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Attempt 4 questions. All carry the same mark. The word ‘curve’

always means projective curve.

1. Explain informally how two points on an elliptic curve are added.

Find the sum P +Q of the points P = (0, 1), Q = (1, 2) on the curve

y2 = x3 + 2x+ 1

over the rationals Q. What is 2P?

Answer: Let E be the elliptic curve. We choose any point O ∈ E as
the zero point.

Suppose P,Q ∈ E, the elliptic curve in question. The line PQ meets E
in a third point R (which may coincice with P or Q). We set

P ∗Q = R.

If P = Q then we take the tangent at P in place of the line PQ.

Now we set
P +Q = O ∗ (P ∗Q).

Suppose the elliptic curve is given in the standard Weierstrass form

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6.

More precisely, E is the projective curve

Y 2Z + c1XY Z + c3Y Z
2 = X3 + c2X

2Z + c4XZ
2 + c6Z

3.

In this case we normally take O = [0, 1, 0]. If now

R = P ∗Q = (x, y)

then
P +Q = (x,−y).



Now consider the points

P = (0, 1), Q = (1, 2)

on the elliptic curve

E(Q) : y2 = x3 + 2x+ 1.

Suppose PQ is the line
y = mx+ c.

Then

m =
2− 1

1− 0
= 1.

Thus the line is

y − 1 = x,

ie

y = x+ 1.

This line meets the curve where

(mx+ c)2 = x3 + 2x+ 1.

Thus if P ∗Q = (x2, y2) then

0 + 1 + x2 = m2 = 1,

ie

x2 = 0.

Hence
y2 = x2 + 1 = 1.

Thus

P ∗Q = (0, 1) = P,

and so

P +Q = (0,−1).

Since the line PQ meets the curve again at P , this line is the tangent
at P . Hence

P ∗ P = Q = (1, 2),

and so

2P = (1,−2).



2. Show that all cubics through 8 given points in general position in the
plane pass through a 9th point.

Hence or otherwise show that addition on an elliptic curve is associative.

Answer:

(a) Let the points be Pi (i = 1 − 10). A cubic curve Γ has 10 coeffi-
cients:

c1X
3+c2X

2Y+c3X
2Z+C4XY

2+C5XY Z+C6XZ
2+c7Y

3+c8Y
2Z+c9Y Z

2+C10Z
3 = 0.

The requirement that Γ passes through Pi gives 8 homogeneous
linear conditions on these 10 coefficients. The solution space has
dimension ≥ 10− 8 = 2. In other words the cubics form a pencil
of homogeneous dimension ≥ 1.

We may suppose that no 4 of the points are collinear, and that the
points do not all lie on a conic.

We claim this in this case the dimension must be exactly 1. For
suppose it is ≥ 2. Then we can find a cubic in the pencil passing
through any further 2 points. Let us choose 2 points U, V on the
line P7P8. Then the line ` = P7P8UV must lie entirly in the cubic,
which must therefore split into

Γ = `C,

where C is a conic. Thus the 6 points Pi(i = 1− 6) must lie on a
conic.

By the same argument, any 6 of the 8 given points must lie on a
conic.

But there is only one conic through 5 points Qj(j = 1 − 5), no 4
of which are collinear.

For suppose first that three of the points are collinear, say

m = Q1Q2Q3.

Then the only conic through the 5 points is

C = mn,

where
n = Q4Q5.

Now suppose no three of the points are collinear; and suppose there
are two conics through the 5 points. Then the conics through the
points form a pencil of projective dimension ≥ 1, and we can find
a conic in the pencil through any further point W .



Choose W on m = Q1Q2. Then the conic must degenerate into
two lines,

C = mn,

and Q3, Q4, Q5 must lie on the line n, contrary to hypothesis.

Thus, returning to the 8 points Pi, there is a unique conic through
P1, P2, P3, P4, P5. But as we have seen, this conic must pass through
P6; and by the same argument it must also pass through P7 and
P8. Hence all 8 points lie on a conic, contrary to hypothesis.

Therefore the pencil is of dimension 1; and if Γ1,Γ2 are two curves
in the pencil then the general curve in the pencil is

Γ = λΓ1 + µΓ2.

