

Course 428

Elliptic Curves I

Dr Timothy Murphy

Joly Theatre Friday, 11 January 2002 16:15–17:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added. Find the sum P+Q of the points $P=(-1,0),\ Q=(2,3)$ on the curve

$$y^2 = x^3 + 1$$

over the rationals \mathbb{Q} . What are 2P and 2Q?

Answer:

(a) The line PQ meets the curve again in a point R. We have

$$R = -(P + Q).$$

Let OR meet the curve again in the point S. Then

$$S = -R = P + Q.$$

If P = Q then we take the tangent at P in place of the line PQ.

(b) The line PQ is given by

$$\det \begin{pmatrix} x & y & 1 \\ 0 & -1 & 1 \\ 2 & 3 & 1 \end{pmatrix} = 0,$$

ie

$$y = 2x - 1.$$

This meets the curve where

$$(2x-1)^2 = x^3 + 17.$$

We know that two of the roots of this equation are 0,2; hence the third is given by

$$0 + 2 + x = 4$$

ie

$$x = 2$$
.

From the equation of the line,

$$y = 3.$$

In other words, this line touches the curve at Q. Thus

$$P + Q = -Q$$
$$= (2, -3).$$

To compute 2P we must find the tangent at P. Differentiating the equation of the curve,

$$2y\frac{dy}{dx} = 3x^2,$$

ie

$$\frac{dy}{dx} = \frac{3x^2}{2y}.$$

2. Define the discriminant Δ of a monic polynomial

$$f(x) = x^n + c_1 x^{n-1} + \dots + c_n,$$

and show that f(x) has a multiple root if and only if $\Delta = 0$.

Determine the discriminant of the polynomial

$$p(x) = x^3 + ax^2 + c.$$

Show that the curve

$$y^2 + xy = x^3 + 3$$

over the rationals $\mathbb Q$ is non-singular.

Answer:

3. Express the 2-adic integer $1/3 \in \mathbb{Z}_2$ in standard form

$$1/3 = a_0 + a_1 2 + a_2 2^2 + \cdots$$
 $(a_i \in \{0, 1\}).$

Does there exist a 2-adic integer x such that $x^2 = -1$?

Answer: We have

$$\frac{1}{3} \equiv 1 \bmod 2$$

since $3 \cdot 1 \equiv 1 \mod 2$.

Now

$$\frac{1}{3} - 1 = \frac{-2}{3} = 2\frac{-1}{3}.$$

But

$$\frac{-1}{3} \equiv 1 \bmod 2.$$

Thus

$$\frac{1}{3} \equiv 1 + 1 \cdot 2 \bmod 2^2.$$

Furthermore,

$$\frac{-1}{3} - 1 = \frac{-4}{3} = 2^2 \frac{-1}{3}.$$

Thus

$$\frac{-1}{3} = 1 + 2^{2} \frac{-1}{3}$$

$$= 1 + 2^{2} + 2^{4} \frac{-1}{3}$$

$$= 1 + 2^{2} + 2^{4} + 2^{6} + \cdots$$

and so

$$\frac{1}{3} = 1 + 2 \cdot \frac{-1}{3}$$

$$\frac{-1}{3} = 1 + 2 + 2^3 + 2^5 + 2^7 + \cdots$$

There does not exist a 2-adic integer x such that $x^2 = -1$? For there is no integer n such that

$$n^2 \equiv -1 \bmod 4.$$

[If

$$x = a_0 + a_1 2 + a_2 2^2 + \cdots$$

satisfied $x^2 = -1$ then

$$n = a_0 + a_1 2$$

would satisfy $n^2 \equiv -1 \mod 2^2$.

4. Find the order of the point (0,0) on the elliptic curve

$$y^2 + y = x^3 + x$$

over the rationals \mathbb{Q} .

Answer: Let P = (0,0). The tangent at the point (x,y) has slope

$$m = \frac{3x^2 - 1}{2y - 1}.$$

In particular, the tangent at P has slope 1. Hence the tangent is

$$y = x$$
.

This meets the curve again where

$$x^2 - x = x^3 - x$$

ie where

$$x = 1$$
,

and therefore

$$y = 1$$
.

