

Course 428

Elliptic Curves II

Dr Timothy Murphy

Joly Theatre

Friday, 5 April 2002

16:15-17:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Prove Fermat's Last Theorem either for n = 3 or for n = 4.

Answer:

n=3 We work in the field

$$K = \mathbb{Q}(\omega),$$

where $\omega = e^{2\pi/3}$, so that $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$.

The integers in this field are the numbers

$$a + b\omega \quad (a, b \in \mathbb{Z}),$$

and the units are $\pm 1, \pm \omega, \pm \omega^2$. The ring of integers $A = \mathbb{Z}[\omega]$, is a unique factorisation domain.

Each number

$$\alpha = x + y\omega \in K$$

has conjugate

$$\bar{\alpha} = x + y\omega^2,$$

and

$$N(\alpha) = \alpha \bar{\alpha} = x^2 - xy + y^2.$$

Let

$$\pi = 1 - \omega$$
.

Then

$$\bar{\pi} = 1 - \omega^2 = -\omega^2 \pi.$$

Since

$$N(\pi) = 3$$
,

it follows that 3 ramifies:

$$3 = \epsilon \pi^2$$
,

where $\epsilon = -\omega^2$.

The residues $mod \pi$ are represented by $0, \pm 1$.

Lemma 1. If

$$\alpha \equiv \pm 1 \bmod \pi$$

then

$$\alpha^3 \equiv \pm 1 \mod \pi^3$$
.

Proof. It is sufficient to prove the result if $\alpha \equiv 1 \mod \pi$, ie

$$\alpha = 1 + \pi \beta$$
.

Then

$$\alpha^3 \equiv 1 + 3\pi\beta + 3\pi^2\beta^2 \bmod \pi^3.$$

Since

$$\pi^2 \mid 3$$

the result follows.

We want to show that

$$x^3 + y^3 + z^3 = 0$$

has no solution with $x, y, z \in \mathbb{Z}$ and $xyz \neq 0$. We shall prove the more general result that for any unit $\epsilon \in A$ the equation

$$x^3 + y^3 + \epsilon z^3 = 0$$

has no solution in A with $xyz \neq 0$.

Suppose we have such a solution. We may assume that gcd(x, y, z) = 1. Then

$$(x+y)(x+\omega y)(x+\omega^2 y) = -\epsilon z^3.$$

n = 4 We have to show that the equation

$$x^4 + y^4 = z^4$$

has no non-trivial solution in \mathbb{Z} (ie with $xyz \neq 0$). In fact we prove the stronger result that

$$x^4 + y^4 = z^2$$

has no non-trivial solution. We may assume without loss of generality that x, y, z > 0 and that

$$gcd(x, y, z) = 1.$$

Recall that the integers x, y, z > 0 are said to form a Pythagorean triple if gcd(x, y, z) = 1 and

$$x^2 + y^2 = z^2$$
.

Lemma 2. If x, y, z is Pythagorean triple then one of x, y is even and one is odd. The general Pythagorean triple with y even takes the form

$$x = u^2 - v^2$$
, $y = 2uv$, $z = u^2 + v^2$,

with $u, v \ge 0$ and gcd(u, v) = 1.

In our case x^2, y^2, z is a Pythagorean triple. If y is even then

$$x^2 = u^2 - v^2$$
, $y^2 = 2uv$, $z = u^2 + v^2$.

Since x is odd, one of u, v is odd and one is even. If u were even and v were odd then

$$x^2 = u^2 - v^2 \equiv -1 \mod 4,$$

which is impossible. Hence u is odd and v is even. Since $y^2 = 2uv$ and gcd(u, v) = 1 it follows that

$$u = s^2, \ v = 2t^2,$$

with gcd(s, t) = 1.

Thus

$$x^2 = s^4 - 4t^4,$$

ie

$$x^2 + 4t^4 = s^4$$
.

Now $x, 2t^2, s^2$ is a Pythagorean triple. It follows that

$$x = a^2 - b^2$$
, $2t^2 = 2ab$, $s^2 = a^2 + b^2$,

with gcd(a, b) = 1.

Since $t^2 = ab$ and gcd(a, b) = 1, it follows that

$$a = X^2, b = Y^2,$$

with gcd(X, Y) = 1.

If we set s = Z then

$$X^4 + Y^4 = Z^2.$$

Thus one solution x, y, z of our equation leads to a second solution X, Y, Z. Also

$$Z^4 = s^4 = u^2 < z$$

since $v \neq 0$.