The curves Γ1,Γ2 meet in the 8 points Pi. Let the curves have
equations

F1(X, Y, Z) = 0, F2(X, Y, Z) = 0.

We can regard these as cubics in Z with coefficients in X, Y . If
we form the resultant of the two cubics we obtain a homogeneous
polynomial R(X, Y ) of degree 9 in X, Y , whose vanishing is a
condition for the two cubics to have a root in common.

The 8 points Pi will provide 8 roots for this equation. By con-
sidering the sum of the roots, it follows that there is a 9th root
in the field k we are working over. Thus the two cubics meet in
a 9th point P9 = [X9, Y9, Z9]. Moreover, by the argument above
Y9/X9 ∈ k; and similarly Z9/X9 ∈ k. Hence P9 is defined over k.

(b) Suppose P,Q,R ∈ E. We have to show that

(P +Q) +R = P + (Q+R).

By definition,
P +Q = O ∗ (P ∗Q),

where P ∗Q is the point where PQ meets the curve again, and O
is the point chosen as zero point. Thus we have to show that

O ∗ ((P +Q) ∗R) = O ∗ (P ∗ (Q+R)) .

Since
U ∗ V = U ∗W ⇐⇒ V = W

it is sufficient to show that

(P +Q) ∗R = P ∗ (Q+R),



ie

(O ∗ (P ∗Q)) ∗R = P ∗ (O ∗ (Q ∗R)) .

Note that
U ∗ V = W ⇐⇒ V ∗W = U.

Thus if we set
P ∗Q = X, Q ∗R = Y

then
P = Q ∗X, R = Q ∗ Y,

and our equation becomes

(O ∗X) ∗ (Q ∗ Y ) = (Q ∗X) ∗ (O ∗ Y ),

ie (since V ∗ U = U ∗ V )

(O ∗X) ∗ (Y ∗Q) = (O ∗ Y ) ∗ (X ∗Q).

Thus the result will follow if we show that

(P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S) (†)

for any 4 points P,Q,R, S ∈ E.

[Conversely, if the operation + is associative then it defines an
abelian group structure on E, with

−P = O ∗ P

and

P ∗Q = −(P +Q).

In this case,

(P ∗Q) ∗ (R ∗ S) = P +Q+R + S = (P ∗R) ∗ (Q ∗ S).

Thus the identity (†) holds if and only if the operation is associa-
tive.]

Now let us apply the 8-point theorem to the points,

P,Q,R, S, U = P ∗Q, V = R ∗ S,W = P ∗R,X = Q ∗ S.

Let us define lines as follows:

` = PQU,m = RSV, n = WX,

f = PRW, g = QSX, h = UV.



Then the degenerate cubics

`mn, fgh

pass through the 8 points, and so must have a 9th point in common.

This 9th point must be where the line n meet E again, ie the point

W ∗X = (P ∗R) ∗ (Q ∗ S).

But by the same argument, it must be the point where the line h
meet E again, ie the point

U ∗ V = (P ∗Q) ∗ (R ∗ S).

We conclude that

(P ∗Q) ∗ (R ∗ S) = (P ∗R) ∗ (Q ∗ S),

as required.

[This argument assumes, on the face of it, that the 9 points arising
in this was are distinct. There are several ways of extending the
reult to cover the special cases when some of the points coincide.

Thus we could extend the definition of the pencil of cubics so that
if eg P = Q then our pencil consisted of the cubics which had the
same tangent at P as E.

Alternatively, we could justify the general result when k = C, say,
by continuity. The result must then be an algebraic identity which
will hold over all fields.

Thirdly, we could appeal to the “Irrelevance of Algebraic Inequal-
ities”, which states that if an identity f(x1, . . . , xn) = 0 holds
subject to an inequailty g(x1, . . . , xn) 6= 0 then it must hold in all
cases.

But the question is long enough as it is, and I think one can assume
that no examiner would expect the student to go into this issue.]

3. Define the discriminant of a polynomial, and find the discriminant of

f(x) = x3 + x2 − x+ 2.

How many real roots does this polynomial have?

