Chapter 6

Points of Finite Order

6.1 The Torsion Subgroup

The elements of finite order in an abelian group A form a subgroup F C A,
since

a,be F=ma=0,nb=0= mn(a+b) =0=a+beF.

This subgroup F' is commonly called the torsion subgroup of A. (See Ap-
pendix A for further details.)

It turns out to be much easier to determine the torsion subgroup F' C
£(Q) of an elliptic curve than it is to determine the rank of the curve — that
is, the number of copies of Z in

EQ=F6Ze &L

In effect the discussion below provides a simple algorithm for determining F',
while there is no known algorithm for determining the rank.

Proposition 6.1 The torsion subgroup of an elliptic curve £(Q) is finite, ie
& has only a finite number of points of finite order.

Proof » Suppose £ has equation
y2 + iy + c3y = 3+ cpr? + ey + Ce,

where ¢; € Q. Choose any odd prime p not appearing in the denominators
of the ¢;, and consider the p-adic curve £(Q,). Any point P € £(Q) of finite
order will still have finite order in £(Q,).

We know that £(Q,) has an open subgroup

‘9(11)(@:0) = Zy.
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The only point of finite order in this subgroup is 0 (since Z, has no other
elements of finite order).
It follows that any coset

P+ S(P) (Qp)

contains at most one element of finite order. For if there were two, say P, (),
then P — @) would be a point of finite order in the subgroup.

But £(Q,) is compact, since it is a closed subspace of the compact space
P?(Q,). Hence it can be covered by a finite number of cosets

Pr+Ew(Qy), - B+ Epy(Qyp).

Since each coset contains at most 1 point of finite order, the number of such
points is finite. <

Remarks:

1. The finiteness of the torsion group of £(Q) follows at once from the
Nagell-Lutz Theorem (Theorem [6.2)), the most important result in this
Chapter.

2. We shall prove in Chapter 8 the much deeper result that the group
E(Q) of an elliptic curve over Q is finitely-generated (Mordell’s The-
orem), from which the finiteness of F' follows (as shown in Appendix
A). However, it would be more realistic to describe the finiteness of
the torsion group as a small part of Mordell’s Theorem rather than a
consequence of it.

6.2 Lessons from the Real Case

Proposition 6.2 Suppose F is the torsion subgroup of the elliptic curve
E(Q). Then
FXZ/(n) or FEZ(2n)®Z/(2).

Proof » We know that
ER)=Tor THZ/(2).

Since
£(Q) c E(R),
it follows that
FCTorT®Z/(2).
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Lemma Fvery finite subgroup of T is cyclic; and there is just one such
subgroup of each order n.

Proof of Lemma > The torsion subgroup of

T =R/Z

is

F=Q/Z.
For if ¢ € T is of order n then nt € Z, say nt = m, ie t = m/n € Q.
Conversely, if t € Q, say t = m/n, then nt =0, and so t € F.

Suppose
AcCQ/Z

is a finite subgroup # 0. Since each ¢ € T has a unique representative
t € [-1/2,1/2), A has a smallest representative t = m/n > 0, where we may
assume that m,n > 0, ged(m,n) = 1.

In fact n = 1; for we can find u, v, € Z such that

um+ovn =1,

and then
1
— =u— +,
n n
1e
1
- = um mod Z
n n
Thus 1
—c A.

Since 1/n < m/n, this must be our minimal representative: n = 1.
Now every element ¢ € A must be of the form m/n; for otherwise we
could find a representative

t—m/n € (0,1/n),

contradicting our choice of 1/n as minimal representative of A.
We conclude that

1 2 n—1
A:{O,ﬁ,ﬁ7..., }:Z/(n)

n
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Moreover, our argument shows that this is the only subgroup of A of order
n. <
Since this is the only subgroup of T of order n we can write

Z/(n)CT
without ambiguity, identifying
r mod n <— r/n mod Z
This establishes the result if /' C T. It remains to consider the case
ACTe®Z/(2).
By the Lemma, A NT is cyclic, say
ANT=7Z/(n).