Thus each solution gives rise to a new solution with strictly smaller z, which is evidently impossible.

2. (a) Solve the equation

$$x^3 + 3x - 1 = 0.$$

(b) Solve the equation

$$x^4 + 4x - 1 = 0.$$

Answer:

(a) Set

$$x = u + v$$
.

Then

$$x^3 = u^3 + v^3 + 3uv(u+v).$$

Thus

$$x^{3} + 3x - 1 = u^{3} + v^{3} + 3(u+v)(uv+1) + 1.$$

Let

$$uv + 1 = 0.$$

Then

$$u^3 + v^3 = -1$$
,

while

$$uv = -1 \implies u^3v^3 = -1.$$

Thus u^3, v^3 are roots of the equation

$$t^2 + t - 1 = 0.$$

Hence

$$u^3, v^3 = \frac{-1 \pm \sqrt{5}}{2}.$$

We conclude that the equation has the real solution

$$x = \left(\frac{-1+\sqrt{5}}{2}\right)^{1/3} + \left(\frac{-1-\sqrt{5}}{2}\right)^{1/3},$$

together with the complex solutions

$$x = \left(\frac{-1+\sqrt{5}}{2}\right)^{1/3} \omega + \left(\frac{-1-\sqrt{5}}{2}\right)^{1/3} \omega^2,$$
$$x = \left(\frac{-1+\sqrt{5}}{2}\right)^{1/3} \omega^2 + \left(\frac{-1-\sqrt{5}}{2}\right)^{1/3} \omega.$$

(b) We can write

$$x^4 + 4x - 1 = (x^2 + \lambda)^2 - 2\lambda x^2 + 4x - (1 + \lambda^2).$$

The quadratic on the right will be a perfect square if

$$2^2 = 2\lambda(1+\lambda^2),$$

ie

$$\lambda^3 + \lambda = 2.$$

One solution of this is $\lambda = 1$. Setting $\lambda = 1$, our equation reads:

$$(x^2+1)^2 = 2(x+1)^2.$$

Thus

$$x^2 + 1 = \pm \sqrt{2}(x+1),$$

ie

$$x^{2} - \sqrt{2}x + (1 - \sqrt{2}), \ x^{2} + \sqrt{2}x + (1 + \sqrt{2}).$$

Solving these two quadratic equations,

$$x = \frac{-\sqrt{2} \pm \sqrt{2}\sqrt{2\sqrt{2} - 1}}{2},$$
$$x = \frac{\sqrt{2} \pm i\sqrt{2}\sqrt{2\sqrt{2} + 1}}{2}.$$

3. Show that a torsion-free finitely-generated abelian group A is free, ie

$$A \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}.$$

Find a Z-basis e_1, \ldots, e_r for the group

$$A = \{(x, y, z) \in \mathbb{Z}^3 : x + 2y + 3z = 0\},\$$

ie a set of elements such that each element $a \in A$ is uniquely expressible in the form

$$a = n_1 e_1 + \dots + n_r e_r,$$

with $n_1, \ldots, n_r \in \mathbb{Z}$.

- 4. State Mordell's Theorem, and sketch its derivation from the Weak Mordell Theorem (which states that if $\mathscr{E} = \mathscr{E}(\mathbb{Q})$ is an elliptic curve over the rationals then the quotient-group $\mathscr{E}/2\mathscr{E}$ is finite).
- 5. Determine the rank of the elliptic curve

$$\mathscr{E}(\mathbb{Q}): y^2 = x^3 - x.$$

Answer: Since the cubic $p(x) = x^3 - x$ has 3 rational roots, we have two methods of attacking the problem.

Method 1 The associated elliptic curve is

$$\tilde{\mathscr{E}}: y^2 = x^3 + 4x.$$

Let the associated homomorphisms be

$$\chi: \mathscr{E} \to \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}, \ \tilde{\chi}: \tilde{\mathscr{E}} \to \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}.$$

Since p(x) has 3 rational roots, and $\tilde{b} = 4$ is a perfect square, the rank r is given by

$$2^{r+2} = |\operatorname{im} \chi| |\operatorname{im} \tilde{\chi}|$$

Since b = -1, $\tilde{b} = 4$,

$$\operatorname{im}\chi\subset\{\pm1\},\ \operatorname{im}\tilde\chi\subset\{\pm1,\pm2\}.$$

Also

$$\chi(0,0) = b = -1, \ \tilde{\chi}(0,0) = \tilde{b} = 4.$$

It follows that

$$\operatorname{im}\chi=\{\pm 1\}.$$

If $d \in \operatorname{im} \tilde{\chi}$ and $dd' = \tilde{b} = 4$ then the equation

$$du^4 + d't^4 = v^2$$

has a solution with gcd u, t = 1 = gcd v, t. If d < 0 then d' < 0 and the equation evidently has no solution. Hence

$$\operatorname{im} \tilde{\chi} \subset \{1, 2\}.$$

It follows that

$$2^{r+2} < 2 \cdot 2$$
,

ie

$$r = 0$$
.