Define the resultant of two polynomials, and find the resultant of

f(x) = x2 + 3, g(x) = x3 + 2.



Answer: The discriminant ∆(f) of the polynomial

f(x) = xn + a1x
n−1 + · · ·+ an

with roots α1, . . . , αn is

∆(f) =
∏
i<j

(αi − αj)
2.

The resultant R(f, g) of two polynomials

f(x) = xm + a1x
m−1 + · · ·+ am, g(x) = xn + b1x

n−1 + · · ·+ bn

with roots α1, . . . , αm and β1, . . . , βn is

R(f, g) =
∏
i,j

(αi − βj).

There are various ways of computing the discriminant, eg removing
the term in x2 by changing to x′ = x + a/3 (which won’t alter the
discriminant) and using the fact that if a = 0 then ∆ = −(4b3 + 27c2).

But the following trick is probably quicker in this case. Note that

g(x) =
∏
i

(x− βj) =⇒ g(αi) =
∏
j

(αi − βj)

=⇒ R(f, g) =
∏
j

∏
i

(αi − βj) =
∏
i

g(αi).

Also

R(f, g) =
∏
i,j

(αi − βj)

= (−1)mn
∏
i,j

(βj − αi)

= (−1)mnR(g, f)

= (−1)mn
∏
j

f(βj).

Since
f ′(x) =

∑
i

∏
j 6=i

(x− αj),

it follows that

f ′(αi) =
∏
j 6=i

(αi − αj),



and so

∆(f) =
∏
i<j

(αi − αj)
2

= (−1)n(n−1)/2
∏
i 6=j

(αi − αj)

= (−1)n(n−1)/2
∏
i

∏
j 6=i

(αi − αj)

= (−1)n(n−1)/2
∏
i

f ′(αi)

Setting g(x) = f ′(x)/n (so that g(x) is monic),

∆(f) = (−1)n(n−1)/2nn
∏
i

g(αi) = (−1)n(n−1)/2nnR(f, g).

But now (since n(n− 1) is even)

R(f, g) =
∏
j

f(βj),

and so
∆(f) = (−1)n(n−1)/2nn

∏
j

f(βj).

Applying this with

f(x) = x3 + x2 − x+ 2, g(x) =
1

3
f ′(x) =

1

3
(x+ 1)(x− 1/3),

we get

∆(f) = −33
∏
j

f(βj)

= 27f(−1)f(1/3)

= 27 · 3 · (1/27 + 1/9− 1/3 + 2) = 3(1 + 3− 9 + 54)

= 3 · 49

= 3 · 72.

Finally, uppose
f(x) = x2 + 3, g(x) = x3 + 2.

The roots of f(x) are ±
√

3i. It follows that

R(f, g) = g(
√

3i)g(−
√

3i)

= (−3
√

3i+ 2)(3
√

3i+ 2)

= 27 + 4 = 31.



4. What is meant by saying that a point on the curve

y2 + Ax+B = x3 + ax2 + bx+ c

is singular? What are the points at infinity on this curve? Are any of
them singular?

Find a condition on A,B, a, b, c for the curve to contain a singular point.

Answer:

(a) A point on the projective curve

F (x, y, z) = 0

(where F (x, y, z) is a homogeneous polynomial) is said to be sin-
gular if

∂F

∂x
=
∂F

∂y
=
∂F

∂z
= 0.

The given curve Γ takes the homogeneous form

F (x, y, z) ≡ y2z − x3 − ax2z − bxz2 − cz3 = 0.

It follows that the point P = (x, y) ∈ Γ is singular if

3x2 + 2axz + bz2 = 0, 2yz = 0, y2 − ax2 − 2bxz − 3cz2 = 0.

If z = 0 then x = 0 from the first equation and so y = 0 from the
third equation. This is impossible. Hence y = 0, and so

3x2 + 2axz + bz2 = 0, ax2 + 2bxz + 3cz2 = 0.

Reverting to non-homogeneous notation,

3x2 + 2ax+ b = 0, ax2 + 2bx+ 3c = 0.

