Course 428
Elliptic Curves I

Dr Timothy Murphy
Maxwell Theatre Friday, 21 January 2000 10:15-11:45

Attempt 5 questions. (If you attempt more, only the best 5 will
be counted.) All questions carry the same number of marks.

1. Explain informally how two points on an elliptic curve are added.
Find the sum P+ @ of the points P = (—2,3), @ = (2,5) on the curve

Y =2 + 17

over the rationals Q. What is 2P?

Answer:

(a) The line PQ meets the curve again in a point R. We have
R=—-(P+Q).
Let OR meet the curve again in the point S. Then
S=—-R=P+Q.
If P = (@ then we take the tangent at P in place of the line PQ).
(b) The line PQ is given by

Yy
det | =2 3
5
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—2x 4+ 4y — 16 = 0,
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This meets the curve where

1
(§x +4)? =2+ 17.

We know that two of the roots of this equation are —2,2; hence
the third is given by

1
249 _ =
+24+x 1
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1
r=-.
4

From the equation of the tangent,

1 33
P 4:—_
y=gteTg

Thus

1 33

P — (==
+Q (4,8)
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2. Express the 5-adic integer 2/3 € Zs in standard form

1/3 =ap+ a5+ ad + - (0 < a; <5).

Does there exist a 5-adic integer x such that 2? = 67

Answer: We have

§E4m0d5
since 3 -4 = 2 mod 5.
Now
240 =2
3 3
But



Thus
2 _ 2
§:4—|—1-5m0d5.

Furthermore,

-2 =5 -1

3 3 3
But .

3= 3 mod 5
Thus
§E4+1-5+3-52m0d53.

Continuing,

-1 -0 -2

3 "3 T3

We have been here before;
-2
3 = 1 mod 5.

Thus
=4+1-5+3-52+1-5mod 5*.

GV )

We have entered a loop; and the pattern will repeat itself indefinitely.
We conclude that

2
g:4+1-5+3-52+1-53+3-54+1-55+3-56+---.

Let us verify this; the sum on the right is

) 352 1+15
4 =445
+1—52+1—52 i —24
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There does exist a 5-adic integer x such that x> = 67 Here are two
ways of seeing this.

(a) By the binomial theorem,

z=(1+5)"?

=1+ 15 + w52 " (1/2)(=1/2)(=3/2)

3 .« e .
5 o 31 o+




A p-adic series Y a,, converges if and only if a,, — 0. So we have

to ensure that
1/2\ .,
I 5"|ls — 0.
n

It 1s sufficient to show that
5n
122l — 0.
Let p be a prime. Suppose

p° || nl,

ie p° | n! but p°t {n!. Then

Thus

Hence "
HJHL% < 57/

and so our binomial series converges in Qs.

(b) Alternatively, we can appeal to Hensel’s Lemma.
Lemma 1 Suppose f(x) € Z[x]; and suppose a € Z satisfies
f(a) =0 mod p"
where r > 0. Suppose also that
f'(a) # 0 mod p.

Then a extends to a unique o € Z,, such that

with o = a mod p".



[This is proved by showing that the solution modp” extends to a
unique solution modp™t, on expanding

fla+y) = f(z) + filz)y + fola)y? +--- .

Here fi(x) = f'(x), and the result follows on setting x = a, y =
cp” where ¢ mod p is chosen so that

f(a) + f'(a)ep” = 0 mod p"*]
This applies at once to the polynomial
f(z) = 2* — 6,
taking a = 1 with r = 1.
3. Show that the group of the elliptic curve
Vr=ad—a?+1

over the finite field F7 is cyclic, and find a generator.

Answer: Let us find the finite points on the curve. The quadratic
residues mod7 are: 0,1,2,4. The following table is more-or-less self-
explanatory.

|y oy

0 1 +1

1 1 +1

2 5 ———

3 5 - —
4=-3|0 0
5=-23 ———
6=-1|6 ———

Thus there are 5 finite points on the curve. Adding the point at infinity,
we see that the curve is of order 6. But the only abelian group of order
6 is the cyclic group 7./(6).