Method 2 Let

$$\chi_0, \chi_1, \chi_{-1} : \mathscr{E} \to \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}$$

be the associated homomorphisms. Thus

$$\chi_0(x, y) = x \mod \mathbb{Q}^{\times 2},$$

$$\chi_1(x, y) = x - 1 \mod \mathbb{Q}^{\times 2},$$

$$\chi_0(x, y) = x + 1 \mod \mathbb{Q}^{\times 2},$$

except that

$$\chi_0(0,0) = p'(0) = -1,$$

$$\chi_1(1,0) = p'(1) = 2,$$

$$\chi_{-1}(-1,0) = p'(-1) = 2.$$

By Mordell's Lemma,

$$2\mathscr{E} = \ker(\chi_0 \times \chi_1 \times \chi_{-1}),$$

and so

$$\mathscr{E}/2\mathscr{E} = \operatorname{im}(\chi_0 \times \chi_1 \times \chi_{-1}),$$

Moreover, since p(x) has 3 rational roots,

$$2^{r+2} = |\mathscr{E}/2\mathscr{E}|.$$

If $(x,y) \in \mathscr{E}$ then

$$x = \frac{du^2}{t^2}, \ y = \frac{v^2}{t^2}$$

where d is square-free. Thus

$$x - 1 = \frac{du^2 - t^2}{t^2} = \frac{ev^2}{t^2},$$

$$x + 1 = \frac{du^2 + t^2}{t^2} = \frac{fw^2}{t^2},$$

where e, f are square-free; and

$$(\chi_0 \times \chi_1 \times \chi_{-1})(x, y) = (d, e, f),$$

if $x \neq 0, \pm 1$. Moreover def is a perfect square, since

$$y^2 = \frac{defu^2v^2w^2}{t^6}.$$

From above,

$$ev^2 = du^2 - t^2$$
, $fw^2 = du^2 + t^2$.

It follows from this that

$$d > 0 \implies f > 0 \implies e > 0,$$

 $d < 0 \implies e < 0 \implies f > 0.$

In particular f > 0 in all cases.

Also

$$d \mid 1, e \mid 2, f \mid 2.$$

It follows that

$$\operatorname{im}(\chi_0 \times \chi_1 \times \chi_{-1}) \subset \{(1, 1, 1), (-1, -1, 1), (1, 2, 2), (-1, -2, 2)\}.$$

Hence

$$2^{r+2} < 4 \implies r = 0.$$

6. Determine the group (ie the torsion group and rank) of the elliptic curve

$$\mathscr{E}(\mathbb{Q}): y^2 = x^3 - 1.$$

Answer: First we make the constant term vanish by setting x = x' + 1. The equation becomes

$$\mathscr{E}: y^2 = {x'}^3 + 3{x'}^2 + 3x'.$$

The associated elliptic curve is given by

$$\tilde{a} = -2a, \ \tilde{b} = a^2 - 4b.$$

Thus the associated curve is

$$\tilde{\mathscr{E}}: y^2 = x^3 - 6x^2 - 3x.$$

If the associated homomorphisms are

$$\chi:\mathscr{E}\to\mathbb{Q}^\times/\mathbb{Q}^{\times 2},\ \tilde{\chi}:\tilde{\mathscr{E}}\to\mathbb{Q}^\times/\mathbb{Q}^{\times 2}$$

then the rank r is given by

$$2^{r+1} = \frac{|\operatorname{im} \chi||\operatorname{im} \tilde{\chi}|}{2},$$

since $\tilde{b} = -3$ is not a perfect square.

We have

im
$$\chi \subset \{\pm 1, \pm 3\}$$
, im $\tilde{\chi} \subset \{\pm 1, \pm 3\}$.