Thus

$$2P = -(1,1) = Q,$$

say. The line OQ (where O is the neutral element [0,1,0]) is x=1. This meets the curve again where

$$y^2 - y = 0,$$

ie where

$$y = 0$$
.

Thus

$$2P = (1,0) = R,$$

say.

The slope at R is

$$m = \frac{2}{-1} = -2.$$

Thus the tangent is

$$y = -2(x-1),$$

ie

$$y + 2x - 2 = 0$$
.

This meets the curve again where

$$4(x-1)^2 - 2(x-1) = x^3 - x,$$

ie

$$x^3 - 4x^2 + 9x - 6$$
.

We know that this has roots 1, 1. Hence the third root is given by

$$1 + 1 + x = 4$$
,

ie

$$x = 2$$
.

Thus the tangent meets the curve again at the point

$$S = (2, -2).$$

The line OS, ie x = 2, meets the curve again where

$$y^2 - y = 6.$$

One solution is y = -2; so the other is given by

$$-2 + y = 1,$$

ie

$$y = 3$$
.

Thus

$$2R = (2,3) = T$$
,

say.

The slope at T is

$$m = \frac{11}{5}.$$

Let the tangent at T be

$$y = mx + c$$
.

This meets the curve where

$$(mx + c)^2 - (mx + c) = x^3 - x.$$

Thus the tangent meets the curve again where

$$2 + 2 + x = m^2$$
.

Evidently x is not integral. Hence T is of infinite order, and so therefore is P = (0, 0), since T = 4P.

5. Show that the curve

$$y^2 + xy = x^3 + x$$

over the finite field \mathbb{F}_2 is elliptic, and determine its group.

Hence or otherwise, find all points of finite order on the curve

$$y^2 + xy = x^3 + x$$

over the rationals \mathbb{Q} .

Answer:

(a) In homogeneous coordinates the curve takes the form

$$F(X, Y, Z) \equiv Y^{2}Z + XYZ + X^{3} + XZ^{2} = 0$$

(since 2 = 0).

At a singular point,

$$\begin{split} \frac{\partial F}{\partial X} &= YZ + X^2 + Z^2 = 0, \\ \frac{\partial F}{\partial Y} &= XZ = 0, \\ \frac{\partial F}{\partial X} &= Y^2 + XY = 0. \end{split}$$

From the second equation, X = 0 or Z = 0. If X = 0 then Y = 0 from the third equation, and Z = 0 from the first. If Z = 0 then X = 0 from the first equation, and Y = 0 from the third. Thus in either case X = Y = Z = 0. Since this does not define a point in the projective plane, the curve is non-singular, ie elliptic.

If x = 0 then $y^2 = 0$ and so y = 0. If x = 1 then $y^2 + y = 0$ and so y = 0 or y = 1. We conclude that there are just 4 points on $\mathscr{E}(\mathbb{F}_2)$, namely (0,0),(1,0),(1,1) and O = [0,1,0].

It follows that the group is either $\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)$ or $\mathbb{Z}/(4)$. If P+Q=0 then the line PQ goes through O=[0,1,0], and so is of the form x=c. Thus

$$-(0,0) = (0,0),$$

 $-(1,0) = (1,1).$

Since there is just one point of order 2, the group must be $\mathbb{Z}/(4)$.

(b) Reduction modulo 2 defines a homomorphism

$$\mathscr{E}(\mathbb{Q}) \to \mathscr{E}(\mathbb{F}_2),$$

which is injective on the torsion group

$$T \subset \mathscr{E}(\mathbb{Q}).$$

It follows that in this case $T \subset \mathbb{Z}/(4)$, ie $T = \{0\}$, $\mathbb{Z}/(2)$ or $\mathbb{Z}/(4)$. Since

$$x = 0 \implies y = 0$$

there is just one point on the line x = 0, and so

$$-(0,0) = (0,0),$$

ie $P = (0, 0 \text{ is of order 2. Thus } T = \mathbb{Z}/(2) \text{ or } \mathbb{Z}/(4).$

If there are any more points of finite order, they must be two points $\pm Q$ of order 4, with

$$2Q = P$$
.