There is just one element of order 2, namely (4,0). There must be two
elements of order 3, and two elements of order 6.

Let P = (0,1). The slope of the tangent at the point (x,y) is

312 — 2
m= ——.
2y

Thus the slope at P is m =0, and so the tangent is

y =1



This meets the curve again at the point (1,1). Hence
2P = —(1,1) = (1, —1).

Thus 2P # —P = (0,—1). Hence P does not have order 3; so it must
have order 6, ie it is a generator of the group.

. Outline the proof that a point P = (z,y) of finite order on the elliptic
curve
=2 +ar’+br+c  (a,bceZ)

necessarily has integral coordinates x,y € Z.

Answer: [The proof below does not use p-adic numbers explicitly, as I
do in my notes. However, the idea is the same. In particular, we prove
the result by showing that x,y are p-adic integers for each prime p, ie
p does not divide the denominators of x and y.]

In homogeneous coordinates the curve has equation
Y27 = X? +aX?Z +bX 7%+ cZ°.
We work in the affine patch' Y # 0, setting Y = 1:

7 =X>+aX?Z +bXZ?>+ cZ5

Lemma 2 If |Z||, <1 (iep| Z) then | X||, <1, and in fact

1Z1l, = 11X 1]5-

Proof of Lemma > If || X||, > 1 then X* dominates the equation, ie all

other terms have smaller p-adic value, which is impossible.

So || X, < 1; and then the terms aX*Z,bXZ* c¢Z* all have p-adic
value smaller then Z. Hence Z and X3 must have the same p-adic
value. <

We set
gpe = {[X,l,Z] : HXH §p767 HZH < 1}

Lemma 3 Suppose Py, P, € Eye. Then Py + Py € Eye. Moreover, if
P1 = [Xl, 1,21],P2 = [X27 1,ZQ],P+ 1+ P2 = [Xg, 1,Z3] then

X3 = X1 + X2 mod p3e.



Proof of Lemma  Let the line P, P be

Z=MX+C.

Then 7 _ 7
M=22_“1

X5 — X

Subtracting the equation for the two points,

Zy =2y = (X5 = X7) +a(X3 2, = X7 20) +b(Xo Z3 — X1 ZF) + c(Z3 — Z7).

Writing

X320= X170 = (X3-X7) 2o+ X{ (22— 21),  XoZ3—X1Z7 = (Xo—X1) 23+ X, (25~ 27),

we derive

ZQ—Zl . (X12+X1X2+X22)+G<X1+X2)Zz+b222
Xo— X, 1—aX}—bX\(Zi+ Zy) — c(Z}+ 2125 + Z3)
N

5)

say. FEuvidently
INll, <p~>, [ID], = 1.

Hence
M|, < p~*.
Since
C - Zl - ]\4)(17
it follows that
|Clplep™.

The line P, Py, meets the curve where
MX +C=X>+aX*(MX +C)+bX(MX +C)* +c(MX +C)>.

Since —[X, 1, Z] = [-X,1,—Z], The roots of this equation are X1, Xo, — X3.
Thus
a+ 20M + 3cM?

1+aM + bM?2 + cM3

X1+X2—X3:

We conclude that
X3 = X1 + X9 mod p3e.



Corollary 1 If P € &, then
X (nP) =nX(P) mod p*.

Lemma 4 The only point of finite order in &, is O = [0, 1, 0].

Proof of Lemma > Suppose P is of order n, and suppose q is a prime

factor of n. Then (n/q)P is of order q. Hence we may suppose that P
is of prime order q.

But
X (qP) = ¢X(P) mod p**

It follows that
X (P, = p°

if ¢ # p, while
IX(pP)l, = p™.