Thus
Z](n) CACZ/(n)®Z/(2).
Since Z/(n) is of index 2 in Z/(n) & Z/(n) it follows that
A=7/(n)or A=7Z/(n) DZ/(2).
If n is odd then
Z/(n) © Z/(2) = Z/(2n)

by the Chinese Remainder Theorem. Thus either A is cyclic or else
AZZ/(n)®Z/(2)

with n even. <
Mazur has shown that in fact the torsion group of an elliptic curve can
only be one of a small number of groups, namely

Z/(n) (n=1-10,12) and Z/(2n) ®Z/(2) (n =1 = 5).

6.2.1 Elements of order 2

We can distinguish between the two cases in Proposition by considering
the number of points of order 2. For Z/(n) has no points of order 2 if
n is odd, and just one point if n is even, say n = 2m, namely m mod n;
while Z/(2n) & Z/(2) has three points of order 2, namely (n mod 2n,0 mod
2), (n mod 2n,1 mod 2), (0 mod 2n,1 mod 2).
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Proposition 6.3 The point P = (x,y) on the elliptic curve
EQ):y*=2*+ar*+bx+c  (a,b,ceQ)

has order 2 if and only if y = 0. There are either 0, 1 or 3 points of order 2.

Proof » If P = (z,y) then —P = (z,—y). Thus 2P =0, ie —P = P, if and
only if y = 0.
Thus there are as many elements of order 2 as there are roots of f(x) =
23 + az? + bxr + ¢ in Q. But if 2 roots a, 8 € Q then the third root v € Q,
since
a+p+v=—a.

<«
In determining whether

flz)=2"+az® + bz +c

has 0, 1 or 3 rational roots, one idea is very important: if a,b,c € Z then
every rational root r of f(x) is in fact integral, and r | n. (For on substituting
r = m/n and multiplying by n?, each term is divisible by n except the first.)
This usually reduces the search for rational roots to a number of simple cases.

We may also note that if a, b, c € Z then a necessary — but not sufficient
— condition for f(z) to have 3 rational roots is that the discriminant D
should be a perfect square: D = d?. For

D= [(a=pB)(B -0 -a).

6.2.2 Elements of order 3

In any abelian group, the elements of order p (where p is a prime), together
with 0, form a subgroup; for

pa =0, pb =0= p(a+b)=0.
We can consider this subgroup as a vector space over the finite field Fp).

Proposition 6.4 Ifp is an odd prime then there are either no points of order
p on the elliptic curve E(Q), or else there are exactly p — 1 such elements,
forming with 0 the group Z/(p).

Proof » An element of T @ Z/(2) of odd order p is necessarily in T. Thus
the result follows from Proposition and the Lemma in the proof of that
Proposition. <

The elements of order 3 have a particularly simple geometric description.
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Proposition 6.5 A point P # 0 on the elliptic curve £(Q) has order 3 if
and only if it is a point of inflexion. There are either 0 or 2 such points.

Proof » Suppose P has order 3, ie
P+ P+ P =0.

From the definition of addition, this means that the tangent at P meets £ in
3 coincident points P, P, P. In other words, P is a point of inflexion.

It follows from the previous Proposition that there are either 0 or 2 such
flexes. <

Remark: The point 0 is of course a flex (by choice); so there are either 1 or
3 flexes on the elliptic curve £(Q) given by a general Weierstrass equation.

6.3 Points of Finite Order are Integral

Theorem 6.1 Suppose P = (x,y) is a point of finite order on the elliptic
curve
EQ) : v + vy + ey = 2° + con® + cyx + ¢,

where ¢y, co, C3,C4,C6 € L. Then x,y € Z.

Proof » The following Lemma shows that it is sufficient to prove that y € Z.
Lemma 1 Z is integrally closed in Q, ie if x € Q satisfies an equation
$d+clxd_1+---+cd:0,

where ¢y, ...,cq € Z, then x € 7.

Proof of Lemma > For each prime p,

lll, <1

for otherwise ¢ would dominate the equation.

Since this is true for all primes p.
x € 7.

<
For an alternative — perhaps simpler — proof, suppose x = m/n, where
ged(m,n) = 1. Multiplying out,

d—1

md+clm n+---cdnd:0.
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Since n divides all the terms but the first,
n | m?