Also

$$\chi(0,0) = 3, \ \tilde{\chi}(0,0) = -3.$$

If $d \mid 3$ and dd' = 3 then $d \in \text{im } \chi$ if and only if the equation

$$du^4 + 3u^2t^2 + d't^4 = v^2$$

has a solution with gcd(u, t) = 1 = gcd(v, t).

If d = -1 then d' = 3, and the equation is

$$-u^4 + 3u^2t^2 + 3t^4 = v^2.$$

Thus

$$-u^4 \equiv v^2 \mod 3 \implies u \equiv v \equiv 0 \mod 3.$$

Hence

$$9 \mid 3t^4 \implies 3 \mid t$$

so that gcd(t, u) > 1, contrary to hypothesis. It follows that

$$im \chi = \{1, 3\}.$$

Similarly, if $d \mid 3$ and dd' = 3 then $d \in \operatorname{im} \tilde{\chi}$ if and only if the equation

$$du^4 - 6u^2t^2 + d't^4 = v^2$$

has a solution with gcd(u,t) = 1 = gcd(v,t). If d = -1 then d' = 3, and the equation is

$$-u^4 - 6u^2t^2 + 3t^4 = v^2.$$

As before this implies that $3 \mid u, t$, contrary to hypothesis. Hence

$$\operatorname{im} \tilde{\chi} = \{1, 3\}.$$

It follows that

$$2^{r+2} = 2 \cdot 2 \implies r = 0.$$

It remains to determine the torsion subgroup of \mathscr{E} . If $(x,y) \in \mathscr{E}$ then $x,y \in \mathbb{Z}$, and by Nagell-Lutz

$$y = 0 \text{ or } y^2 \mid \Delta = -4b^3 - 27c^2 = -27.$$

Thus $y = 0, \pm 1, \pm 3$.

If y = 0 then

$$x^3 = 1 \implies x = 1.$$

If $y = \pm 1$ then

$$x^3 = 2$$
.

which has no rational solution.

If $y = \pm 3$ then

$$x^3 = 10$$
,

which also has no rational solution.

We conclude that

$$\mathscr{E} = \{0, (1,0)\} \cong \mathbb{Z}/(2).$$

7. Determine the rank of the elliptic curve

$$\mathscr{E}(\mathbb{Q}): y^2 = x^3 - 5x.$$

Answer: We observe that

$$P = (-1, 2) \in \mathscr{E}$$
.

Let the tangent at P be

$$y = mx + c$$
.

Then

$$m = \frac{3x^2 - 5}{2y} = -\frac{1}{2}.$$

The tangent meets the curve where

$$(mx+c)^2 = x^3 - 5x.$$

Thus if the tangent meets the curve again at Q = (x, y) then (by considering the coefficient of x^2)

$$-2 + x = m^2.$$

Thus x is non-integral, and so Q is of infinite order. Hence P is also of infinite order. In particular the rank

$$r \ge 1$$
.

The associated elliptic curve is

$$\tilde{\mathscr{E}}: y^2 = x^3 + 20x.$$

Since $p(x) = x^3 - 5x$ has just one rational root, and 20 is not a perfect square,

$$2^{r+2} = |\operatorname{im} \chi| |\operatorname{im} \tilde{\chi}|$$

where

$$\chi:\mathscr{E}\to\mathbb{Q}^\times/\mathbb{Q}^{\times 2},\ \tilde{\chi}:\tilde{\mathscr{E}}\to\mathbb{Q}^\times/\mathbb{Q}^{\times 2}$$

are the auxiliary homomorphisms.

We have

$$\operatorname{im} \chi \subset \{\pm 1, \pm 5\}, \ \operatorname{im} \tilde{\chi} \subset \{\pm 1, \pm 2, \pm 5, \pm 10\}.$$

Since

$$\chi(0,0) = -5, \ \chi(-1,2) = -1,$$

we have

$$im \chi = \{\pm 1, \pm 5\}.$$

If $d \mid 20$ and dd' = 20 then $d \in \operatorname{im} \tilde{\chi}$ if and only if the equation

$$du^4 + d't^4 = v^2$$

has a solution with t > 0 and gcd(u, t) = 1 = gcd(v, t). If d < 0 then d' < 0 and this equation evidently has no solution. Hence

$$\operatorname{im} \tilde{\chi} \subset \{1, 2, 5, 10\}.$$

Thus

$$2^{r+2} \le 2 \cdot 2^2,$$

ie

$$r \leq 1$$
.

Hence

$$r = 1$$
.