If
f(x) = x3 + ax2 + bx+ c

then first equation can be written f ′(x) = 0, while x times the first
plus the second is just 3f(x) = 0.

It follows that the point P = (x, y) on Γ is singular if and only if
y = 0 and

f(x) = f ′(x) = 0,

in other words x is a double root of f(x).



(b) The point [x, y, z] is ‘at infinity’ if z = 0. The point [x, y, 0] is on
Γ if

x3 = 0.

Thus Γ has just one point at infinity, [0, 1, 0].

(c) This point is not singular, since

y2 − ax2 − 2bxz − cz2 = y2 6= 0.

(d) As we have seen, there is a singular point on Γ if and only if f(x)
has a double root, ie f(x) and f ′(x) have a root in common.

Two polynomials f(x) and g(x) have a root in common if and only
if their resultant R(f, g) vanishes.

The resultant of f(x) and f ′(x) is

R(f, f ′) = det


1 a b c 0
0 1 a b c
3 2a b 0 0
0 3 2a b 0
0 0 3 2a b

 .

Thus we have to compute this determinant. Expanding with respect
to the first column,

R(f, f ′) = det


1 a b c
2a b 0 0
3 2a b 0
0 3 2a b

+ 3 det


a b c 0
1 a b c
3 2a b 0
0 3 2a b


= 1(b3)− a(2ab2) + b(4a2b− 3b2)− c(8a3 − 12ab)

+3a(−ab2 + 4a2c− 3bc)− 3b(−2b2 + 6ac) + 3c(−ab+ 9c)

= −a2b2 − 18abc+ 4a3C + 4b3 + 27c2,

which is just the given expression, multiplied by −1.

5. Find the order of the point P = (0, 0) on the elliptic curve

y2 + y = x3 − x.

Answer: We have

(2y + 1)
dy

dx
= 3x2 − 1.

Thus the slope at (x, y) is

m =
3x2 − 1

2y + 1
.



The tangent
y = mx+ c

at (x, y) meets the curve where

(mx+ c)2 + (mx+ c) = x3 − x.

If this meets the curve again at (x2, y2) then

2x+ x2 = m2.

In particular the slope at P is

m =
−1

1
= −1,

so the tangent
y = −x

meets the curve again where

x2 = 1,

ie at
Q = (1,−1).

Hence
Q = −2P.

The slope at Q is

m =
2

−1
= −2.

Thus the tangent at Q is

y + 1 = −2(x− 1),

ie

y = −2x+ 1,

and this meets the curve again where

2 + x2 = 4,

ie

x2 = 2,



ie at (2,−3). Thus
−2Q = R = (2,−3).

The slope at R is

m =
12− 1

−6 + 1
= −11

5
.

It follows that R is of infinite order, and so therefore is P .

6. Show that the elliptic curve

E : y2 + xy = x3 − x2 − 2x− 1

has good reduction modulo 2 and 5; and determine the groups E(F2)
and E(F5).

What can you deduce about the group of points of finite order on E(Q)?

Answer: The curve takes homogeneous form

F (X, Y, Z) ≡ Y 2Z +XY Z −X3 −X2Z − 2XZ2 − Z3 = 0.

At a singular point,

∂F/partialX = Y Z − 3X2 − 2XZ − 2Z2 = 0,

∂F/partialY = 2Y Z +XZ = 0,

∂F/partialZ = Y 2 +XY −X2 − 4XZ − 3Z2 = 0.

(a) In characteristic 2, the second equation gives

XZ = 0 =⇒ X = 0 or Z = 0.

If Z = 0 the first equation gives X = 0, and then the third equation
gives Y = 0. Thus X = Y = Z = 0, which is impossible.

If X = 0 then the first equation gives

Y Z = 0 =⇒ Y = 0 or Z = 0.

We have excluded Z = 0, so

X = Y = 0 =⇒ Z = 0

from the third equation, so again X = Y = Z = 0, which is
impossible.

We conclude that there is no singular point, ie the reduction at 2
is good.



(b) In characteristic 5, the second equation gives

Z(2Y +X) = 0 =⇒ Z = 0 or X = −2Y.

If Z = 0, then as before the first equation gives X = 0, and then
the third gives Y = 0.