Since ged(m, n) = 1, it follows that n = 1, ie z € Z.
Now suppose y € Z. Then z satisfies the equation

2® 4+ ax® + br + (c — y*) = 0.

Since all the coefficients of this cubic are integral, it follows by the Lemma
that x € Z.
Suppose £(Q,) is an elliptic curve over the p-adic field. Recall that

Epy ={IX, L, 2]: [ X, < 1, 1 2], < 1}
Lemma 2 If P = (z,y) € £(Q,) then either x,y € Z, or else P € E).

Proof of Lemma > The equation of the curve in (X, Z)-coordinates is

Z4+ a1 XZ 4372 = X3+ o X2Z + s X 7%+ e 73,
Suppose P ¢ &, ie
X, > 1 or [|Z], > 1.

In fact
X[, > 1= 1[Z]l, > 1;

for if || X ||, > 1 but ||Z||, < 1 then X? would dominate the equation. Thus

1Z][, > 1
in either case.
Since y =1/2
1Z]l, > 1= |lyll, < 1.
Hence

x,Yy € Ly

by Lemma ??7. «

Lemma 3 1. If p is odd then £y is torsion-free (ie has no elements of
finite order except 0).

2. &2y 15 torsion-free.
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Proof of Lemma > This follows at once from the fact that

Ep) = Ly (p odd), E(22) = Ly,
as we saw in Chapter 5. <«

Lemma 4 If P € &) then 2P € 2.

Proof of Lemma > Suppose P = (X,Z). Recall that although £y was

defined as
Eo={(X,2) €& | X||2,1Z]2 < 27"},

in fact it follows from the equation
Z(Il+ e X + 7)) = X2+ o X?Z + ey X 2% + Cg 72
that
(X, Z) S 5(2) = HZH2 < 273,
(More generally, although &) is defined as

Epy ={(X.Z) € & |IX], <p [12]l < 1},

in fact
(X,Z) € Epey = 1 Z]|, < p~™°

by induction on e.)
The tangent at P is
Z=MX+D

where
_ OF/0X
- OF/0Z
. ch— (3X2—|—262XZ—|—3C4Z2)
14X 42637 — (X2 + 20, X7 + 3c622)

The term 3X? dominates the numerator, while the term 1 dominates the
numerator. It follows that
[M]|> < 27

Hence
Dl = [|1Z — MX]], <27°.
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The tangent meets & where

(MX + D)1+ e1.X + e3(MX + D))
=X’ 4+ X*(MX + D)+ e, X(MX + D)* + c(MX + D).

Thus if the tangent meets £ again at (X, Z2) then

coeff of X2
2X 4+ Xg = ———————
T coeff of X3

ClM + 03M2 — (C2 + 2C4M + ?)CGMQ)D
1+ oM + ey M? + cgM3 '

Hence
[ Xs]l <272

Since
12, = IM X, + D|| <277,

it follows that
(XQ, Zg) € 5(22).

We conclude that
2P — —(XQ, ZQ) S 8(22),

since E2( is a subgroup of £. <
Now suppose P = (z,y) € £(Q) is of finite order.
For each odd prime p,

P ¢ 5(1))

by Lemma [3] Thus
x,Yy € Ly

by Lemma 2]
Since 2P is of finite order,

Pe 5(2) — 2P € 5(22) = 2P =0,
by Lemmas [ and [l Thus if 2P # 0 then
T,y € ZZ)

by Lemma 2]
Putting these results together, we conclude that either 2P = 0 or else

x,y € Zy for all p = z,y € Z.
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Corollary If P = (x,y) is a point of finite order on the elliptic curve
y? =2® +ax® + br +c
then x,y € Z.
Proof » After the Proposition we need only consider the case
2P =0=y=0= 2"+ ar’ +bx+c=0.

Since a rational root of a monic polynomial with integral coefficients is nec-
essarily integral, it follows that x € Z. <
Recall that if P = (z,y) is a point of

E(Q) :y? + cray + 3y = 2 + o1 + c4 + c6

then
—P = (z,—y — 1z — c3).

