This meets the curve again where

(X3 + Y 3) + 27(X + Y )3 + 3XY (X + Y ) = 0,

ie

(X + Y )
[
(X2 −XY + Y 2) + 3XY + 27(X + Y )2

]
ie

28(X + Y )3.

Thus the tangent meets the curve three times at P , ie P is a point
of inflexion.

Hence we can bring the curve to Weierstrassian form by a projec-
tive transformation taking the point [1,−1, 0] to [0, 1, 0] and the
line 3X + 3Y − Z = 0 to Z = 0. A suitable transformation is

X ′ = X + Y, Y ′ = Y, Z ′ = Z − 3(X + Y ),

or inversely,

X = X ′ − Y ′, Y = Y ′, Z = 3X ′ + Z ′.

The equation becomes

(X ′ − Y ′)3 + Y ′3 + (3X ′ + Z ′)3 + (X ′ − Y ′)Y ′(3X ′ + Z ′) = 0,



ie

28X ′3 + 27X ′2Z ′ + 9X ′Z ′2 + Z ′3 + X ′Y ′Z ′ − Y ′2Z ′ = 0,

or in affine coordinates

y′2 − x′y′ = 28x′3 + 27x′2 + 9x′ + 1.

The transformation

x′ = x/28, y′ = y/28

brings this to Weierstrassian form

y2 − xy = x3 + 27x2 + 9 · 28x + 282.

(c) Suppose X, Y, Z (not all 0) satisfy

X3 + 2Y 3 + 4Z3 = 0

We may suppose without loss of generality that gcd(X.Y.Z) = 1.

Evidently 2 | X, say X = 2X ′. Then

8X ′3 + 2Y 3 + 4Z3 = 0,

ie

4X ′3 + Y 3 + 2Z3 = 0.

Now 2 | Y , say Y = 2Y ′; and

4X ′3 + 8Y ′3 + 2Z3 = 0,

ie

2X ′3 + 4Y ′3 + Z3 = 0.

But now 2 | Z, contradicting our assumption that gcd(X, Y, Z) =
1.

4. Outline Pollard’s p − 1 method for factorizing large numbers, and
Lenstra’s Elliptic Curve development of this.

What advantage does Lenstra’s method possess?

Answer:



Pollard’s p− 1 method Suppose n is a large composite number. (It
is easy to establish that n is composite, by the Miller-Rabin algo-
rithm.) Let p be a prime factor of n.

Recall that a number m is said to be b-smooth, where b is a rel-
atively small number, if every for every prime factor q of m the
highest power of q dividing m is ≤ b:

qe | m =⇒ qe ≤ b.

This is the same as saying that

m | k,

where
k = k(b) =

∏
p≤b

pe(p),

where e(p) is the exponent of the highest power of p such that

pe(p) ≤ b.

Now suppose that p− 1 is b-small. Then

p− 1 | k.

By Fermat’s Little Theorem, if a is coprime to p then

ap−1 ≡ 1 mod p.

Hence

ak ≡ 1 mod p,

ie

p | ak − 1,

and so

d = gcd(ak − 1, n) > 1.

It is improbable that d = n; so d gives a proper factor of n.

To summarise, we choose a small number a, compute ak mod n
(working throughout mod n) and then calculate d = gcd(ak−1, n).

Lenstra’s elliptic curve method Suppose as before that n is a large
composite integer, and that p is a prime factor of n.

Let
E (Q) : y2 = x3 + bx + c (b, c ∈ Z)



be an elliptic curve; and let E (Fp) be the reduction of E mod p.

We may suppose that the reduction is good, ie E (Fp) is an elliptic
curve. For if it is not then

p | ∆ = −(4b3 + 27c2)

and so
d = gcd(∆, n) > 1

will almost certainly provide a proper factor of n.

Let the order of the group E (Fp) be N . By Hasse’s Theorem, N
is roughly equal to p; more precisely,

|N − (p + 1)| ≤ 2
√

p.

Now suppose N is b-small. Then

N | k

as in Pollard’s method.

Let us choose a point

P = [X, Y, Z] (X, Y, Z ∈ Z)

on E (Q); and set
rP = [Xr, Yr, Zr]

for r ∈ N.

Let Pp denote the reduction of P mod p. By Lagrange’s Theorem,

NPp = 0,

and so

kPp = 0,

ie

kPp = [0, 1, 0].

Thus
Zk ≡ 0 mod p.

Hence
d = gcd(Zk, n) > 1;

and we may expect d to be a proper factor of n.

Note that we can compute the coordinates of rP as polynomials
(with integer coefficients) in X, Y, Z. In effect if

P1 = [X1, Y1, Z1], P2 = [X2, Y2, Z2]



and
P3 = P1 + P2 = [X3, Y3, Z3]

then
X3, Y3, Z3 ∈ Z[X1, Y1, Z1, X2, Y2, Z2].

Note that we can work throughout modn. Thus the computation
of kP mod n requires approximately log k additions and doublings
of points modn.

Note too that it is simplest to choose the point P = [X, Y, Z] and
then find an elliptic curve y2 = x3 + bx + c containing this point.

Comparison We can choose many different elliptic curves y2 = x3 +
bx+ c. We may expect that as the curve varies the order N of the
reduced curve will be randomly distributed over the range (p + 1−
2
√

p, p + 1 + 2
√

p) allowed by Hasse’s Theorem.

Thus there is a far greater chance of finding a curve with b-small
order N than there is with Pollard’s method which relies on the
single number p− 1 being b-small.