Thus X = −2Y =⇒ Y = 2X (as −1/2 = 4/2 = 2), and the first
equation gives

2X2 = 2Z2 =⇒ X = ±Z.
The third equation now gives

(4 + 2− 1∓ 4− 3)X2 = 0 =⇒ X = 0.

Thus X = Y = Z = 0, which is impossible.

We conclude that the curve is non-singular, ie the reduction at 5
is good.

[Alternatively, one could bring the curve to reduced form since the
characteristic is neither 2 nor 3. Thus the equation can be written

y2 − 4xy = x3 − x2 − 2x− 1,

ie

(y − 2x)2 = x3 + 3x2 − 2x− 1.

Writing y for y − 2x, and continuing the reduction,

y2 = x3 + 3x2 + 3x− 1,

ie

y2 = (x+ 1)3 − 2.

Hence the discriminant

D mod 5 = −27 · (−2)2 6= 0,

ie 5 is a good prime.]

In any characteristic, the only point on the line at infinity Z = 0 is
[0, 1, 0].

(a) In characteristic 2 there are just 4 finite points: (0, 0), (1, 0), (0, 1), (1, 1).
Of these, (0, 1) and (1, 1) lie on the curve. Thus

E(F2) = Z/(3).



(b) In characteristic 5 we can write the equation

y2 − 4xy = x3 − x2 − 2x− 1,

ie

(y − 2x)2 = x3 + 3x2 − 2x− 1.

Setting y′ = y − 2x,

y′2 = x3 + 3x2 + 3x− 1,

ie

y′2 = x′3 − 2,

where x′ = x+ 1.

Dropping the ′s, we have to determine the group on the curve

E(F5) : y2 = x3 − 2.

The quadratic residues mod5 are: 0, 1, 4, ie 0,±1. We have the
following table.

x x3 − 2 y points
0 −2 −
1 −1 ±2 (1,±2)
2 1 ±1 (2,±1)
−2 0 0 (−2, 0)
−1 2 −

With O = [0, 1, 0],
‖E(F5)‖ = 6.

It follows that
E(F5) = Z/(6).

If T ⊂ E(Q) is the torsion subgroup, and p is a good prime, then the
map

T → E(Fp)

is an injective homomorphism.

Thus in this case p = 2 gives an injective homomorphism

T → Z/(3).

It follows that
T = {0} or Z/(3).

(The prime p = 5 does not give any further information.)



7. Define a lattice L ⊂ C. Show that the series

1

z2
+

∑
ω∈L, ω 6=0

(
1

(z − ω)2
− 1

ω2

)
defines a function ϕ(z) which is periodic with respect to L.

Show also that ϕ(z) satisfies the functional equation

ϕ′(z)2 = 4ϕ(z)3 + Aϕ(z) +B

for certain constants A,B.

Answer:

(a) A lattice is a subgroup

L = 〈ω1, ω2〉

of the additive group C generated by two non-zero complex numbers
ω1, ω2 such that

ω2/ω1 /∈ R.

[One could equally well define a lattice as a discrete subgroup of
C of rank 2. A discrete subgroup of C is isomorphic to Zr where
r ≤ 2. In this subject we would normally exclude lattices of rank
0 (ie the group {0}) or 1 (ie the group 〈ω〉 consisting of multiples
of some ω ∈ C).]

(b) Let

ϕ(z) =
1

z2
+
∑′

(
1

(z − ω)2
− 1

ω2

)
.

Then

i. The series converges absolutely for any z /∈ L;

ii. the convergence is uniform in any bounded closed region ex-
cluding lattice points, and so the series defines a merormor-
phic function on C with a double pole at each lattice point;

iii. The function is periodic with respect to L, ie

ω ∈ L =⇒ ϕ(z + ω) = ϕ(z).

To prove (i), note that

1

(z − ω)2
− 1

ω2
=

1

ω(1− z/ω)2
− 1

ω2

= ω−2
(
(1− z/ω)−2 − 1

)
= ω−2

(
2z/ω + 3z2/ω2 + · · ·

)
= 2z/ω3 + 3z2/ω4 + · · · .