For by definition, —P is the point where the line OP meets the curve
again. But the lines through O are just the lines

r =cC

parallel to the y-axis (together with the line Z = 0 at infinity). This is clear
if we take the line in homogeneous form

IX+mY +nZ =0.
This passes through O = [0, 1,0] if m = 0, giving
x=X/Z=—-n/l.
Thus —P is the point with the same x-coordinate as P, say
—P = (z,51).
But y, y; are the roots of the quadratic
y2 +y(ax +¢3) — (:703 + o + cqx + C6)-

Hence

y+y = —(c1r +c3),
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ie
Y=Y —ax — Cs.
It follows that
2P=0«= —-P=P
= y=-—Y—cr—cC3
<= 2y +cix+c3=0.
Example: Consider the curve
EQ) :y* +ay=a+42° + 2.
If P = (z,y) is of order 2 then
2y+x = 0.
This meets the curve where
/4 —2?/2 = 2° + da* +
ie
4o + 172% 4 42 = 0.

This has roots 0, —1/4,—4. Thus the curve has three points of order 2,
namely (Oa O)a (_1/47 1/8)7 (47 2)

6.4 Points of Finite Order are Small

Theorem 6.2 (Nagell-Lutz) Suppose P = (x,y) is a point of finite order
on the elliptic curve

EQ):y* =2 +ar* +br+ec (a,b,c € Z).
Then x,y € Z; and either y =0 or
y* | 3D,

where
D = 4a’c — a®b?* — 18abc + 4b° + 27¢2

is the discriminant of f(x) = 2 + ax® 4+ bx + c.
Moreover, if 3 | a (in particular if a = 0) then either y =0 or

y* | D.
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Proof » Suppose P = (z,y) has finite order. We know that x,y € Z.
We start by proving the weaker result (sometimes known as the weak
Nagell-Lutz Theorem) that either y = 0 or

y| D,

since this brings out the basic idea in a simpler form.
Let 2P = (z3,y2). Since P is of finite order so is 2P. Hence by Proposi-

tion ,
T2, Y2 € Z.

Recall that the resultant R(f,g) of two polynomials
f(z) = apz™ + ay2™ ' + -+ ap, g(x) =box™ + bz 4+ b,

is the determinant of the (m +n) x (m + n) matrix

ag a1 Qg ... Gy 0 0

0 a a1 ... Gme1 Qm ... 0

10 0 0 ... cer Qm—1 Qm
RUED = p b by o by 0 .. 0
0 b b ... b1 b, ... 0

0O 0 0 ... oo by by,

We saw earlier that R(f,g) = 0 is a necessary and sufficient condition
for f(x),g(x) to have a root in common. Our present use of the resultant,
though related, is more subtle.

Lemma 1 Suppose f(x),g(x) € Z|x]. Then there exist polynomials u(x),v(z) €
Z[z] such that
u(z) f(z) +v(z)g(z) = R(f. 9).

Proof of Lemma 1> Let us associate to the polynomials

u(z) = cor™ P+ i F ey, v(x) = dox™ T+ di 2™ 4 b dy
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(of degrees < n and < m) the (m + n)-vector

Co
C1

It is readily verified that if

u(@) f(x) +v(@)g(z) = eox™ "+ + epgni,

then the e, are given by the vector equation

Co
8]
€0
Cp— €1
R(f,g) dol =
dl Em+n—1
dm—l

Thus we are looking for integers ¢;, d; such that

€0 0

€1 :

: B 0
Cmtn—1 R(f7 g)

The existence of such integers follows at once from the following Sub-
lemma. (For simplicity we prove the result with det A as first coordinate
rather than last; but it is easy to see that this does not matter.)

Sublemma Suppose A is an n x n-matriz with integer entries. Then we
can find a vector v with integer entries such that

y det A
! 0
Al = )
Un, O
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Proof of Lemma > On expanding det A by its first column,

det A = a1 Ay +ag Aoy + -+ + a1 Ana,

where the A;;’s are the corresponding co-factors. On the other hand, if i # n
then
ayiAn + agi Az + -+ apiAn = 0,

since this is the determinant of a matrix with two identical columns.
Thus the vector

An
Ag
v=1| .
Anl
has the required property. <«
<
We apply this Lemma to the polynomials f(z), f/(x), recalling that
R(f, [") = =D(f).