In either case qP #0. <

Lemma 5 If (x,y) is of finite order then

[zl <1 lyll, < 1.

Proof of Lemma > Conversion from X, Z coordinates to x,y coordinates

s given by
(X, 1,7 =[X/Z,1/Z,1] = [z,1,y].
Thus
1

Yy = E'
Since P ¢ &,,

121, = 1.
Thus

lyll, < 1.

If |||, > 1 then x* dominates the equation. Hence
el < 1.

<

Since this is true for all primes p, we conclude that

x,y € Z.



5. Find the order of the point (0,0) on the elliptic curve
Yy —y=a"—u

over the rationals Q.

Answer: Let P = (0,0). The tangent at the point (z,y) has slope

32t -1
oy —1"

In particular, the tangent at P has slope 1. Hence the tangent is

Yy =x.
This meets the curve again where

33’2—1':.1'3—1'

1e where

and therefore

Thus
2P =—(1,1) = Q,

say. The line OQ (where O is the neutral element [0,1,0]) is x = 1.
This meets the curve again where

y —y=0,
e where
y = 0.

Thus

2P =(1,0) = R,
say.
The slope at R s

2
m=— = —2



Thus the tangent is

y=—2(z—1),
e

y+2x—2=0.
This meets the curve again where

Yr—1)7? =2 —1)=2" 2z,
e
r® — 42% 4+ 92 — 6.

We know that this has roots 1,1. Hence the third root is given by

14+1+2x =4,
e

r = 2.
Thus the tangent meets the curve again at the point
S =(2,-2).

The line OS, ie x = 2, meets the curve again where

y?* —y =6.
One solution is y = —2; so the other is given by
1€
y = 3.
Thus
2R =(2,3) =T,
say.

The slope at T s



Let the tangent at T be
Yy =mx + c.

This meets the curve where
(mz +c)®> — (mx +¢) =2° — 1.
Thus the tangent meets the curve again where
242+ =m’

FEvidently x 1s not integral. Hence T is of infinite order, and so therefore
is P =(0,0), since T =4P.

. Find all points of finite order on the elliptic curve
y2 — 1,3 -9
over the rationals Q.

Answer: We have
A = —4(-2)% = 2°,

By the (strong) Nagel-Lutz Theorem, a point (x,y) on the curve of
finite order has integer coordinates x,y, and either y =0 or else

y* 2%
1€
y=0,42 +4.

There is no point with y = 0, since 2 is not a cube.

Suppose y = £2. Then

1€

This has no rational solution.

Finally, suppose y = +4. Then
3 —2 =16,
e
z? =18,

which again has no rational solution.

We conclude that the only point on the curve of finite order is the
neutral element 0 = [0, 1,0], or order 1.



7. Describe carefully (but without proof) the Structure Theorem for finitely-
generated abelian groups.

How many abelian groups of order 36 (up to isomorphism) are there?

Answer: FEvery finitely-generated abelian group A is expressible as the
direct sum of cyclic subgroups of infinite or prime-power order:

A=2Z@LO - OLOL/(pT") ®ZL/(p3?) ® - B L/ (p;7).

Moreover, the number of copies of Z, and the prime-powers pi*, ..., p5
occuring in this direct sum are uniquely determined (up to order) by A.

Suppose
|A] =36 =27 32

Then the 2-component Ay and the 3-component Az of A have orders 4
and 9. Thus

Ay =Z/(4) or Z/(2) ® Z/(2),
and

Ay =7/09) or Z/(3) ®Z/(3).

It follows that there are just 4 abelian groups of order 36, namely

Z(4) & Z/(9) = Z/(36),
Z/(2) @ Z/(2) ®Z/(9) = Z/(18) ® Z/(2),
Z/(4) ®Z/(3) D Z/(3) =Z/(12) D Z/(3),

Z/(2) ©Z/(2) ©Z/(3) Z/(3) = Z/(6) D Z/(6).