If
ω = mω1 + nω2

then

|ω|2 = ωω̄

= Q(m,n),

where Q(m,n) is a positive-definite quadratic form. It follows that

C1(m
2 + n2) ≤ |ω|2 ≤ C2(m

2 + n2)

for some C1, C2 > 0.

In particular ∣∣ω−r∣∣ ≤ C(m2 + n2)−r/2.

But ∑′
(m2 + n2)−r/2

converges for r > 2, eg by comparison with∫
(x2 + y2)−r/2dx dy.

It follows that ∑′
ω−r

converges absolutely for r ≥ 3; and so the series for ϕ(z) converges
absolutely for z /∈ L.

This argument also shows that the convergence is uniform in any
bounded region where say

|z − ω| ≥ ε > 0

for all ω ∈ L.

[It is a little more difficult to prove periodicity than one might
think. If one could completely separate the terms

1

(z − ω)2
and

1

ω2

it would be trivial, but unfortunatele these two series do not con-
verge.]

Suppose z /∈ L = 〈ω1, ω2〉. We regard z as fixed. It is sufficient to
show that

ϕ(z + ω1) = ϕ(z).



Given ε > 0 we can find R such that∑
m2+n2>R2

∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ < ε

and ∑
m2+n2>R2

∣∣∣∣ 1

((z + ω1)− ω)2
− 1

ω2

∣∣∣∣ < ε

Thus it is sufficient to consider the terms with m2 + n2 ≤ R2.

But now the terms in the finite sums can be split in two. Now all
the terms will cancel except for the terms

1

(mω1 + nω2)2

when one of
m2 + n2 and (m+ 1)2 + n2

is ≤ R and the other is > R. But this implies that

|m| ≤ R + 1.

Hence

(m,n) ∈ A = {(x, y) : R2 − 3R < x2 + y2 < R2 + 3R}.

Since ∣∣(mω1 + nω2)
2
∣∣ ≥ C(m2 + n2),

the discrepancy will be

< C ′
∑

(m,n)∈A

1

m2 + n2
.

But this is

< C ′
∫
(x,y)∈A′

dx dy

x2 + y2

where

A′ = {(x, y) : R2 − 4R < x2 + y2 < R2 + 4R},

say. But the area of A′ is 8πR, while the value of the integrand is
always ≥ 1/(R2 − 4R). Thus the integral is of order O(1/R) and
so → 0 as R→∞. Hence the discrepancy can be ignored, and

ϕ(z + ω1) = ϕ(z).



Similarly
ϕ(z + ω2) = ϕ(z),

and so
ϕ(z + ω) = ϕ(z)

for all ω ∈ L.

(c) Since

1

(z − ω)2
− 1

ω2
=

1

ω2

(
(1− z/ω)−2 − 1

)
=

2z

ω3
+

3z2

ω4
+

4z3

ω5
+ · · · ,

in the neighbourhood of z = 0

ϕ(z) =
1

z2
+ 2G3z + 3G4z

2 + · · · ,

where

Gr =
∑′ 1

ωr

(for r ≥ 3). If r is odd then

Gr = 0,

since the terms in ±ω cancel out. Thus

ϕ(z) =
1

z2
+ 3G4z

2 + 5G6z
4 +O(z6).

Hence

ϕ′(z) =
−2

z3
+ 6G4z + 20G6z

3 +O(z5),

and so

ϕ′(z)2 =
4

z6
− 24G4

z2
+O(1).

On the other hand,

ϕ(z)3 =
1

z6
+

9G4

z2
+O(1).

Thus

ϕ′(z)2 − 4ϕ(z)3 = −60G4

z2
+O(1).

Hence
ϕ′(z)2 − 4ϕ(z)3 + 60G4ϕ(z) = O(1).



Thus the periodic function on the left has no poles. But such a
function is bounded on a fundamental parallelogram, and so on
the whole of C. Hence it is constant, say

ϕ′(z)2 − 4ϕ(z)3 + 60G4ϕ(z) = B,

ie

ϕ′(z)2 = 4ϕ(z)3 + Aϕ(z) +B,

where A = 60G4.