It follows that we can find polynomials u(x),v(z) € Z[z] such that

u(x) f(x) +v(x) f'(z) = D.

Hence
y| f(x), f(x) =y |D.

Turning now to the full result, suppose as before that P = (x,y) is of
finite order, and that 2P = (x9,y2). We know that x,y, x5, ys € Z.

Lemma 2 The x-coordinate of 2P 1is

xt — 2b2% — 8cx + b? — 4dac
4qy2 ’

Proof of Lemma > Let x5 = x(2P). Recall that

2T + 19 = m? — a,

where
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Thus

To 1 (2x + a).
Now
y' = f()
Hence ()
g(x
=
where
9(z) = f'(2)* = 422 + a) f(x)
= (32 + 2ax + b)* — 42z + a)(2* + ax® + bx + ¢)
= a* — 2bx* — Scx + (b* — 4ac).
<

It follows from the lemma that

y? | g(x);

Thus
y* | f(x), 9()

since y* = f(x).
Now let us assume that a = 0. In that case

f(z) =2 + az® + br + ¢, g(x) = 2* — 2b2® — Scx + b*.

(Observe that g(z) = (z? — b)? — 8cz. This is an easy way to remember
the formula for z(2P) when a = 0; and it will also have some relevance later,
in the proof of Mordell’s Theorem.)

Lemma 3 If a = 0 then there exist polynomials u(x),v(z) € Z[x] of degrees
3,2 such that

u(@) f(x) +v(x)g(x) = D.
Proof of Lemma > Let us see if we can find u(z),v(z) € Q[z] of the form
u(r) =2+ Bx+C, w(x)=2>+D
(with B,C, D € Q) such that
u(z) f(x) —v(z)g(x) = const.
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The coefficients of 2% and z° on the left both vanish. Equating the coef-
ficients of z#, 23, 22, x yields

2 b+B=-20+D = D=B+3b

2 c+C=-8¢ = C=-9c

x2: Bb=1b>—2Db =>b=0o0r2D+B=%b
z: Be+Cb=-8Dc — B —9b=-8D.

If b =0then D = B = 0. Otherwise, substituting for D in the third equation
gives

B=-5b/3, D=4b/3
(which also holds if b = 0). The final equation then reduces to

—5b/3 — 9b = —32b/3,

which is an identity.
Multiplying by 3 (to make the coefficients integral),

u(z) = 32° — Bbx — 27c, v(r) = 32° + 4b;

yielding
u(z)f(z) — v(z)g(r) = —27¢* — 4b* = D,

as required <

Remarks:

1. For any polynomials f(x),g(z) € Z[z|, the integers m € Z for which
there exist u(x),v(x) € Z[z] such that

u(z) f(x) —v(z)g(z) =m

form an ideal in Z. Accordingly there is a least integer, say S = S(f, g),
such that m has this property if and only if S | m.

We saw in Lemma [I| that the resultant R(f,¢) has this property. Ac-
cordingly,
S(f,9) | B(f,9)-

We know of course that f(z),g(z) have a factor in common if and
only if R(f,g) = 0. Note that it doesn’t matter here whether one is
speaking of factors in Q[x] or Z|x]; since Z[z] is a unique factorisation
domain it follows easily that if f(x), g(z) € Z[z] have a common factor
d(z) € Q[z] — which we may take to be monic — then md(z) is a
common factor in Z[z], where m is the lem of the denominators of the
coeflicients of d(x), ie the smallest integer such that md(x) € Z[z].
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2. Turning to our polynomials f(z), g(x), it is clear that these do not have
a factor in common, since

9(x) = f'(2)* = (22 + a) f(z).

So an irreducible common factor of f(z), g(z) would also be a factor
of f'(x), in which case f(z) would have a double root, excluded in the
definition of an elliptic curve. Thus R(f, g) # 0.

In fact it is a straightforward if lengthy task to show that

R(f,g) = D*

so Lemma (1| would not have given us the stronger result we are looking
for.