Thus the tangent at Q must pass through P, and so is of the form

$$y = tx$$

for some constant $t \in \mathbb{Q}$. This line meets the curve where

$$t^2x^2 + tx^2 = x^3 + x.$$

ie at x = 0 and where

$$x^2 - t(1+t)x + 1 = 0.$$

If the line is a tangent this will have a double root, and so

$$t^2(t+1)^2 = 4,$$

$$t^4 + 2t^3 + t^2 - 4 = 0.$$

A rational solution must in fact be integral (since the equation is monic) and so $t \mid 4$, ie

$$t \in \{\pm 1, \pm 2, \pm 4\}.$$

Now we observe that t=1 is a solution. [We might have seen this earlier.] So the line y=x is a tangent. This meets the curve where

$$x^2 - 2x + 1 = 0,$$

ie at the point Q = (1,1). Thus 2Q = P, and $T = \mathbb{Z}/(4)$, with

$$T = \{O, P, \pm Q\}.$$

Finally, -Q is the other point of the curve on the line x = 1, with

$$y^2 + y = 2.$$

Thus -Q = (1, -2), and

$$T = \{O, (0,0), (1,1), (1,-2)\}.$$

6. Suppose P = (x, y) is a point of finite order on the elliptic curve

$$y^2 = x^3 + ax^2 + bx + c$$
 $(a, b, c \in \mathbb{Z}).$

Given that $x, y \in \mathbb{Z}$ show that

$$y = 0$$
 or $y \mid \Delta$,

where Δ is the discriminant of the polynomial

$$p(x) = x^3 + ax^2 + bx + c.$$

Find all points of finite order on the elliptic curve

$$y^2 = x^3 + 4x$$

over the rationals \mathbb{Q} .

Answer:

(a)

(b) We have

$$\Delta = -4(-2)^3 = 2^5.$$

By the (strong) Nagel-Lutz Theorem, a point (x, y) on the curve of finite order has integer coordinates x, y, and either y = 0 or else

$$y^2 \mid 2^5$$
,

ie

$$y = 0, \pm 2, \pm 4.$$

There is no point with y = 0, since 2 is not a cube. Suppose $y = \pm 2$. Then

$$x^3 - 2 = 4$$
,

ie

$$x^3 = 6$$
.

This has no rational solution.

Finally, suppose $y = \pm 4$. Then

$$x^3 - 2 = 16$$
,

ie

$$x^3 = 18$$
,

which again has no rational solution.

We conclude that the only point on the curve of finite order is the neutral element 0 = [0, 1, 0], or order 1.

7. Describe carefully (but without proof) the Structure Theorem for Finite Abelian Groups.

How many abelian groups of order 24 (up to isomorphism) are there?

Answer: Every finitely-generated abelian group A is expressible as the direct sum of cyclic subgroups of infinite or prime-power order:

$$A = \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/(p_1^{e_1}) \oplus \mathbb{Z}/(p_2^{e_2}) \oplus \cdots \oplus \mathbb{Z}/(p_r^{e_r}).$$

Moreover, the number of copies of \mathbb{Z} , and the prime-powers $p_1^{e_1}, \ldots, p_r^{e_r}$ occurring in this direct sum are uniquely determined (up to order) by A.

Suppose

$$|A| = 36 = 2^2 \cdot 3^2.$$

Then the 2-component A_2 and the 3-component A_3 of A have orders 4 and 9. Thus

$$A_2 = \mathbb{Z}/(4) \text{ or } \mathbb{Z}/(2) \oplus \mathbb{Z}/(2),$$

and

$$A_2 = \mathbb{Z}/(9) \text{ or } \mathbb{Z}/(3) \oplus \mathbb{Z}/(3).$$

It follows that there are just 4 abelian groups of order 36, namely

$$\mathbb{Z}/(4) \oplus \mathbb{Z}/(9) = \mathbb{Z}/(36),$$

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(9) = \mathbb{Z}/(18) \oplus \mathbb{Z}/(2),$$

$$\mathbb{Z}/(4) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(3) = \mathbb{Z}/(12) \oplus \mathbb{Z}/(3),$$

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(3) = \mathbb{Z}/(6) \oplus \mathbb{Z}/(6).$$