3. It is not entirely clear (to me at least) why S(f,g) = D rather than
D2

Nor is it clear to me why u(z),v(x) have the special form above, with
the coefficients of 22 in u(z) and  in v(z) both 0.

The result now follows as before; since z,y € Z,

v | fz),9(x) = y* | D.

It remains to consider the general case, when a # 0.
Let

fo(@) = f(z —a/3), go(z) = g(z — a/3),
so that
folz) =2 +Vz+ .

It follows from the identity
(x—a/3)+a(lr—a/3)* +bx —a/3)+c=2"+bz+¢,

that
V=>0—a%/3, ¢ =c—ab/3+2a%/27.

From the result we established when a = 0,
uo(2) fo(x) — vo(w)go(x) = —(4b° +27¢?) = D,

where
ug(z) = 32° — 5V — 27¢, v(x) = 32 + 40
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Substituting = + a/3 for x,
uo(x +a/3)f(x) —vo(z + a/3)g(x) = D.
But

uo(r + a/3) = 3(z + a/3)* — 50/ (x + a/3) — 27¢
=3(z+a/3)* —5(b—a®/3)(z +a/3) — (27c — 9ab + 2a°)
1 1
= 32" + az® + §(a2 — 15b — 5a*)z + §(a3 +5a*) — (27c — 9ab + 2a°)

1
=3 (92° + 3az® + (a® — 15b — 5a*)z + (8a® — 5dc + 18ab)) ,

while

vo(z + a/3) = 3(x + a/3)* + 40’
= 327 + 2ax + a®/3 + 4b — 4a*/x
= 32 + 2ax + (4b — a?).

Multiplying by 3,
u(z)f(z) —v(x)g(x) = 3D,
where

u(z) = 92°+3ax’+(a*>—15b—5a)z+(8a* —54c+18ab), v(z) = 9x*+6ax+3(4b—a?).

It follows as before that
y* | 3D.

Finally, we observe that if 3 | a then ¥',¢ € Z, ie we can reduce the
equation to the form y? = 2 + b’z + ¢ without introducing fractions, so our
previous argument shows that

y* | D.

6.5 Examples

In these examples we compute the torsion group F' of various elliptic curves

£(Q).
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1. We look first at the curve

Q) =2t +1.
Recall that the discriminant of the polynomial

f(z) =2 +bx+c
is

D = — (4> 4+ 27¢%) .
Thus in the present case

D = -27.

It follows from Nagell-Lutz (Theorem that

y=0,+1,43.

There is just one point of order 2, ie with y = 0, namely (—1,0).
If y = £1 then z = 0, giving the two points (0, £1).
If y = £3 then 2® = 8, giving the two points (2, +3).

It remains to determine which of these points (0,41), (2,43) are of
finite order — remembering that the Nagell-Lutz condition y* | D is
necessary (if y # 0) but by no means sufficient.

The tangent at P = (0, 1) has slope

/ 2
o)
2y 2y
Thus the tangent at P is
y=1.
This meets £ where
3 =0,

ie thrice at P. In other words P is a flex, and so of order 3.

Turning to the point (2,3) we have

3 2
m = o 2.
2y
and so the tangent at this point is
y=2xr—1,
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which meets £ again at (0, —1). Thus
2(2,3) = —(0,—1) = (0,1).
We conclude that (2,3) (and (2, —3) = —(2,3)) are of order 6, and
F=17/(6).

. Consider the curve

EQ):y*=2"—1.
Again, D = —27, and there is one point (1,0) of order 2.
But now

y::|:1:>:1:3:2,
y =43 = 2° = 10,

neither of which has solutions in Z. We conclude that

F=1/2).

. Suppose F' is the torsion subgroup of
EQ):y*=2"+1z

We have
D=—-4

and so

y=0,%+1,+2.
There is just one point of order 2, ie with y = 0, namely (0, 0).
If y = +£1 then

2+ —-1=0.

Note that a rational root o € Q of a monic polynomial
" +ax™ -+,

with integral coefficients a; € Z is necessarily integral: o € Z. And
evidently « | a,. Thus in the present case the only possible rational
roots of the equation are x = £1; and neither of these is in fact a root.

If y = 42 then
P 4+r—4=0.
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The only possible solutions to this are x = +1, £2, +4; and it is readily
verified that none of these is in fact a solution.

We conclude that
F=7/2).

. Consider the curve

y? = 1® — 22,

This curve is singular, since f(r) = 2® — 22 has a double root, (and so
D = 0). Thus it is not an elliptic curve, and so is outside our present
study, although we shall say a little about singular cubic curves in the

next Chapter.

. Consider the curve
EQ):y’ —y=2a’—u
This has 6 obvious integral points, namely (0, 0), (0, 1), (1,0), (1,1), (=1,0), (-1, 1).

We can bring the curve to standard form by setting y; = y — 1/2, ie
y = y1+1/2, to complete the square on the left. The equation becomes

= -+ 1/4
Now we can make the coefficients integral by the transformation
Yo = 23y1, To = 221’,

giving
Yy = w5 — 2wy +2°/4,

since the coefficient of x has weight 4, while the constant coefficient has
weight 6. (In practice it is probably easier to apply this transformation
first, and then complete the square; that way our coefficients always
remain integral.) Our new equation is

ys = x5 — 1675 + 16,
with discriminant

D=—(4-2"2+427.2%)
= —25(64 + 27)
= —2%91.

By Nagell-Lutz, if (z9,y,) € F then x5,ys € Z and
Yo = 0,£1,£2, +4, +8, +16.
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Note however that if P is not of order 2, ie yo # 0, then

292—4
¥y=73%

by Theorem [6.2] Only the cases y, = 44 satisfy this condition. Thus
we only have to consider

€

Y2 = 0, +4.

If yo = 0 then
r3 — 1625 + 16 = 0.
But
16 | 25 = 4 | 29
— 32| 73, 161,
= 32| 16,

which is absurd. Thus there are no points of order 2 on £.
Finally, if yo = +4 then

16 = 25 — 1675 + 16 = 25 — 1615 = 0 => 2y = 0, +4.

This gives the 6 ‘obvious’ points we mentioned at the beginning.
It remains to determine which of these points are of finite order.

Reverting to the original equation, suppose P = (0,0). We have

dy 2
( 4 ) dl’ . ’

1e

dy_3a:2—1
dr  2y—1"

Thus the tangent at P has slope m = 1, and so is

y =z
This meets the curve again at (1,1). Hence

2(0,0) = —(1,1) = (1,0).
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The tangent at (1,0) has slope m = —2, and so is
y=—2x+2,
which meets £ where
(=22 +2)* —x(-22+2)=12° -,
le
23 — 622 + 92 —4=0.
We know this has two roots equal to 1. The third root must satisfy
24+ x =06,
ie
r =4.

At this point
y=—2x+2=—6.

We know that this point (4, —6) is not of finite order, by Nagell-Lutz.
It follows that (1,0) is of infinite order. Hence so is (0, 0) since 2(0,0) =
(1,0); and so too are (1,1) = —(1,0) and (0,1) = —(0, 0)

It remains to consider the points (—1,0 and (—1,1) = —(—1,0). Note
that if these are of finite order then they must be of order 3 (since there
would be just 3 points in F'), ie they would be flexes.

The tangent at P = (—1,0) has slope m = —2, and so is
y=—2x—2.
This meets £ where
(=22 — 1) —2(-2r—1) =2° — x.
We know that this has two roots -1. Hence the third root is given by
-2+ 2 =6,
ie

T =38,
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as before. At this point

y=—2r+2=—14.
So

2(—1,0) = —(8,—14).

Again, we know by Nagell-Lutz that this point is of infinite order, and
so therefore is (—1,0) and (—1,1) = —(—1,0).

To verify that P = (4, —6), for example, is not of finite order, we may
note that the tangent at this point has slope

47
m=——.
11
But the tangent
y=mz+d

at P meets the curve again where
(mz +d)? — z(mz +d) = 2° — =,
ie at a point (z1,y;) with
2-44+x,=m?—m.

By Nagell-Lutz, z; € Z (since we have seen that there are no points of
order 2), and so m? —m € Z, which is manifestly not the case.

We conclude that the torsion-group of this curve is trivial:

F = {o}.
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